Citation: Li Kaixuan, Zhang Tailong, Li Huizeng, Li Mingzhu, Song Yanlin. The Precise Assembly of Nanoparticles[J]. Acta Physico-Chimica Sinica, ;2020, 36(9): 191105. doi: 10.3866/PKU.WHXB201911057 shu

The Precise Assembly of Nanoparticles

  • Corresponding author: Li Mingzhu, mingzhu@iccas.ac.cn Song Yanlin, ylsong@iccas.ac.cn
  • Received Date: 19 November 2019
    Revised Date: 17 February 2020
    Available Online: 2 March 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (51573192, 21522308)the National Natural Science Foundation of China 21522308the National Natural Science Foundation of China 51573192

  • Nanoparticles (NPs) are ideal building blocks for constructing functional materials and devices due to their unique optical, electronic, magnetic, and mechanical properties. The precise assembly and patterning of NPs to obtain ordered structures are vital to explore the special properties of NPs. The specific configurations of large-scale NP assemblies from two-dimensional (2D) NP patterns to one-dimensional (1D) NP arrays on substrates are considered the ideal platform for many technological devices, such as solar cells, magnetic memory, switching devices, and sensing devices, due to their unique transport phenomena and the cooperative properties of NPs in assemblies. Regulation with high-precision control over the orientation and spatial arrangement of nanoarchitecture is required to achieve the coupling and collecting between NPs and thereby translate the properties of the individual NPs to the functions of the macroscopic materials. Therefore, the development of effective methods to build and implement ordered nanocomposites has been accelerated considerably over the last decade. However, due to the complex physics and thermodynamics of the NP assembly, precise control over the orientation and spatial distribution of nanoassemblies with a large area and high homogeneity remains a challenge. In order to tune the position and shape of the NPs into desired structures, a series of strategies and methods have been proposed and developed. These strategies include manipulation of interparticle physical interactions, modification of NP surface chemistry, effect of external fields, utilization of physically or chemically patterned templates, and application of an inkjet printing technique to achieve the desired level of spatial and orientational control over the assembly of NPs. In this paper, we summarized the typical morphologies and the precise control of the architectures prepared by the NPs self-assembly. The particle density, particle size, and interparticle distance of the NP assemblies were strongly controlled. Then the bottom-up strategies for positioning NPs into desired structures with high resolution and considerable throughput were shown. In addition, we discussed the unique functions and diverse applications of the ordered NP assemblies. Both the strong surface plasmon resonance coupling and directional electron transport between particles were studied, which was of highly significance in the development of many technological devices and of great scientific interest. Finally, we investigated the challenges and opportunities of the precise assembly of NPs, which could provide insight and guidance for the future development of functional nanoassembly devices.
  • 加载中
    1. [1]

      Vigderman, L.; Khanal, B. P.; Zubarev, E. R. Adv. Mater. 2012, 24, 4811. doi: 10.1002/adma.201201690  doi: 10.1002/adma.201201690

    2. [2]

      Parab, H. J.; Jung, C.; Lee, J. H.; Park, H. G. Biosens. Bioelectron. 2010, 26, 667. doi: 10.1016/j.bios.2010.06.067  doi: 10.1016/j.bios.2010.06.067

    3. [3]

      Cademartiri, L.; Ozin, G. A. Adv. Mater. 2009, 21, 1013. doi: 10.1002/adma.200801836  doi: 10.1002/adma.200801836

    4. [4]

      Tang, Z. Acta Phys. -Chim. Sin. 2018, 34, 121.  doi: 10.3866/PKU.WHXB201707261

    5. [5]

      Yi, G. C.; Wang, C. R.; Park, W. I. Semicond. Sci. Technol. 2005, 20, S22. doi: 10.1088/0268-1242/20/4/003  doi: 10.1088/0268-1242/20/4/003

    6. [6]

      Parmenter, K. E.; Milstein, F. J. Non-Cryst. Solids 1998, 223, 179. doi: 10.1016/s0022-3093(97)00430-4.  doi: 10.1016/s0022-3093(97)00430-4

    7. [7]

      Nie, Z.; Petukhova, A.; Kumacheva, E. Nat. Nanotech. 2010, 5, 15. doi: 10.1038/nnano.2009.453  doi: 10.1038/nnano.2009.453

    8. [8]

      Alvarez-Puebla, R. A.; Agarwal, A.; Manna, P.; Khanal, B. P.; Aldeanueva-Potel, P.; Carbo-Argibay, E.; Pazos-Perez, N.; Vigderman, L.; Zubarev, E. R.; Kotov, N. A.; et al. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 8157. doi: 10.1073/pnas.1016530108  doi: 10.1073/pnas.1016530108

    9. [9]

      Alvarez-Puebla, R. A.; Zubarev, E. R.; Kotov, N. A.; Liz-Marzan, L. M. Nano Today 2012, 7, 6. doi: 10.1016/j.nantod.2011.11.001  doi: 10.1016/j.nantod.2011.11.001

    10. [10]

      Auguie, B.; Lorenzo Alonso-Gomez, J.; Guerrero-Martinez, A.; Liz-Marzan, L. M. J. Phys. Chem. Lett. 2011, 2, 846. doi: 10.1021/jz200279x  doi: 10.1021/jz200279x

    11. [11]

      Zhang, C. L.; Lv, K. P.; Cong, H. P.; Yu, S. H. Small 2012, 8, 648. doi: 10.1002/smll.201102230  doi: 10.1002/smll.201102230

    12. [12]

      Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425. doi: 10.1126/science.1069156  doi: 10.1126/science.1069156

    13. [13]

      Liu, M. Acta Phys. -Chim. Sin. 2019, 35, 1041.  doi: 10.3866/PKU.WHXB201905045

    14. [14]

      Zhan, J.; Feng, F.; Xu, M.; Yao, L.; Ge, M. Acta Phys. -Chim. Sin.2020, 36, 1905076.  doi: 10.3866/PKU.WHXB201905076

    15. [15]

      Liz-Marzan, L. M. Langmuir2006, 22, 32. doi: 10.1021/la0513353.  doi: 10.1021/la0513353

    16. [16]

      Buxton, G. A.; Balazs, A. C. Mol. Simul. 2004, 30, 249. doi: 10.1080/08927020310001659142  doi: 10.1080/08927020310001659142

    17. [17]

      Liu, Q.; Cui, Y.; Gardner, D.; Li, X.; He, S.; Smalyukh, I. I. Nano Lett. 2010, 10, 1347. doi: 10.1021/nl9042104  doi: 10.1021/nl9042104

    18. [18]

      Kneipp, K.; Kneipp, H.; Kneipp, J. Acc. Chem. Res. 2006, 39, 443. doi: 10.1021/ar050107x  doi: 10.1021/ar050107x

    19. [19]

      Jiang, Z.; Wen, G.; Luo, Y.; Zhang, X.; Liu, Q.; Liang, A. Sci. Rep. 2014, 4, doi: 10.1038/srep05323  doi: 10.1038/srep05323

    20. [20]

      Jain, P. K.; Eustis, S.; El-Sayed, M. A. J. Phys. Chem. B 2006, 110, 18243. doi: 10.1021/jp063879z  doi: 10.1021/jp063879z

    21. [21]

