Citation: Tiantian Dai, Zanhong Deng, Gang Meng, Bin Tong, Hongyu Liu, Xiaodong Fang. Controllable Synthesis and Gas Sensing Properties of Bridged Tungsten Oxide Nanowires[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 191103. doi: 10.3866/PKU.WHXB201911036 shu

Controllable Synthesis and Gas Sensing Properties of Bridged Tungsten Oxide Nanowires

  • Corresponding author: Gang Meng, menggang@aiofm.ac.cn Xiaodong Fang, xdfang@aiofm.ac.cn
  • Received Date: 19 November 2019
    Revised Date: 26 December 2019
    Accepted Date: 27 December 2019
    Available Online: 17 January 2020

    Fund Project: the National Natural Science Foundation of China 11604339the National Natural Science Foundation of China 11674324CAS Pioneer Hundred Talents Program from Chinese Academy of Sciences, CAS-JSPS Joint Research Projects GJHZ1891National Key Laboratory of Quantum Optics and Photonic Devices, China KF201901

  • The rapid development of industrialization has resulted in severe environmental problems. A comprehensive assessment of air quality is urgently required all around the world. Among various technologies used in gas molecule detection, including Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, mass spectroscopy (MS), electrochemical sensors, and metal oxide semiconductor (MOS) gas sensors, MOS gas sensors possess the advantages of small dimension, low power consumption, high sensitivity, low production cost, and excellent silicon chip compatibility. MOS sensors hold great promise for future Internet of Things (IoT) sensors, which will have a profound impact on indoor and outdoor air quality monitoring. The development of nanotechnology has significantly enhanced the development of MOS gas sensors. Among various nanostructures like nanoparticles, nanosheets and nanowires, the emergence of quasi-one-dimensional (q1D) nanowires/nanorods/nanofibers, with unique q1D geometry (facilitating fast carrier transport) and large surface-to-volume ratio, potentially act as ideal sensing channels for MOS sensors with extremely small dimension, and good stability and sensitivity. These structures have thus been the focus of extensive research. Among the various MOS nanomaterials available, tungsten oxide (WO3-x, 0 ≤ x < 1) nanowires feature the characteristic properties (multiple oxidation states, rich substoichiometric oxides with distinct properties, photo/electrochromism, (photo)catalytic properties, etc.), and unique q1D geometry (single-crystalline pathway for fast carrier transport, large surface-to-volume ratio, etc.). WO3-x nanowires have broad applications in smart windows, energy conversation & storage, and gas sensing devices, and have thus become a focus of attention. In this paper, the fundamental properties of tungsten oxide, synthesis methods and growth mechanism of tungsten oxide nanowires are reviewed. Among various (vapor-liquid-solid (VLS), vapor-solid (VS) and thermal oxidation) growth methods, the thermal oxidation method enables an in situ integration of WO3-x nanowires on predefined electrodes (so-called bridged nanowire devices) via the oxidation of lithographically patterned W film at relatively low growth temperature (~500 ℃) because of interfacial strain, defects and oxygen on the surface of the W film. The novel bridged nanowire-based sensor devices outperform traditional lateral nanowire devices in terms of larger exposure area, low power consumption via self-heating, and greater convenience in device processing. Recent progress in bridged WO3-x nanowire devices and sensitive NOx molecule detection under low power consumption have also been reviewed. Power consumption of as low as a few milliwatts was achieved, and the detection limit of NO2 was reduced to 0.3 ppb (1 ppb = 1 × 10-9, volume fraction). In situ formed bridged WO3-x nanowire devices potentially satisfy the strict requirements of IoT sensors (small dimension, low power consumption, high integration, low cost, high sensitivity, and selectivity), and hold great promises for future IoT sensors.
  • 加载中
    1. [1]

      Adgate, J. L.; Goldstein, B. D.; McKenzie, L. M. Environ. Sci. Technol. 2014, 48 (15), 8307. doi: 10.1021/es404621d  doi: 10.1021/es404621d

    2. [2]

