Citation: Zilong Shao, Xiaofang Liu, Shunan Zhang, Hui Wang, Yuhan Sun. CO Hydrogenation to Ethanol over Supported Rh-Based Catalyst: Effect of the Support[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 191105. doi: 10.3866/PKU.WHXB201911053 shu

CO Hydrogenation to Ethanol over Supported Rh-Based Catalyst: Effect of the Support

  • Corresponding author: Hui Wang, wanghh@sari.ac.cn Yuhan Sun, sunyh@sari.ac.cn
  • Received Date: 27 November 2019
    Revised Date: 29 December 2019
    Accepted Date: 6 January 2020
    Available Online: 9 January 2020

    Fund Project: the National Natural Science Foundation of China 21776296the National Key Research and Development Program of China 2017YFB0602203Strategic Priority Research Program of the Chinese Academy of Sciences XDA21090201the Chinese Academy of Sciences ZDRW-ZS-2018-1-3Shanghai Sailing Program, China 19YF1453000

  • Ethanol has great application prospects given it is an important essential chemical and a substitute for traditional energy sources. Currently, ethanol production is achieved through grain fermentation and petroleum-based ethylene hydration. However, the inefficient fermentation processes and increasingly depleted crude oil resources hinder the large-scale production of ethanol. Therefore, the development of alternative technologies for ethanol production has become an important issue. The direct production of ethanol from syngas (CO + H2) is considered to be a new strategy to acquire high value-added products and achieve clean utilization of carbonaceous resources such as coal, natural gas, and biomass. Supported Rh-based catalysts have been extensively studied as the most promising and effective systems for the direct production of ethanol from syngas. The use of promoters and supports is generally effective in increasing the activity and ethanol selectivity of supported Rh-based catalysts. Fe is widely used in the research on Rh-based catalysts, as it is one of the most effective promoters for enhancing ethanol selectivity. In this work, with the aim of exploring the role of the support, we used the incipient wetness impregnation method to prepare Fe-promoted Rh-based catalysts supported by CeO2, ZrO2, and TiO2 for the synthesis of ethanol from syngas. CO conversion of CO on the RhFe/TiO2 catalyst was as high as 18.2% under the reaction conditions of 250 ℃ and 2 MPa, and the selectivity to ethanol in the alcohol distribution was 74.7%, which was much higher than that observed with RhFe/CeO2 and RhFe/ZrO2 under the same conditions. The characterization results showed that the specific surface of the catalyst followed the order RhFe/CeO2 < RhFe/ZrO2 < RhFe/TiO2; the dispersion of Rh increased sequentially, and the particle size decreased in the same order. A larger specific surface area may favor the dispersion of the Rh species, and the highly dispersed Rh species would imply a greater number of active sites on the surface of the support. The results of H2-temperature-programmed reduction indicated possible interactions between Rh and the support as well as between Rh and Fe, and partial reduction of TiO2 under the experimental reduction conditions; however, the other supports did not undergo reduction. The results of X-ray photoelectron spectroscopy indicated that the RhFe/TiO2 catalyst had the largest amount of Rh0 as well as Rh+ species. Thus, this catalyst has more (Rhx0-Rhy+)-O-Feδ+ active sites for the synthesis of ethanol, which greatly increases the ethanol selectivity. CO-temperature programmed desorption was used to confirm the CO adsorption capacity of different catalysts. The results showed that TiO2 enhances the adsorption of CO due to the presence of more O vacancies and Ti3+ ions, which is beneficial to the improvement of the catalyst activity.
  • 加载中
    1. [1]

      Surisetty, V. R.; Dalai, A. K.; Kozinski, J. Appl. Catal. A-Gen. 2011, 404, 1. doi: 10.1016/j.apcata.2011.07.021  doi: 10.1016/j.apcata.2011.07.021

    2. [2]

      Luk, H. T.; Mondelli, C.; Ferré, D. C.; Stewart, J. A.; Pérez-Ramírez, J. Chem. Soc. Rev. 2017, 46, 1358. doi: 10.1039/c6cs00324a  doi: 10.1039/c6cs00324a

    3. [3]

      Gao, J.; Mo, X. H.; Goodwin, J. C., Jr. J. Catal. 2009, 268, 142. doi: 10.1016/j.jcat.2009.09.012  doi: 10.1016/j.jcat.2009.09.012

    4. [4]

      Yang, N.; Medford, A. J.; Liu, X. Y.; Studt, F.; Bligaard, T.; Bent, S. T.; Nørskov, J. K. J. Am. Chem. Soc. 2016, 138, 3705. doi: 10.1021/jacs.5b12087  doi: 10.1021/jacs.5b12087

    5. [5]

      Yang, N.; Yoo, J. S.; Schumann, J.; Bothra, P.; Singh, J. A.; Valle, E.; Abild-Pedersen, F.; Nørskov, J. K.; Bent, S. T. ACS Catal. 2017, 7, 5746. doi: 10.1021/acscatal.7b01851  doi: 10.1021/acscatal.7b01851

    6. [6]