      Damasceno, P. F.; Engel, M.; Glotzer, S. C. Science 2012, 337, 453. doi: 10.1126/science.1220869  doi: 10.1126/science.1220869

    22. [22]

      Dujardin, E.; Hsin, L. B.; Wang, C. R. C.; Mann, S. Chem. Commun. 2001, 1264. doi: 10.1039/b102319p  doi: 10.1039/b102319p

    23. [23]

      Evans, J. S.; Beier, C. N.; Smalyukh, I. I. J. Appl. Phys. 2011, 110, doi: 10.1063/1.3620550  doi: 10.1063/1.3620550

    24. [24]

      Huang, Z.; Meng, G.; Huang, Q.; Chen, B.; Zhu, C.; Zhang, Z. J. Raman Spectrosc. 2013, 44, 240. doi: 10.1002/jrs.4184  doi: 10.1002/jrs.4184

    25. [25]

      Wang, D.; Hore, M. J. A.; Ye, X.; Zheng, C.; Murray, C. B.; Composto, R. J. Soft Matter 2014, 10, 3404. doi: 10.1039/c3sm52514g  doi: 10.1039/c3sm52514g

    26. [26]

      Paramasivam, I.; Jha, H.; Liu, N.; Schmuki, P. Small 2012, 8, 3073. doi: 10.1002/smll.201200564  doi: 10.1002/smll.201200564

    27. [27]

      Bao, Y.; Fong, H.; Jiang, C. J. Phys. Chem. C 2013, 117, 21490. doi: 10.1021/jp4074703  doi: 10.1021/jp4074703

    28. [28]

      Xiao, J.; Li, Z.; Ye, X.; Ma, Y.; Qi, L. Nanoscale 2014, 6, 996. doi: 10.1039/c3nr05343a.  doi: 10.1039/c3nr05343a

    29. [29]

      Wei, W.; Chen, K.; Ge, G. Adv. Mater. 2013, 25, 3863. doi: 10.1002/adma.201301181  doi: 10.1002/adma.201301181

    30. [30]

      Wang, R. Y.; Wang, H.; Wu, X.; Ji, Y.; Wang, P.; Qu, Y.; Chung, T. S. Soft Matter 2011, 7, 8370. doi: 10.1039/c1sm05590a  doi: 10.1039/c1sm05590a

    31. [31]

      Ba, J. H.; Polleux, J.; Antonietti, M.; Niederberger, M. Adv. Mater. 2005, 17, 2509. doi: 10.1002/adma.200501018  doi: 10.1002/adma.200501018

    32. [32]

      Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Nano Lett. 2007, 7, 1591. doi: 10.1021/nl070472c  doi: 10.1021/nl070472c

    33. [33]

      Brezesinski, T.; Wang, J.; Polleux, J.; Dunn, B.; Tolbert, S. H. J. Am. Chem. Soc. 2009, 131, 1802. doi: 10.1021/ja8057309  doi: 10.1021/ja8057309

    34. [34]

      Wang, M.; Yin, Y. J. Am. Chem. Soc. 2016, 138, 6315. doi: 10.1021/jacs.6b02346  doi: 10.1021/jacs.6b02346

    35. [35]

      Erb, R. M.; Libanori, R.; Rothfuchs, N.; Studart, A. R. Science 2012, 335, 199. doi: 10.1126/science.1210822  doi: 10.1126/science.1210822

    36. [36]

      Ahniyaz, A.; Sakamoto, Y.; Bergstrom, L. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 17570. doi: 10.1073/pnas.0704210104  doi: 10.1073/pnas.0704210104

    37. [37]

      Aleksandrovic, V.; Greshnykh, D.; Randjelovic, I.; Froemsdorf, A.; Kornowski, A.; Roth, S. V.; Klinke, C.; Weller, H. ACS Nano 2008, 2, 1123. doi: 10.1021/nn800147a  doi: 10.1021/nn800147a

    38. [38]

      Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226. doi: 10.1021/jp9535506  doi: 10.1021/jp9535506

    39. [39]

      Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J. Nat. Mater. 2008, 7, 527. doi: 10.1038/nmat2206  doi: 10.1038/nmat2206

    40. [40]

      Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Nat. Nanotech. 2012, 7, 699. doi: 10.1038/nnano.2012.193  doi: 10.1038/nnano.2012.193

    41. [41]

      Cheng, W.; Ju, Y.; Payamyar, P.; Primc, D.; Rao, J.; Willa, C.; Koziej, D.; Niederberger, M. Angew. Chem. Int. Ed. 2015, 54, 340. doi: 10.1002/anie.201408617  doi: 10.1002/anie.201408617

    42. [42]

      Cheng, W.; Niederberger, M. Langmuir2016, 32, 2474. doi: 10.1021/acs.langmuir.5b04512  doi: 10.1021/acs.langmuir.5b04512

    43. [43]

      Han, B. Acta Phys. -Chim. Sin. 2019, 35, 455.  doi: 10.3866/PKU.WHXB201807063

    44. [44]

      Tang, Z. Acta Phys. -Chim. Sin. 2019, 35, 557.  doi: 10.3866/PKU.WHXB201809010

    45. [45]

      Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Science 2016, 353, aac5523. doi: 10.1126/science.aac5523  doi: 10.1126/science.aac5523

    46. [46]

      Dasgupta, N. P.; Sun, J.; Liu, C.; Brittman, S.; Andrews, S. C.; Lim, J.; Gao, H.; Yan, R.; Yang, P. Adv. Mater. 2014, 26, 2137. doi: 10.1002/adma.201305929  doi: 10.1002/adma.201305929

    47. [47]

      Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F.; et al. ACS Nano 2013, 7, 2898. doi: 10.1021/nn400280c  doi: 10.1021/nn400280c

    48. [48]

      Fu, X.; Chen, L.; Li, J.; Lin, M.; You, H.; Wang, W. Biosens. Bioelectron. 2012, 34, 227. doi: 10.1016/j.bios.2012.02.008  doi: 10.1016/j.bios.2012.02.008

    49. [49]

      Choi, J. -H.; Wang, H.; Oh, S. J.; Paik, T.; Jo, P. S.; Sung, J.; Ye, X.; Zhao, T.; Diroll, B. T.; Murray, C. B.; et al. Science 2016, 352, 205. doi: 10.1126/science.aad0371  doi: 10.1126/science.aad0371

    50. [50]

      Arciniegas, M. P.; Kim, M. R.; De Graaf, J.; Brescia, R.; Marras, S.; Miszta, K.; Dijkstra, M.; van Roij, R.; Manna, L. Nano Lett. 2014, 14, 1056. doi: 10.1021/nl404732m  doi: 10.1021/nl404732m

    51. [51]

      Baker, J. L.; Widmer-Cooper, A.; Toney, M. F.; Geissler, P. L.; Alivisatos, A. P. Nano Lett. 2010, 10, 195. doi: 10.1021/nl903187v  doi: 10.1021/nl903187v

    52. [52]

      Balazs, A. C.; Emrick, T.; Russell, T. P. Science 2006, 314, 1107. doi: 10.1126/science.1130557  doi: 10.1126/science.1130557

    53. [53]

      Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M. Nature 2000, 404, 746. doi: 10.1038/35008037  doi: 10.1038/35008037