      Tian, Y.; Yang, X.; Guo, T.; Peng, L.; Gan, H.; Xu, N.; Chen, H.; Chen, J.; Liu, F.; Deng, S. Adv. Mater. Technol. 2017, 2 (8), 1700029. doi: 10.1002/admt.201700029  doi: 10.1002/admt.201700029

    3. [3]

      Bhattacharya, M.; Paramati, S. R.; Ozturk, I.; Bhattacharya, S. Appl. Energy 2016, 162, 733. doi: 10.1016/j.apenergy.2015.10.104  doi: 10.1016/j.apenergy.2015.10.104

    4. [4]

      Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z.; Wang, Z. L. Appl. Phys. Lett. 2002, 81 (10), 1869. doi: 10.1063/1.1504867  doi: 10.1063/1.1504867

    5. [5]

      Ma, S.; Hu, M.; Zeng, P.; Li, M.; Yan, W.; Qin, Y. Sens. Actuators B 2014, 192, 341. doi: 10.1016/j.snb.2013.10.121  doi: 10.1016/j.snb.2013.10.121

    6. [6]

      Qin, Y.; Li, X.; Wang, F.; Hu, M. J. Alloys Compd. 2011, 509 (33), 8401. doi: 10.1016/j.jallcom.2011.05.100  doi: 10.1016/j.jallcom.2011.05.100

    7. [7]

      Zheng, H.; Ou, J. Z.; Strano, M. S.; Kaner, R. B.; Mitchell, A.; Kalantar-zadeh, K. Adv. Funct. Mater. 2011, 21 (12), 2175. doi: 10.1002/adfm.201002477  doi: 10.1002/adfm.201002477

    8. [8]

      Dey, A. Mater. Sci. Eng. B 2018, 229, 206. doi: 10.1016/j.mseb.2017.12.036  doi: 10.1016/j.mseb.2017.12.036

    9. [9]

      Shen, Y.; Yamazaki, T.; Liu, Z.; Meng, D.; Kikuta, T.; Nakatani, N. Thin Solid Films 2009, 517 (6), 2069. doi: 10.1016/j.tsf.2008.10.021  doi: 10.1016/j.tsf.2008.10.021

    10. [10]

      Kuang, Q.; Lao, C.; Wang, Z. L.; Xie, Z.; Zheng, L. J. Am. Chem. Soc. 2007, 129 (19), 6070. doi: 10.1021/ja070788m  doi: 10.1021/ja070788m

    11. [11]

      Qin, Y.; Xie, W.; Liu, Y.; Ye, Z. Sens. Actuators B 2016, 223, 487. doi: 10.1016/j.snb.2015.09.113  doi: 10.1016/j.snb.2015.09.113

    12. [12]

      Yang, X.; Salles, V.; Kaneti, Y. V.; Liu, M.; Maillard, M.; Journet, C.; Jiang, X.; Brioude, A. Sens. Actuators B 2015, 220, 1112. doi: 10.1016/j.snb.2015.05.121  doi: 10.1016/j.snb.2015.05.121

    13. [13]

      Huang, Z. F.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J. J. Adv. Mater. 2015, 27 (36), 5309. doi: 10.1002/adma.201501217  doi: 10.1002/adma.201501217

    14. [14]

      Minh Vuong, N.; Kim, D.; Kim, H. Sci. Rep. 2015, 5 (1), 11040. doi: 10.1038/srep11040  doi: 10.1038/srep11040

    15. [15]

      Song, C.; Zhang, J.; Gao, Y.; Lu, Y.; Wang, F. Acta Phys. -Chim. Sin. 2017, 33 (9), 1891.  doi: 10.3866/PKU.WHXB201705111

    16. [16]

      Ngoc, T. M.; Van Duy, N.; Duc Hoa, N.; Manh Hung, C.; Nguyen, H.; Van Hieu, N. Sens. Actuators B 2019, 295, 144. doi: 10.1016/j.snb.2019.05.074  doi: 10.1016/j.snb.2019.05.074

    17. [17]