      Bhasin, M. M.; Bartley, W. J.; Ellgen, P. C.; Wilson, T. P. J. Catal. 1978, 54, 120. doi: 10.1016/0021-9517(78)90035-0  doi: 10.1016/0021-9517(78)90035-0

    7. [7]

      Liao, P. Y.; Zhang, C.; Zhang, L. J.; Yang, Y. Z.; Zhong, L. S.; Guo, X. Y.; Wang, H.; Sun, Y. H. Acta Phys. -Chim. Sin. 2017, 33, 1672.  doi: 10.3866/PKU.WHXB201704143

    8. [8]

      Li, J. L.; Hu, R. J.; Qu, H.; Su, Y.; Wang, N.; Su, H. Q.; Gu, X. J. Appl. Catal. B-Environ. 2019, 249, 63. doi: 10.1016/j.apcatb.2019.02.060  doi: 10.1016/j.apcatb.2019.02.060

    9. [9]

      Gao, J.; Mo, X. H.; Chien, A. C. Y.; Torres, W.; Goodwin, J. G., Jr. J. Catal. 2009, 262, 119. doi: 10.1016/j.jcat.2008.12.006  doi: 10.1016/j.jcat.2008.12.006

    10. [10]

      Xu, D. D.; Zhang, H.T.; Ma, H. F.; Qian, W. X.; Ying, W. Y. Catal. Commun. 2017, 98, 90. doi: 10.1016/j.catcom.2017.03.019  doi: 10.1016/j.catcom.2017.03.019

    11. [11]

      Liu, W. G.; Wang, S.; Sun, T. J.; Wang, S. D. Catal. Lett. 2015, 145, 1741. doi: 10.1007/s10562-015-1577-5  doi: 10.1007/s10562-015-1577-5

    12. [12]

      Han, L. P.; Mao, D. S.; Yu, J.; Guo, Q. S.; Lu, G. Z. Appl. Catal. A-Gen. 2013, 454, 81. doi: 10.1016/j.apcata.2013.01.008  doi: 10.1016/j.apcata.2013.01.008

    13. [13]

      Egbebi, A.; Schwartz, V.; Overbury, S. H.; Spivey, J. J. Catal. Today 2010, 149, 91. doi: 10.1016/j.cattod.2009.07.104  doi: 10.1016/j.cattod.2009.07.104

    14. [14]

      Wang, Y.; Luo, H. Y.; Liang, D. B.; Bao, X. H. J. Catal. 2000, 196, 46. doi: 10.1006/jcat.2000.3026  doi: 10.1006/jcat.2000.3026

    15. [15]

      Chen, W. M.; Ding, Y. J.; Xue, F.; Song, X. G. Acta Phys. -Chim. Sin. 2015, 31, 1.  doi: 10.3866/PKU.WHXB201411054

    16. [16]

      Li, F.; Ma, H. F.; Zhang, H. T.; Ying, W. Y.; Fang, D. Y. C. R. Chim. 2014, 17, 1109. doi: 10.1016/j.crci.2014.01.015  doi: 10.1016/j.crci.2014.01.015

    17. [17]

      Carrillo, P.; Shi, R.; Teeluck, K.; Senanayake, S. D.; White, M. G. ACS Catal. 2018, 8, 7279. doi: 10.1021/acscatal.8b02235  doi: 10.1021/acscatal.8b02235

    18. [18]

      State, R.; Scurtu, M.; Miyazaki, A.; Papa, F.; Atkinson, F.; Munteanu, C.; Balint, I. Arab. J. Chem. 2017, 10, 975. doi: 10.1016/j.arabjc.2017.05.009  doi: 10.1016/j.arabjc.2017.05.009

    19. [19]

      Abdel-Mageed, A. M.; Widmann, D.; Olesen, S. E.; Chorkendorff, I.; Biskupek, J.; Behm, R. J. ACS Catal. 2015, 5, 6753. doi: 10.1021/acscatal.5b01520  doi: 10.1021/acscatal.5b01520

    20. [20]

      Jacobs, G.; Das, T. K.; Zhang, Y. Q.; Li, J. L.; Racoillet, G.; Davis, B. H. Appl. Catal. A-Gen. 2002, 233, 263. doi: 10.1016/s0926-860x(02)00195-3  doi: 10.1016/s0926-860x(02)00195-3

    21. [21]

      Matsubu, J. C.; Zhang, S.; DeRita, L.; Marinkovic, N. S.; Chen, J. G.; Graham, G. W.; Pan, X.; Christopher, P. Nat. Chem. 2017, 9, 120. doi: 10.1038/nchem.2607  doi: 10.1038/nchem.2607

    22. [22]

      Chen, Y.; Zhang, H. T.; Ma, H. F.; Qian, W. X.; Jin, F. Y.; Ying, W. Y. Catal. Lett. 2018, 148, 691. doi: 10.1007/s10562-017-2202-6  doi: 10.1007/s10562-017-2202-6

    23. [23]

      Kim, M. J.; Kim, H. J.; Lee, S. J.; Ryu, I. S.; Yoon, H. C.; Lee, K. B.; Jeon, S. G. Catal. Commun. 2019, 130, 105764. doi: 10.1016/j.catcom.2019.105764  doi: 10.1016/j.catcom.2019.105764