    54. [54]

      Fava, D.; Nie, Z.; Winnik, M. A.; Kumacheva, E. Adv. Mater. 2008, 20, 4318. doi: 10.1002/adma.200702786  doi: 10.1002/adma.200702786

    55. [55]

      Fava, D.; Winnik, M. A.; Kumacheva, E. Chem. Commun. 2009, 2571. doi: 10.1039/b901412h  doi: 10.1039/b901412h

    56. [56]

      Zhu, J.; Dong, Y.; Zhang, S.; Fan, Z. Acta Phys. -Chim. Sin.2020, 36, 1903052.  doi: 10.3866/PKU.WHXB201903052

    57. [57]

      Ferrier, R. C.; Lee, H. S.; Hore, M. J. A.; Caporizzo, M.; Eckmann, D. M.; Composto, R. J. Langmuir 2014, 30, 1906. doi: 10.1021/la404588w  doi: 10.1021/la404588w

    58. [58]

      Boles, M. A.; Engel, M.; Talapin, D. V. Chem. Rev. 2016, 116, 11220. doi: 10.1021/acs.chemrev.6b00196  doi: 10.1021/acs.chemrev.6b00196

    59. [59]

      Xu, Z. C.; Shen, C. M.; Xiao, C. W.; Yang, T. Z.; Chen, S. T.; Hu-Lin, L.; Gao, H. J. Chem. Phys. Lett. 2006, 432, 222. doi: 10.1016/j.cplett.2006.10.056  doi: 10.1016/j.cplett.2006.10.056

    60. [60]

      Dessombz, A.; Chiche, D.; Davidson, P.; Panine, P.; Chaneac, C.; Jolivet, J. P. J. Am. Chem. Soc. 2007, 129, 5904. doi: 10.1021/ja0684491  doi: 10.1021/ja0684491

    61. [61]

      Thorkelsson, K.; Bai, P.; Xu, T. Nano Today 2015, 10, 48. doi: 10.1016/j.nantod.2014.12.005  doi: 10.1016/j.nantod.2014.12.005

    62. [62]

      Sajanlal, P. R.; Sreeprasad, T. S.; Samal, A. K.; Pradeep, T. Nano Rev. Exper. 2011, 2, 5883. doi: 10.3402/nano.v2i0.5883  doi: 10.3402/nano.v2i0.5883

    63. [63]

      Ye, X.; Chen, J.; Engel, M.; Millan, J. A.; Li, W.; Qi, L.; Xing, G.; Collins, J. E.; Kagan, C. R.; Li, J.; et al. Nat. Chem. 2013, 5, 466. doi: 10.1038/nchem.1651  doi: 10.1038/nchem.1651

    64. [64]

      Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677. doi: 10.1021/ja010634l  doi: 10.1021/ja010634l

    65. [65]

      Barrow, S. J.; Funston, A. M.; Gómez, D. E.; Davis, T. J.; Mulvaney, P. Nano Lett. 2011, 11, 4180. doi: 10.1021/nl202080a  doi: 10.1021/nl202080a

    66. [66]

      Barrow, S. J.; Funston, A. M.; Wei, X.; Mulvaney, P. Nano Today 2013, 8, 138. doi: 10.1016/j.nantod.2013.02.005  doi: 10.1016/j.nantod.2013.02.005

    67. [67]

      Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 12674. doi: 10.1021/ja982721s  doi: 10.1021/ja982721s

    68. [68]

      Zhang, S. Y.; Regulacio, M. D.; Han, M. Y. Chem. Soc. Rev. 2014, 43, 2301. doi: 10.1039/c3cs60397k  doi: 10.1039/c3cs60397k

    69. [69]

      Tang, Z. Y.; Kotov, N. A. Adv. Mater. 2005, 17, 951. doi: 10.1002/adma.200401593  doi: 10.1002/adma.200401593

    70. [70]

      Wang, T.; Zhuang, J.; Lynch, J.; Chen, O.; Wang, Z.; Wang, X.; LaMontagne, D.; Wu, H.; Wang, Z.; Cao, Y. C. Science2012, 338, 358. doi: 10.1126/science.1224221  doi: 10.1126/science.1224221

    71. [71]

      Wei, Q. H.; Su, K. H.; Durant, S.; Zhang, X. Nano Lett. 2004, 4, 1067. doi: 10.1021/nl049604h  doi: 10.1021/nl049604h

    72. [72]

      Zhang, X.; Lv, L.; Ji, L.; Guo, G.; Liu, L.; Han, D.; Wang, B.; Tu, Y.; Hu, J.; Yang, D.; et al. J. Am. Chem. Soc. 2016, 138, 3290. doi: 10.1021/jacs.6b00055  doi: 10.1021/jacs.6b00055

    73. [73]

      Park, Y. K.; Yoo, S. H.; Park, S. Langmuir 2007, 23, 10505. doi: 10.1021/la701445a  doi: 10.1021/la701445a

    74. [74]

      Bigioni, T. P.; Lin, X. M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M. Nat. Mater. 2006, 5, 265. doi: 10.1038/nmat1611  doi: 10.1038/nmat1611

    75. [75]

      Huang, X.; Neretina, S.; El-Sayed, M. A. Adv. Mater. 2009, 21, 4880. doi: 10.1002/adma.200802789  doi: 10.1002/adma.200802789

    76. [76]

      Liu, K.; Zhao, N.; Kumacheva, E. Chem. Soc. Rev. 2011, 40, 656. doi: 10.1039/c0cs00133c  doi: 10.1039/c0cs00133c

    77. [77]

      Hore, M. J. A.; Composto, R. J. Macromolecules2014, 47, 875. doi: 10.1021/ma402179w  doi: 10.1021/ma402179w

    78. [78]

      Hore, M. J. A.; Frischknecht, A. L.; Composto, R. J. ACS Macro Lett. 2012, 1, 115. doi: 10.1021/mz200031g  doi: 10.1021/mz200031g

    79. [79]

      Chen, H.; Shao, L.; Li, Q.; Wang, J. Chem. Soc. Rev. 2013, 42, 2679. doi: 10.1039/c2cs35367a  doi: 10.1039/c2cs35367a

    80. [80]

      Huynh, W. U.; Peng, X. G.; Alivisatos, A. P. Adv. Mater. 1999, 11, 923. doi: 10.1002/(sici)1521-4095(199908)11:11 < 923::aid-adma923 > 3.0.co; 2-t  doi: 10.1002/(sici)1521-4095(199908)11:11<923::aid-adma923>3.0.co;2-t

    81. [81]

      Guerrero-Martinez, A.; Auguie, B.; Lorenzo Alonso-Gomez, J.; Dzolic, Z.; Gomez-Grana, S.; Zinic, M.; Magdalena Cid, M.; Liz-Marzan, L. M. Angew. Chem. Int. Ed. 2011, 50, 5499. doi: 10.1002/anie.201007536  doi: 10.1002/anie.201007536

    82. [82]

      Hore, M. J. A.; Composto, R. J. ACS Nano 2010, 4, 6941. doi: 10.1021/nn101725j  doi: 10.1021/nn101725j

    83. [83]