      Ahmadi, M.; Sahoo, S.; Younesi, R.; Gaur, A. P. S.; Katiyar, R. S.; Guinel, M. J. F. J. Mater. Sci. 2014, 49 (17), 5899. doi: 10.1007/s10853-014-8304-2  doi: 10.1007/s10853-014-8304-2

    18. [18]

      Wang, H.; Ding, R.; Wang, C.; Ren, X.; Wang, L.; Lv, B. CrystEngComm 2017, 19 (28), 3979. doi: 10.1039/c7ce00774d  doi: 10.1039/c7ce00774d

    19. [19]

      Gullapalli, S. K.; Vemuri, R. S.; Ramana, C. V. Appl. Phys. Lett. 2010, 96 (17), 171903. doi: 10.1063/1.3421540  doi: 10.1063/1.3421540

    20. [20]

      Migas, D. B.; Shaposhnikov, V. L.; Borisenko, V. E. J. Appl. Phys. 2010, 108 (9), 093714. doi: 10.1063/1.3505689  doi: 10.1063/1.3505689

    21. [21]

      Kaiser, F.; Simon, P.; Burkhardt, U.; Kieback, B.; Grin, Y.; Veremchuk, I. Crystals 2017, 7 (9), 271. doi: 10.3390/cryst7090271  doi: 10.3390/cryst7090271

    22. [22]

      Viswanathan, K.; Brandt, K.; Salje, E. J. Solid State Chem. 1981, 36 (1), 45. doi: 10.1016/0022-4596(81)90190-0  doi: 10.1016/0022-4596(81)90190-0

    23. [23]

      Aguir, K.; Lemire, C.; Lollman, D. B. B. Sens. Actuators B 2002, 84, 1. doi: 10.1016/S0925-4005(02)00003-5  doi: 10.1016/S0925-4005(02)00003-5

    24. [24]

      Zhu, L. F.; She, J. C.; Luo, J. Y.; Deng, S. Z.; Chen, J.; Ji, X. W.; Xu, N. S. Sens. Actuators B 2011, 153 (2), 354. doi: 10.1016/j.snb.2010.10.047  doi: 10.1016/j.snb.2010.10.047

    25. [25]

      Al Mohammad, A.; Gillet, M. Thin Solid Films 2002, 408 (1-2), 302. doi: 10.1016/s0040-6090(02)00090-1  doi: 10.1016/s0040-6090(02)00090-1

    26. [26]

      Jiménez, I.; Arbiol, J.; Dezanneau, G.; Cornet, A.; Morante, J. R. Sens. Actuators B 2003, 93 (1-3), 475. doi: 10.1016/s0925-4005(03)00198-9  doi: 10.1016/s0925-4005(03)00198-9

    27. [27]

      Tong, B.; Deng, Z.; Xu, B.; Meng, G.; Shao, J.; Liu, H.; Dai, T.; Shan, X.; Dong, W.; Wang, S.; et al. ACS Appl. Mater. Interfaces 2018, 10 (40), 34727. doi: 10.1021/acsami.8b10485  doi: 10.1021/acsami.8b10485

    28. [28]

      Tong, B.; Meng, G.; Deng, Z.; Horprathum, M.; Klamchuen, A.; Fang, X. Chem. Commun. 2019, 55 (78), 11691. doi: 10.1039/c9cc05881h  doi: 10.1039/c9cc05881h

    29. [29]

      Hong, K.; Xie, M.; Hu, R.; Wu, H. Nanotechnology 2008, 19 (8), 085604. doi: 10.1088/0957-4484/19/8/085604  doi: 10.1088/0957-4484/19/8/085604

    30. [30]

      Li, N.; Zheng, Y.; Wei, L.; Teng, H.; Zhou, J. Green Chem. 2017, 19 (3), 682. doi: 10.1039/c6gc01327a  doi: 10.1039/c6gc01327a

    31. [31]

      Lei, T.; Deng, Q.; Zhang, S.; Cai, S.; Xie, C. Sens. Actuators B 2016, 232, 506. doi: 10.1016/j.snb.2016.04.001  doi: 10.1016/j.snb.2016.04.001

    32. [32]