    24. [24]

      Mao, W.; Su, J. J.; Zhang, Z. P.; Xu, X. C.; Dai, W. W.; Fu, D. L.; Xu, J. Zhou, X. G.; Han, Y. F. Chem. Eng. Sci. 2015, 135, 312. doi: 10.1016/j.ces.2015.02.035  doi: 10.1016/j.ces.2015.02.035

    25. [25]

      Yin, H. M.; Ding, Y. J.; Luo, H. Y.; Zhu, H. J.; He, D. P.; Xiong, J. M.; Lin, L. W. Appl. Catal. A-Gen. 2003, 243, 155. doi: 10.1016/s0926-860x(02)00560-4  doi: 10.1016/s0926-860x(02)00560-4

    26. [26]

      Han, L. P.; Mao, D. S.; Yu, J.; Guo, Q. S.; Lu, G. Z. Catal. Commun. 2012, 23, 20. doi: 10.1016/j.catcom.2012.02.032  doi: 10.1016/j.catcom.2012.02.032

    27. [27]

      Chen, G. C.; Guo, C. Y.; Zhang, X. H.; Huang, Z. J.; Yuan, G. Q. Fuel Process. Technol. 2011, 92, 456. doi: 10.1016/j.fuproc.2010.10.012  doi: 10.1016/j.fuproc.2010.10.012

    28. [28]

      Chen, W. M.; Ding, Y. J.; Song, X. G.; Wang, T.; Luo, H. Y. Appl. Catal. A-Gen. 2011, 407, 231. doi: 10.1016/j.apcata.2011.08.044  doi: 10.1016/j.apcata.2011.08.044

    29. [29]

      Wang, J. J.; Zhang, Q. H.; Wang, Y. Catal. Today 2011, 171, 257. doi: 10.1016/j.cattod.2011.03.023  doi: 10.1016/j.cattod.2011.03.023

    30. [30]

      Chuang, S. S. C.; Pien, S. I. J. Catal. 1992, 135, 618. doi: 10.1016/0021-9517(92)90058-p  doi: 10.1016/0021-9517(92)90058-p

    31. [31]

      Ichikawa, M.; Fukushima, T. J. Chem. Soc., Chem. Commun. 1985, 6, 321. doi: 10.1039/c39850000321  doi: 10.1039/c39850000321

    32. [32]

      Qin, S. D.; Zhang, C. H.; Xu, J.; Yang, Y.; Xiang, H. W.; Li, Y. W. Appl. Catal. A-Gen. 2011, 392, 118. doi: 10.1016/j.apcata.2010.10.032  doi: 10.1016/j.apcata.2010.10.032

    33. [33]

      Schunemann, V.; Trevino, H.; Lei, G. D.; Tomczak, D. C.; Sachtler, W. M. H.; Fogash, K.; Dumesic, J. A. J. Catal. 1995, 153, 144. doi: 10.1006/jcat.1995.1116  doi: 10.1006/jcat.1995.1116

    34. [34]

      Wang, W. W.; Qu, Z. P.; Song, L. X.; Fu, Q. J. Energy Chem. 2020, 40, 22. doi: 10.1016/j.jechem.2019.03.001  doi: 10.1016/j.jechem.2019.03.001

    35. [35]

      Zhang, X. C.; Hu, W. Y.; Zhang, K. F.; Wang, J. N.; Sun, B. J.; Li, H. Z.; Qiao, P. Z.; Wang, L.; Zhou, W. ACS Sustain. Chem. Eng. 2017, 5, 6894. doi: 10.1021/acssuschemeng.7b01114  doi: 10.1021/acssuschemeng.7b01114

    36. [36]

      Vannice, M. A.; Sudhakar, C. J. Phys. Chem. 1984, 88, 2429. doi: 10.1021/j150656a002  doi: 10.1021/j150656a002

  • 加载中
    1. [1]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    2. [2]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    3. [3]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    4. [4]

      Jianing HeXiao WangZijian WangRuize JiangKe WangRui ZhangHuilin WangBaokang GengHongyi GaoShuyan SongHongjie Zhang . Investigation on Cu promotion effect on Ce-based solid solution-anchored Rh single atoms for three-way catalysis. Chinese Chemical Letters, 2025, 36(2): 109640-. doi: 10.1016/j.cclet.2024.109640

    5. [5]

      Zhongsen WangLijun QiuYunhua HuangMeng ZhangXi CaiFanyu WangYang LinYanbiao ShiXiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195

    6. [6]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    7. [7]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    8. [8]

      Yunlong LiXinyu ZhangShuang LiuChunsheng LiQiang WangJin YeYong LuJiating Xu . Engineered iron-based metal-organic frameworks nanoplatforms for cancer theranostics: A mini review. Chinese Chemical Letters, 2025, 36(2): 110501-. doi: 10.1016/j.cclet.2024.110501

    9. [9]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    10. [10]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    11. [11]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    12. [12]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    13. [13]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    14. [14]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    15. [15]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    17. [17]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    18. [18]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    19. [19]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    20. [20]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

Metrics
  • PDF Downloads(19)
  • Abstract views(453)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return