      Kim, J.; Peretti, J.; Lahlil, K.; Boilot, J. P.; Gacoin, T. Adv. Mater. 2013, 25, 3295. doi: 10.1002/adma.201300594  doi: 10.1002/adma.201300594

    84. [84]

      Jana, N. R.; Gearheart, L. A.; Obare, S. O.; Johnson, C. J.; Edler, K. J.; Mann, S.; Murphy, C. J. J. Mater. Chem. 2002, 12, 2909. doi: 10.1039/b205225c  doi: 10.1039/b205225c

    85. [85]

      Kneipp, J.; Kneipp, H.; Kneipp, K. Chem. Soc. Rev. 2008, 37, 1052. doi: 10.1039/b708459p.  doi: 10.1039/b708459p

    86. [86]

      Greeneltch, N. G.; Blaber, M. G.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. C 2013, 117, 2554. doi: 10.1021/jp310846j  doi: 10.1021/jp310846j

    87. [87]

      Glotzer, S. C.; Solomon, M. J. Nat. Mater. 2007, 6, 557. doi: 10.1038/nmat1949  doi: 10.1038/nmat1949

    88. [88]

      Henzie, J.; Gruenwald, M.; Widmer-Cooper, A.; Geissler, P. L.; Yang, P. Nat. Mater. 2012, 11, 131. doi: 10.1038/nmat3178  doi: 10.1038/nmat3178

    89. [89]

      Hermanson, K. D.; Lumsdon, S. O.; Williams, J. P.; Kaler, E. W.; Velev, O. D. Science 2001, 294, 1082. doi: 10.1126/science.1063821  doi: 10.1126/science.1063821

    90. [90]

      Zhu, E.; Wang, S.; Yan, X.; Sobani, M.; Ruan, L.; Wang, C.; Liu, Y.; Duan, X.; Heinz, H.; Huang, Y. J. Am. Chem. Soc. 2019, 141, 1498. doi: 10.1021/jacs.8b08023  doi: 10.1021/jacs.8b08023

    91. [91]

      Rycenga, M.; McLellan, J. M.; Xia, Y. Adv. Mater. 2008, 20, 2416. doi: 10.1002/adma.200800360  doi: 10.1002/adma.200800360

    92. [92]

      Gao, B.; Arya, G.; Tao, A. R. Nat. Nanotech. 2012, 7, 433. doi: 10.1038/nnano.2012.83  doi: 10.1038/nnano.2012.83

    93. [93]

      Sun, Y.; Xia, Y. Science 2002, 298, 2176. doi: 10.1126/science.1077229  doi: 10.1126/science.1077229

    94. [94]

      Guerrero-Martinez, A.; Perez-Juste, J.; Carbo-Argibay, E.; Tardajos, G.; Liz-Marzan, L. M. Angew. Chem. Int. Ed. 2009, 48, 9484. doi: 10.1002/anie.200904118  doi: 10.1002/anie.200904118

    95. [95]

      Gupta, M. K.; Koenig, T.; Near, R.; Nepal, D.; Drummy, L. F.; Biswas, S.; Naik, S.; Vaia, R. A.; El-Sayed, M. A.; Tsukruk, V. V. Small 2013, 9, 2979. doi: 10.1002/smll.201300248  doi: 10.1002/smll.201300248

    96. [96]

      Horsch, M. A.; Zhang, Z.; Glotzer, S. C. Soft Matter 2010, 6, 945. doi: 10.1039/b917403f  doi: 10.1039/b917403f

    97. [97]

      Park, H. S.; Agarwal, A.; Kotov, N. A.; Lavrentovich, O. D. Langmuir 2008, 24, 13833. doi: 10.1021/la803363m  doi: 10.1021/la803363m

    98. [98]

      Wang, L.; Zhu, Y.; Xu, L.; Chen, W.; Kuang, H.; Liu, L.; Agarwal, A.; Xu, C.; Kotov, N. A. Angew. Chem. Int. Ed. 2010, 49, 5472. doi: 10.1002/anie.200907357  doi: 10.1002/anie.200907357

    99. [99]

      Correa-Duarte, M. A.; Perez-Juste, J.; Sanchez-Iglesias, A.; Giersig, M.; Liz-Marzan, L. M. Angew. Chem. Int. Ed. 2005, 44, 4375. doi: 10.1002/anie.200500581  doi: 10.1002/anie.200500581

    100. [100]

      Figuerola, A.; Franchini, I. R.; Fiore, A.; Mastria, R.; Falqui, A.; Bertoni, G.; Bals, S.; Van Tendeloo, G.; Kudera, S.; Cingolani, R.; et al. Adv. Mater. 2009, 21, 550. doi: 10.1002/adma.200801928  doi: 10.1002/adma.200801928

    101. [101]

      Gole, A.; Murphy, C. J. Langmuir2005, 21, 10756. doi: 10.1021/la0512704  doi: 10.1021/la0512704

    102. [102]

      Zhu, Y.; Qu, C.; Kuang, H.; Xu, L.; Liu, L.; Hua, Y.; Wang, L.; Xu, C. Biosens. Bioelectron. 2011, 26, 4387. doi: 10.1016/j.bios.2011.04.046  doi: 10.1016/j.bios.2011.04.046

    103. [103]

      Sun, B.; Sirringhaus, H. J. Am. Chem. Soc. 2006, 128, 16231. doi: 10.1021/ja065242z  doi: 10.1021/ja065242z

    104. [104]

      Liu, K.; Zhao, N.; Kumacheva, E. Chem. Soc. Rev. 2011, 40, 656. doi: 10.1039/C0CS00133C  doi: 10.1039/C0CS00133C

    105. [105]

      Zhao, N.; Liu, K.; Greener, J.; Nie, Z.; Kumacheva, E. Nano Lett. 2009, 9, 3077. doi: 10.1021/nl901567a  doi: 10.1021/nl901567a

    106. [106]

      Hamon, C.; Bizien, T.; Artzner, F.; Even-Hernandez, P.; Marchi, V. J. Colloid Interface Sci. 2014, 424, 90. doi:10.1016/j.jcis.2014.03.002  doi: 10.1016/j.jcis.2014.03.002

    107. [107]

      Hamon, C.; Postic, M.; Mazari, E.; Bizien, T.; Dupuis, C.; Even-Hernandez, P.; Jimenez, A.; Courbin, L.; Gosse, C.; Artzner, F.; et al. ACS Nano 2012, 6, 4137. doi: 10.1021/nn3006027  doi: 10.1021/nn3006027

    108. [108]

      Sreeprasad, T. S.; Samal, A. K.; Pradeep, T. Langmuir 2008, 24, 4589. doi: 10.1021/la703523s  doi: 10.1021/la703523s

    109. [109]

      Horsch, M. A.; Zhang, Z. L.; Glotzer, S. C. Phys. Rev. Lett. 2005, 056105. doi: 10.1103/PhysRevLett.95.056105  doi: 10.1103/PhysRevLett.95.056105

    110. [110]

      Hu, X. G.; Cheng, W. L.; Wang, T.; Wang, Y. L.; Wang, E. K.; Dong, S. J. J. Phys. Chem. B 2005, 109, 19385. doi: 10.1021/jp052706r  doi: 10.1021/jp052706r

    111. [111]