      Liu, W.; Xu, L.; Sheng, K.; Chen, C.; Zhou, X.; Dong, B.; Bai, X.; Zhang, S.; Lu, G.; Song, H. J. Mater. Chem. A 2018, 6 (23), 10976. doi: 10.1039/c8ta02452a  doi: 10.1039/c8ta02452a

    33. [33]

      Lu, C. H.; Hon, M. H.; Leu, I. C. J. Electron. Mater. 2016, 46 (4), 2080. doi: 10.1007/s11664-016-5132-y  doi: 10.1007/s11664-016-5132-y

    34. [34]

      Kunyapat, T.; Xu, F.; Neate, N.; Wang, N.; Sanctis, A.; Russo, S.; Zhang, S.; Xia, Y.; Zhu, Y. Nanoscale 2018, 10 (10), 4718. doi: 10.1039/c7nr08385h  doi: 10.1039/c7nr08385h

    35. [35]

      Liu, I. P.; Chang, C. H.; Chou, T. C.; Lin, K. W. Sens. Actuators B 2019, 291, 148. doi: 10.1016/j.snb.2019.04.046  doi: 10.1016/j.snb.2019.04.046

    36. [36]

      Lu, J.; Xu, C.; Cheng, L.; Jia, N.; Huang, J.; Li, C. Mater. Sci. Semicond. Process. 2019, 101, 214. doi: 10.1016/j.mssp.2019.05.038  doi: 10.1016/j.mssp.2019.05.038

    37. [37]

      Gao, L.; Wang, X.; Xie, Z.; Song, W.; Wang, L.; Wu, X.; Qu, F.; Chena, D.; Shen, G. J. Mater. Chem. A 2013, 1, 7167. doi: 10.1039/c3ta10831g  doi: 10.1039/c3ta10831g

    38. [38]

      Sarkar, D.; Mukherjee, S.; Pal, S.; Sarma, D. D.; Shukla, A. J. Electrochem. Soc. 2018, 165 2108. doi: 10.1149/2.0451810jes  doi: 10.1149/2.0451810jes

    39. [39]

      Xiao, Z.; Zhang, L.; Tian, X.; Fang, X. Nanotechnology 2005, 16 (11), 2647. doi: 10.1088/0957-4484/16/11/029  doi: 10.1088/0957-4484/16/11/029

    40. [40]

      Shim, H. S.; Kim, J. W.; Sung, Y. E.; Kim, W. B. Sol. Energy Mater. Sol. Cells 2009, 93 (12), 2062. doi: 10.1016/j.solmat.2009.02.008  doi: 10.1016/j.solmat.2009.02.008

    41. [41]

      Miao, B.; Zeng, W.; Hussain, S.; Mei, Q.; Xu, S.; Zhang, H.; Li, Y.; Li, T. Mater. Lett. 2015, 147, 12. doi: 10.1016/j.matlet.2015.02.020  doi: 10.1016/j.matlet.2015.02.020

    42. [42]

      Guo, C.; Yin, S.; Yan, M.; Kobayashi, M.; Kakihana, M.; Sato, T. Inorg. Chem. 2012, 51 (8), 4763. doi: 10.1021/ic300049j  doi: 10.1021/ic300049j

    43. [43]

      Liu, J.; Margeat, O.; Dachraoui, W.; Liu, X.; Fahlman, M.; Ackermann, J. Adv. Funct. Mater. 2014, 24 (38), 6029. doi: 10.1002/adfm.201401261  doi: 10.1002/adfm.201401261

    44. [44]

      Phuruangrat, A.; Yayapao, O.; Thongtem, T.; Thongtem, S. Russ. J. Phys. Chem. A 2017, 91 (12), 2441. doi: 10.1134/s0036024417120019  doi: 10.1134/s0036024417120019

    45. [45]

      Gu, Z.; Zhai, T.; Gao, B.; Sheng, X.; Wang, Y.; Fu, H.; Ma, Y.; Yao, J. J. Phys. Chem. B 2006, 110, 23829. doi: 10.1021/jp065170y  doi: 10.1021/jp065170y

    46. [46]