      Wang, J.; Zhang, P.; Li, C. M.; Li, Y. F.; Huang, C. Z. Biosens. Bioelectron. 2012, 34, 197. doi: 10.1016/j.bios.2012.02.001  doi: 10.1016/j.bios.2012.02.001

    112. [112]

      Khanal, B. P.; Zubarev, E. R. Angew. Chem. Int. Ed. 2007, 46, 2195. doi: 10.1002/anie.200604889  doi: 10.1002/anie.200604889

    113. [113]

      Kim, F.; Kwan, S.; Akana, J.; Yang, P. D. J. Am. Chem. Soc. 2001, 123, 4360. doi: 10.1021/ja0059138  doi: 10.1021/ja0059138

    114. [114]

      Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914. doi: 10.1021/ja037969i  doi: 10.1021/ja037969i

    115. [115]

      Goodman, M. D.; Zhao, L.; DeRocher, K. A.; Wang, J.; Mallapragada, S. K.; Lin, Z. ACS Nano 2010, 4, 2043. doi: 10.1021/nn1002584  doi: 10.1021/nn1002584

    116. [116]

      He, J.; Zhang, Q.; Gupta, S.; Emrick, T.; Russell, T. R.; Thiyagarajan, P. Small 2007, 3, 1214. doi: 10.1002/smll.200700055  doi: 10.1002/smll.200700055

    117. [117]

      Liu, Q.; Tang, J.; Zhang, Y.; Martinez, A.; Wang, S.; He, S.; White, T. J.; Smalyukh, I. I. Phys. Rev. E2014, 052505. doi: 10.1103/PhysRevE.89.052505  doi: 10.1103/PhysRevE.89.052505

    118. [118]

      Shaw, S.; Cademartiri, L. Adv. Mater. 2013, 25, 4829. doi: 10.1002/adma.201300850  doi: 10.1002/adma.201300850

    119. [119]

      Pacholski, C.; Kornowski, A.; Weller, H. Angew. Chem. Int. Ed. 2002, 41, 1188. doi: 10.1002/1521-3773(20020402)41:7 < 1188::aid-anie1188 > 3.0.co; 2-5  doi: 10.1002/1521-3773(20020402)41:7<1188::aid-anie1188>3.0.co;2-5

    120. [120]

      Choueiri, R. M.; Galati, E.; Therien-Aubin, H.; Klinkova, A.; Larin, E. M.; Querejeta-Fernandez, A.; Han, L.; Xin, H. L.; Gang, O.; Zhulina, E. B.; et al. Nature 2016, 538, 79. doi: 10.1038/nature19089  doi: 10.1038/nature19089

    121. [121]

      Claridge, S. A.; Castleman, A. W., Jr.; Khanna, S. N.; Murray, C. B.; Sen, A.; Weiss, P. S. ACS Nano 2009, 3, 244. doi: 10.1021/nn800820e  doi: 10.1021/nn800820e

    122. [122]

      Costi, R.; Saunders, A. E.; Banin, U. Angew. Chem. Int. Ed. 2010, 49, 4878. doi: 10.1002/anie.200906010  doi: 10.1002/anie.200906010

    123. [123]

      Shaw, S.; Yuan, B.; Tian, X.; Miller, K. J.; Cote, B. M.; Colaux, J. L.; Migliori, A.; Panthani, M. G.; Cademartiri, L. Adv. Mater. 2016, 28, 8892. doi: 10.1002/adma.201601872  doi: 10.1002/adma.201601872

    124. [124]

      Tang, Z.; Zhang, Z.; Wang, Y.; Glotzer, S. C.; Kotov, N. A. Science 2006, 314, 274. doi: 10.1126/science.1128045  doi: 10.1126/science.1128045

    125. [125]

      Yang, M.; Chan, H.; Zhao, G.; Bahng, J. H.; Zhang, P.; Kral, P.; Kotov, N. A. Nat. Chem. 2017, 9, 287. doi: 10.1038/nchem.2641  doi: 10.1038/nchem.2641

    126. [126]

      Xia, Y.; Trung Dac, N.; Yang, M.; Lee, B.; Santos, A.; Podsiadlo, P.; Tang, Z.; Glotzer, S. C.; Kotov, N. A. Nat. Nanotech. 2011, 6, 580. doi: 10.1038/nnano.2011.121  doi: 10.1038/nnano.2011.121

    127. [127]

      Lu, C.; Tang, Z. Adv. Mater.2016, 28, 1096. doi: 10.1002/adma.201502869  doi: 10.1002/adma.201502869

    128. [128]

      Zhang, Z.; Tang, Z.; Kotov, N. A.; Glotzer, S. C. Nano Lett. 2007, 7, 1670. doi: 10.1021/nl0706300  doi: 10.1021/nl0706300

    129. [129]

      Knorowski, C.; Travesset, A. J. Am. Chem. Soc. 2014, 136, 653. doi: 10.1021/ja406241n  doi: 10.1021/ja406241n

    130. [130]

      Vial, S.; Nykypanchuk, D.; Yager, K. G.; Tkachenko, A. V.; Gang, O. ACS Nano 2013, 7, 5437. doi: 10.1021/nn401413b  doi: 10.1021/nn401413b

    131. [131]

      Kao, J.; Thorkelsson, K.; Bai, P.; Rancatore, B. J.; Xu, T. Chem. Soc. Rev. 2013, 42, 2654. doi: 10.1039/c2cs35375j  doi: 10.1039/c2cs35375j

    132. [132]

      Kudryavtsev, Y. V.; Govorun, E. N.; Litmanovich, A. D.; Fischer, H. R. Macromol. Theory Simul. 2004, 13, 392. doi: 10.1002/mats.200400002  doi: 10.1002/mats.200400002

    133. [133]

      Jones, M. R.; Macfarlane, R. J.; Lee, B.; Zhang, J.; Young, K. L.; Senesi, A. J.; Mirkin, C. A. Nat. Mater.2010, 9, 913. doi: 10.1038/nmat2870  doi: 10.1038/nmat2870

    134. [134]

      Kang, C. C.; Lai, C. W.; Peng, H. C.; Shyue, J. J.; Chou, P. T. ACS Nano 2008, 2, 750. doi: 10.1021/nn800020h  doi: 10.1021/nn800020h

    135. [135]

      Tan, S. J.; Campolongo, M. J.; Luo, D.; Cheng, W. Nat. Nanotech. 2011, 6, 268. doi: 10.1038/nnano.2011.49  doi: 10.1038/nnano.2011.49

    136. [136]

      Shen, C.; Lan, X.; Zhu, C.; Zhang, W.; Wang, L.; Wang, Q. Adv. Mater. 2017, 29, 1606533. doi: 10.1002/adma.201606533  doi: 10.1002/adma.201606533

    137. [137]

      Chen, G.; Gibson, K. J.; Liu, D.; Rees, H. C.; Lee, J. H.; Xia, W.; Lin, R.; Xin, H. L.; Gang, O.; Weizmann, Y. Nat. Mater. 2019, 18, 169. doi: 10.1038/s41563-018-0231-1  doi: 10.1038/s41563-018-0231-1

    138. [138]

      Tian, Y.; Wang, T.; Liu, W.; Xin, H. L.; Li, H.; Ke, Y.; Shih, W. M.; Gang, O. Nat. Nanotech. 2015, 10, 637. doi: 10.1038/nnano.2015.105  doi: 10.1038/nnano.2015.105

    139. [139]

      Liu, X.; Zhang, F.; Jing, X.; Pan, M.; Liu, P.; Li, W.; Zhu, B.; Li, J.; Chen, H.; Wang, L.; et al. Nature 2018, 559, 593. doi: 10.1038/s41586-018-0332-7  doi: 10.1038/s41586-018-0332-7

    140. [140]

      Shen, X.; Song, C.; Wang, J.; Shi, D.; Wang, Z.; Liu, N.; Ding, B. J. Am. Chem. Soc. 2012, 134, 146. doi: 10.1021/ja209861x  doi: 10.1021/ja209861x

    141. [141]

      Kolmakov, A.; Moskovits, M. Ann. Rev. Mater. Res. 2004, 34, 151. doi: 10.1146/annurev.matsci.34.040203.112141  doi: 10.1146/annurev.matsci.34.040203.112141

    142. [142]

      Kraenzlin, N.; Niederberger, M. Mater. Horiz. 2015, 2, 359. doi: 10.1039/c4mh00244j  doi: 10.1039/c4mh00244j

    143. [143]

      Franks, G. V.; Tallon, C.; Studart, A. R.; Sesso, M. L.; Leo, S. J. Am. Ceram. Soc. 2017, 100, 458. doi: 10.1111/jace.14705  doi: 10.1111/jace.14705

    144. [144]

      Henzie, J.; Barton, J. E.; Stender, C. L.; Odom, T. W. Acc. Chem. Res. 2006, 39, 249. doi: 10.1021/ar050013n  doi: 10.1021/ar050013n

    145. [145]

      Nepal, D.; Onses, M. S.; Park, K.; Jespersen, M.; Thode, C. J.; Nealey, P. F.; Vaia, R. A. ACS Nano 2012, 6, 5693. doi: 10.1021/nn301824u  doi: 10.1021/nn301824u

    146. [146]

      Jiang, L.; Chen, X.; Lu, N.; Chi, L. Acc. Chem. Res. 2014, 47, 3009. doi: 10.1021/ar500196r  doi: 10.1021/ar500196r

    147. [147]

      Xu, L.; Ma, W.; Wang, L.; Xu, C.; Kuang, H.; Kotov, N. A. Chem. Soc. Rev. 2013, 42, 3114. doi: 10.1039/c3cs35460a  doi: 10.1039/c3cs35460a

    148. [148]

      Grier, D. G. Nature 2003, 424, 810. doi: 10.1038/nature01935  doi: 10.1038/nature01935

    149. [149]

      Velev, O. D.; Bhatt, K. H. Soft Matter 2006, 2, 738. doi: 10.1039/b605052b  doi: 10.1039/b605052b

    150. [150]

      Singamaneni, S.; Bliznyuk, V. N.; Binek, C.; Tsymbal, E. Y. J. Mater. Chem. 2011, 21, 16819. doi: 10.1039/c1jm11845e  doi: 10.1039/c1jm11845e

    151. [151]

      Srivastava, S.; Santos, A.; Critchley, K.; Kim, K. -S.; Podsiadlo, P.; Sun, K.; Lee, J.; Xu, C.; Lilly, G. D.; Glotzer, S. C.; et al. Science 2010, 327, 1355. doi: 10.1126/science.1177218  doi: 10.1126/science.1177218

    152. [152]

      Chen, K. Y.; Lee, A. T.; Hung, C. C.; Huang, J. S.; Yang, Y. T. Nano Lett. 2013, 13, 4118. doi: 10.1021/nl4016254  doi: 10.1021/nl4016254

    153. [153]

      Mittal, M.; Furst, E. M. Adv. Funct. Mater. 2009, 19, 3271. doi: 10.1002/adfm.200900908  doi: 10.1002/adfm.200900908

    154. [154]

      Wang, K.; Jin, S. M.; Xu, J.; Liang, R.; Shezad, K.; Xue, Z.; Xie, X.; Lee, E.; Zhu, J. ACS Nano 2016, 10, 4954. doi: 10.1021/acsnano.6b00487  doi: 10.1021/acsnano.6b00487

    155. [155]

      Ryan, K. M.; Mastroianni, A.; Stancil, K. A.; Liu, H.; Alivisatos, A. P. Nano Lett. 2006, 6, 1479. doi: 10.1021/nl060866o  doi: 10.1021/nl060866o

    156. [156]

      Singh, G.; Chan, H.; Baskin, A.; Gelman, E.; Repnin, N.; Kral, P.; Klajn, R. Science 2014, 345, 1149. doi: 10.1126/science.1254132  doi: 10.1126/science.1254132

    157. [157]

      Gao, M.; Kuang, M.; Li, L.; Liu, M.; Wang, L.; Song, Y. Small 2018, 14, 1800117. doi: 10.1002/smll.201800117  doi: 10.1002/smll.201800117

    158. [158]

      Xiao, F. X.; Pagliaro, M.; Xu, Y. J.; Liu, B. Chem. Soc. Rev. 2016, 45, 3088. doi: 10.1039/c5cs00781j  doi: 10.1039/c5cs00781j

    159. [159]

      Li, C.; Zhao, M.; Zhou, X.; Li, H.; Wang, Y.; Hu, X.; Li, M.; Shi, L.; Song, Y. Adv. Opt. Mater. 2018, 6, 1800651. doi: 10.1002/adom.201800651  doi: 10.1002/adom.201800651

    160. [160]

      Richardson, J. J.; Cui, J.; Bjornmalm, M.; Braunger, J. A.; Ejima, H.; Caruso, F. Chem. Rev. 2016, 116, 14828. doi: 10.1021/acs.chemrev.6b00627  doi: 10.1021/acs.chemrev.6b00627

    161. [161]

      Kinge, S.; Crego-Calama, M.; Reinhoudt, D. N. ChemPhysChem 2008, 9, 20. doi: 10.1002/cphc.200700475  doi: 10.1002/cphc.200700475

    162. [162]

      Tao, A. R.; Huang, J.; Yang, P. Acc. Chem. Res. 2008, 41, 1662. doi: 10.1021/ar8000525  doi: 10.1021/ar8000525

    163. [163]

      Tebbe, M.; Mayer, M.; Glatz, B. A.; Hanske, C.; Probst, P. T.; Mueller, M. B.; Karg, M.; Chanana, M.; Koenig, T. A. F.; Kuttner, C.; et al. Faraday Discuss. 2015, 181, 243. doi: 10.1039/c4fd00236a  doi: 10.1039/c4fd00236a

    164. [164]

      Kim, H. S.; Lee, C. H.; Sudeep, P.; Emrick, T.; Crosby, A. J. Adv. Mater. 2010, 22, 4600. doi: 10.1002/adma.201001892  doi: 10.1002/adma.201001892

    165. [165]

      Lee, D. Y.; Pham, J. T.; Lawrence, J.; Lee, C. H.; Parkos, C.; Emrick, T.; Crosby, A. J. Adv. Mater.2013, 25, 1248. doi: 10.1002/adma.201203719  doi: 10.1002/adma.201203719

    166. [166]