      Song, X. C.; Zheng, Y. F.; Yang, E.; Wang, Y. Mater. Lett. 2007, 61 (18), 3904. doi: 10.1016/j.matlet.2006.12.055  doi: 10.1016/j.matlet.2006.12.055

    47. [47]

      Ha, J. H.; Muralidharan, P.; Kim, D. K. J. Alloys Compd. 2009, 475 (1-2), 446. doi: 10.1016/j.jallcom.2008.07.048  doi: 10.1016/j.jallcom.2008.07.048

    48. [48]

      Gu, Z.; Li, H.; Zhai, T.; Yang, W.; Xia, Y.; Ma, Y.; Yao, J. J. Solid State Chem. 2007, 180 (1), 98. doi: 10.1016/j.jssc.2006.09.020  doi: 10.1016/j.jssc.2006.09.020

    49. [49]

      Moshofsky, B.; Mokari, T. Chem. Mater. 2012, 25 (8), 1384. doi: 10.1021/cm302015z  doi: 10.1021/cm302015z

    50. [50]

      Hassan, M.; Wang, Z. H.; Huang, W. R.; Li, M. Q.; Liu, J. W.; Chen, J. F. Sensors 2017, 17 (10), doi: 10.3390/s17102245  doi: 10.3390/s17102245

    51. [51]

      Zhao, Y. M.; Hu, W. B.; Xia, Y. D.; Smith, E. F.; Zhu, Y. Q.; Dunnill, C. W.; Gregory, D. H. J. Mater. Chem. 2007, 17 (41), 4436. doi: 10.1039/b709486h  doi: 10.1039/b709486h

    52. [52]

      Qin, Y.; Hu, M.; Zhang, J. Sens. Actuators B 2010, 150 (1), 339. doi: 10.1016/j.snb.2010.06.063  doi: 10.1016/j.snb.2010.06.063

    53. [53]

      Hong, K.; Xie, M.; Hu, R.; Wu, H. Appl. Phys. Lett. 2007, 90 (17), 173121. doi: 10.1063/1.2734175  doi: 10.1063/1.2734175

    54. [54]

      Langmuir, I. Phys. Rev. 1913, 2 (5), 329. doi: 10.1103/PhysRev.2.329  doi: 10.1103/PhysRev.2.329

    55. [55]

      Chapman, D. M. Appl. Catal. A 2011, 392 (1-2), 143. doi: 10.1016/j.apcata.2010.11.005  doi: 10.1016/j.apcata.2010.11.005

    56. [56]

      Ponzoni, A.; Comini, E.; Sberveglieri, G.; Zhou, J.; Deng, S. Z.; Xu, N. S.; Ding, Y.; Wang, Z. L. Appl. Phys. Lett. 2006, 88 (20), 203101. doi: 10.1063/1.2203932  doi: 10.1063/1.2203932

    57. [57]

      Zhou, J.; Ding, Y.; Deng, S. Z.; Gong, L.; Xu, N. S.; Wang, Z. L. Adv. Mater. 2005, 17 (17), 2107. doi: 10.1002/adma.200500885  doi: 10.1002/adma.200500885

    58. [58]

      Van Hieu, N.; Van Vuong, H.; Van Duy, N.; Hoa, N. D. Sens. Actuators B 2012, 171-172, 760. doi: 10.1016/j.snb.2012.05.069  doi: 10.1016/j.snb.2012.05.069

    59. [59]

      Chi, L.; Xu, N.; Deng, S.; Chen, J.; She, J. Nanotechnology 2006, 17 (22), 5590. doi: 10.1088/0957-4484/17/22/011  doi: 10.1088/0957-4484/17/22/011

    60. [60]

      Mandl, B.; Stangl, J.; Hilner, E.; Zakharov, A. A.; Hillerich, K.; Dey, A. W.; Samuelson, L.; Bauer, G.; Deppert, K.; Mikkelsen, A. Nano Lett. 2010, 10 (11), 4443. doi: 10.1021/nl1022699  doi: 10.1021/nl1022699

    61. [61]