      Chen, C. F.; Tzeng, S. D.; Chen, H. Y.; Lin, K. J.; Gwo, S. J. Am. Chem. Soc. 2008, 130, 824. doi: 10.1021/ja0773610  doi: 10.1021/ja0773610

    167. [167]

      Huang, J. X.; Kim, F.; Tao, A. R.; Connor, S.; Yang, P. D. Nat. Mater. 2005, 4, 896. doi: 10.1038/nmat1517  doi: 10.1038/nmat1517

    168. [168]

      Huang, J.; Tao, A. R.; Connor, S.; He, R.; Yang, P. Nano Lett. 2006, 6, 524. doi: 10.1021/nl060235u  doi: 10.1021/nl060235u

    169. [169]

      Malaquin, L.; Kraus, T.; Schmid, H.; Delamarche, E.; Wolf, H. Langmuir 2007, 23, 11513. doi: 10.1021/la700852c  doi: 10.1021/la700852c

    170. [170]

      Hughes, R. A.; Menumerov, E.; Neretina, S. Nanotechnology 2017, 28, 282002. doi: 10.1088/1361-6528/aa77ce  doi: 10.1088/1361-6528/aa77ce

    171. [171]

      Flauraud, V.; Mastrangeli, M.; Bernasconi, G. D.; Butet, J.; Alexander, D. T. L.; Shahrabi, E.; Martin, O. J. F.; Brugger, J. Nat. Nanotech. 2017, 12, 73. doi: 10.1038/nnano.2016.179  doi: 10.1038/nnano.2016.179

    172. [172]

      Zhou, Y.; Zhou, X.; Park, D. J.; Torabi, K.; Brown, K. A.; Jones, M. R.; Zhang, C.; Schatz, G. C.; Mirkin, C. A. Nano Lett. 2014, 14, 2157. doi: 10.1021/nl500471g  doi: 10.1021/nl500471g

    173. [173]

      Lin, Q. -Y.; Mason, J. A.; Li, Z.; Zhou, W.; O'Brien, M. N.; Brown, K. A.; Jones, M. R.; Butun, S.; Lee, B.; Dravid, V. P.; et al. Science 2018, 359, 669. doi: 10.1126/science.aaq0591  doi: 10.1126/science.aaq0591

    174. [174]

      Kraus, T.; Malaquin, L.; Schmid, H.; Riess, W.; Spencer, N. D.; Wolf, H. Nat. Nanotech. 2007, 2, 570. doi: 10.1038/nnano.2007.262  doi: 10.1038/nnano.2007.262

    175. [175]

      Hwang, J. K.; Cho, S.; Dang, J. M.; Kwak, E. B.; Song, K.; Moon, J.; Sung, M. M. Nat. Nanotech. 2010, 5, 742. doi: 10.1038/nnano.2010.175  doi: 10.1038/nnano.2010.175

    176. [176]

      Paik, T.; Yun, H.; Fleury, B.; Hong, S. -H.; Jo, P. S.; Wu, Y.; Oh, S. -J.; Cargnello, M.; Yang, H.; Murray, C. B.; et al. Nano Lett.2017, 17, 1387. doi: 10.1021/acs.nanolett.6b04279  doi: 10.1021/acs.nanolett.6b04279

    177. [177]

      Su, B.; Zhang, C.; Chen, S.; Zhang, X.; Chen, L.; Wu, Y.; Nie, Y.; Kan, X.; Song, Y.; Jiang, L. Adv. Mater. 2014, 26, 2501. doi: 10.1002/adma.201305249  doi: 10.1002/adma.201305249

    178. [178]

      Li, Z.; Huang, Z.; Yang, Q.; Su, M.; Zhou, X.; Li, H.; Li, L.; Li, F.; Song, Y. Adv. Opt. Mater. 2017, 5, doi: 10.1002/adom.201700751  doi: 10.1002/adom.201700751

    179. [179]

      Hou, J.; Zhang, H.; Yang, Q.; Li, M.; Song, Y.; Jiang, L. Angew. Chem. Int. Ed. 2014, 53, 5791. doi: 10.1002/anie.201400686  doi: 10.1002/anie.201400686

    180. [180]

      Guo, D.; Li, C.; Wang, Y.; Li, Y.; Song, Y. Angew. Chem. Int. Ed. 2017, 56, 15348. doi: 10.1002/anie.201709115  doi: 10.1002/anie.201709115

    181. [181]

      Guo, D.; Zheng, X.; Wang, X.; Li, H.; Li, K.; Li, Z.; Song, Y. Angew. Chem. Int. Ed. 2018, 57, 16126. doi: 10.1002/anie.201810728  doi: 10.1002/anie.201810728

    182. [182]

      Guo, D.; Li, Y.; Zheng, X.; Li, F.; Chen, S.; Li, M.; Yang, Q.; Li, H.; Song, Y. J. Am. Chem. Soc. 2018, 140, 18. doi: 10.1021/jacs.7b09738  doi: 10.1021/jacs.7b09738

    183. [183]

      Yang, Q.; Deng, M.; Li, H.; Li, M.; Zhang, C.; Shen, W.; Li, Y.; Guo, D.; Song, Y. Nanoscale 2015, 7, 421. doi: 10.1039/c4nr04656k  doi: 10.1039/c4nr04656k

    184. [184]

      Chen, S.; Su, M.; Zhang, C.; Gao, M.; Bao, B.; Yang, Q.; Su, B.; Song, Y. Adv. Mater. 2015, 27, 3928. doi: 10.1002/adma.201500225  doi: 10.1002/adma.201500225

    185. [185]

      Park, J. -U.; Hardy, M.; Kang, S. J.; Barton, K.; Adair, K.; Mukhopadhyay, D. K.; Lee, C. Y.; Strano, M. S.; Alleyne, A. G.; Georgiadis, J. G.; et al. Nat. Mater. 2007, 6, 782. doi: 10.1038/nmat1974  doi: 10.1038/nmat1974

    186. [186]

      Galliker, P.; Schneider, J.; Eghlidi, H.; Kress, S.; Sandoghdar, V.; Poulikakos, D. Nat. Commun. 2012, 3, doi: 10.1038/ncomms1891  doi: 10.1038/ncomms1891

    187. [187]

      An, B. W.; Kim, K.; Lee, H.; Kim, S. Y.; Shim, Y.; Lee, D. Y.; Song, J. Y.; Park, J. U. Adv. Mater. 2015, 27, 4322. doi: 10.1002/adma.201502092  doi: 10.1002/adma.201502092

    188. [188]

      Li, H.; Fang, W.; Li, Y.; Yang, Q.; Li, M.; Li, Q.; Feng, X. Q.; Song, Y. Nat. Commun. 2019, 10, doi: 10.1038/s41467-019-08919-2  doi: 10.1038/s41467-019-08919-2

    189. [189]

      Kuang, M.; Wang, J.; Bao, B.; Li, F.; Wang, L.; Jiang, L.; Song, Y. Adv. Opt. Mater. 2014, 2, 34. doi: 10.1002/adom.201300369  doi: 10.1002/adom.201300369

    190. [190]

      Zhang, Z.; Zhang, X.; Xin, Z.; Deng, M.; Wen, Y.; Song, Y. Adv. Mater. 2013, 25, 6714. doi: 10.1002/adma.201303278  doi: 10.1002/adma.201303278

    191. [191]

      Huang, Y.; Zhou, J.; Su, B.; Shi, L.; Wang, J.; Chen, S.; Wang, L.; Zi, J.; Song, Y.; Jiang, L. J. Am. Chem. Soc. 2012, 134, 17053. doi: 10.1021/ja304751k  doi: 10.1021/ja304751k

    192. [192]

      Tan, A. T. L.; Beroz, J.; Kolle, M.; Hart, J. Adv. Mater. 2018, 30, doi: 10.1002/adma.201803620  doi: 10.1002/adma.201803620

    193. [193]

      Peng, K. Q.; Wang, X.; Li, L.; Hu, Y.; Lee, S. T. Nano Today 2013, 8, 75. doi: 10.1016/j.nantod.2012.12.009  doi: 10.1016/j.nantod.2012.12.009

    194. [194]

      Pileni, M. P. Acc. Chem. Res.2007, 40, 685. doi: 10.1021/ar6000582  doi: 10.1021/ar6000582

    195. [195]

      Zhu, Z.; Guo, J.; Liu, W.; Li, Z.; Han, B.; Zhang, W.; Tang, Z. Angew. Chem. Int. Ed. 2013, 52, 13571. doi: 10.1002/anie.201305389  doi: 10.1002/anie.201305389

    196. [196]

      Gwo, S.; Chen, H. Y.; Lin, M. H.; Sun, L.; Li, X. Chem. Soc. Rev. 2016, 45, 5672. doi: 10.1039/c6cs00450d  doi: 10.1039/c6cs00450d

    197. [197]

      Li, Z.; Zhu, Z.; Liu, W.; Zhou, Y.; Han, B.; Gao, Y.; Tang, Z. J. Am. Chem. Soc. 2012, 134, 3322. doi: 10.1021/ja209981n  doi: 10.1021/ja209981n

    198. [198]

      Gong, J.; Li, G.; Tang, Z. Nano Today 2012, 7, 564. doi: 10.1016/j.nantod.2012.10.008  doi: 10.1016/j.nantod.2012.10.008

    199. [199]

      Chen, T.; Pourmand, M.; Feizpour, A.; Cushman, B.; Reinhard, B. R. M. J. Phys. Chem. Lett. 2013, 4, 2147. doi: 10.1021/jz401066g  doi: 10.1021/jz401066g

    200. [200]

      Fan, J. A.; Wu, C.; Bao, K.; Bao, J.; Bardhan, R.; Halas, N. J.; Manoharan, V. N.; Nordlander, P.; Shvets, G.; Capasso, F. Science 2010, 328, 1135. doi: 10.1126/science.1187949  doi: 10.1126/science.1187949

    201. [201]

      Zhan, P.; Wen, T.; Wang, Z. g.; He, Y.; Shi, J.; Wang, T.; Liu, X.; Lu, G.; Ding, B. Angew. Chem. Int. Ed.2018, 57, 2846. doi: 10.1002/anie.201712749  doi: 10.1002/anie.201712749

    202. [202]

      Zhang, H.; Cadusch, J.; Kinnear, C.; James, T.; Roberts, A.; Mulvaney, P. ACS Nano 2018, 12, 7529. doi: 10.1021/acsnano.8b02932  doi: 10.1021/acsnano.8b02932

    203. [203]

      Lin, M. H.; Chen, H. Y.; Gwo, S. J. Am. Chem. Soc. 2010, 132, 11259. doi: 10.1021/ja103722p  doi: 10.1021/ja103722p

    204. [204]

      Xu, L.; Gao, Y.; Kuang, H.; Liz-Marzan, L. M.; Xu, C. Angew. Chem. Int. Ed. 2018, 57, 10544. doi: 10.1002/anie.201805640  doi: 10.1002/anie.201805640

    205. [205]

      Ma, W.; Kuang, H.; Xu, L.; Ding, L.; Xu, C.; Wang, L.; Kotov, N. A. Nat. Commun. 2013, 4, doi: 10.1038/ncomms3689  doi: 10.1038/ncomms3689

    206. [206]

      Tan, C.; Qi, X.; Liu, Z.; Zhao, F.; Li, H.; Huang, X.; Shi, L.; Zheng, B.; Zhang, X.; Xie, L.; et al. J. Am. Chem. Soc. 2015, 137, 1565. doi: 10.1021/ja511471b  doi: 10.1021/ja511471b

    207. [207]

      Ma, W.; Xu, L.; De Moura, A. F.; Wu, X.; Kuang, H.; Xu, C.; Kotov, N. A. Chem. Rev. 2017, 117, 8041. doi: 10.1021/acs.chemrev.6b00755  doi: 10.1021/acs.chemrev.6b00755

    208. [208]

      Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Nature2018, 556, 360. doi: 10.1038/s41586-018-0034-1  doi: 10.1038/s41586-018-0034-1

    209. [209]

      Yan, W.; Xu, L.; Xu, C.; Ma, W.; Kuang, H.; Wang, L.; Kotov, N. A. J. Am. Chem. Soc. 2012, 134, 15114. doi: 10.1021/ja3066336  doi: 10.1021/ja3066336

    210. [210]

      Sang, Y.; Han, J.; Zhao, T.; Duan, P.; Liu, M. Adv. Mater. 2019, 1900110. doi: 10.1002/adma.201900110  doi: 10.1002/adma.201900110

    211. [211]

      Zhou, Y.; Marson, R. L.; van Anders, G.; Zhu, J.; Ma, G.; Ercius, P.; Sun, K.; Yeom, B.; Glotzer, S. C.; Kotov, N. A. ACS Nano 2016, 10, 3248. doi: 10.1021/acsnano.5b05983  doi: 10.1021/acsnano.5b05983

    212. [212]

      Shi, L.; Zhu, L.; Guo, J.; Zhang, L.; Shi, Y.; Zhang, Y.; Hou, K.; Zheng, Y.; Zhu, Y.; Lv, J.; et al. Angew. Chem. Int. Ed. 2017, 56, 15397. doi: 10.1002/anie.201709827  doi: 10.1002/anie.201709827

    213. [213]

      Ma, W.; Kuang, H.; Wang, L.; Xu, L.; Chang, W. -S.; Zhang, H.; Sun, M.; Zhu, Y.; Zhao, Y.; Liu, L.; et al. Sci. Rep. 2013, 3, 1394. doi: 10.1038/srep01934  doi: 10.1038/srep01934

    214. [214]

      Han, B.; Gao, X.; Lv, J.; Tang, Z. Adv. Mater. 2018, 1801491. doi: 10.1002/adma.201801491  doi: 10.1002/adma.201801491

    215. [215]

      Han, B.; Gao, X.; Shi, L.; Zheng, Y.; Hou, K.; Lv, J.; Guo, J.; Zhang, W.; Tang, Z. Nano Lett. 2017, 17, 6083. doi: 10.1021/acs.nanolett.7b02583  doi: 10.1021/acs.nanolett.7b02583

  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    3. [3]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    7. [7]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    10. [10]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    14. [14]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    15. [15]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    16. [16]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    17. [17]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    18. [18]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(25)
  • Abstract views(569)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return