      Liu, F.; Li, L.; Mo, F.; Chen, J.; Deng, S.; Xu, N. Cryst. Growth Des. 2010, 10 (12), 5193. doi: 10.1021/cg100995f  doi: 10.1021/cg100995f

    62. [62]

      Hu, R.; Wu, H.; Hong, K. J. Cryst. Growth 2007, 306 (2), 395. doi: 10.1016/j.jcrysgro.2007.05.007  doi: 10.1016/j.jcrysgro.2007.05.007

    63. [63]

      Hong, K.; Yiu, W.; Wu, H.; Gao, J.; Xie, M. Nanotechnology 2005, 16 (9), 1608. doi: 10.1088/0957-4484/16/9/034  doi: 10.1088/0957-4484/16/9/034

    64. [64]

      Klinke, C.; Hannon, J. B.; Gignac, L.; Reuter, K.; Avouris, P. J. Phys. Chem. B 2005, 109, 17787. doi: 10.1021/jp0533224  doi: 10.1021/jp0533224

    65. [65]

      Smith, A. M.; Kast, M. G.; Nail, B. A.; Aloni, S.; Boettcher, S. W. J. Mater. Chem. A 2014, 2 (17), 6121. doi: 10.1039/c3ta14163b  doi: 10.1039/c3ta14163b

    66. [66]

      Dellasega, D.; Pietralunga, S. M.; Pezzoli, A.; Russo, V.; Nasi, L.; Conti, C.; Vahid, M. J.; Tagliaferri, A.; Passoni, M. Nanotechnology 2015, 26 (36), 365601. doi: 10.1088/0957-4484/26/36/365601  doi: 10.1088/0957-4484/26/36/365601

    67. [67]

      Wu, W.; Yu, Q.; Lian, J.; Bao, J.; Liu, Z.; Pei, S. S. J. Cryst. Growth 2010, 312 (21), 3147. doi: 10.1016/j.jcrysgro.2010.07.057  doi: 10.1016/j.jcrysgro.2010.07.057

    68. [68]

      Huang, R.; Zhu, J.; Yu, R. Chin. Phys. B 2009, 18, 3024. doi: 10.1088/1674-1056/18/7/068  doi: 10.1088/1674-1056/18/7/068

    69. [69]

      Kojima, Y.; Kasuya, K.; Ooi, T.; Nagato, K.; Takayama, K.; Nakao, M. Jpn. J. Appl. Phys. 2007, 46, 6250. doi: 10.1143/JJAP.46.6250  doi: 10.1143/JJAP.46.6250

    70. [70]

      Liu, F.; Mo, F. Y.; Jin, S. Y.; Li, L.; Chen, Z. S.; Sun, R.; Chen, J.; Deng, S. Z.; Xu, N. S. Nanoscale 2011, 3 (4), 1850. doi: 10.1039/c0nr01007c  doi: 10.1039/c0nr01007c

    71. [71]

      Cao, B.; Chen, J.; Tang, X.; Zhou, W. J. Mater. Chem. A 2009, 19, 2323. doi: 10.1039/b816646c  doi: 10.1039/b816646c

    72. [72]

      Xu, F.; Tse, S. D.; Al-Sharab, J. F.; Kear, B. H. Appl. Phys. Lett. 2006, 88 (24), 243115. doi: 10.1063/1.2213181  doi: 10.1063/1.2213181

    73. [73]

      Galléa, F.; Li, Z.; Zhang, Z. Appl. Phys. Lett. 2006, 89 (19), 193111. doi: 10.1063/1.2387883  doi: 10.1063/1.2387883

    74. [74]

      Kojima, Y.; Kasuya, K.; Nagato, K.; Hamaguchi, T.; Nakao, M. J. Vac. Sci. Technol., B 2008, 26 (6), 1942. doi: 10.1116/1.2990783  doi: 10.1116/1.2990783

    75. [75]

      Lin, Z.; Xie, P.; Zhan, R.; Chen, D.; She, J.; Deng, S.; Xu, N.; Chen, J. ACS Appl. Nano Mater. 2019, 2 (8), 5206. doi: 10.1021/acsanm.9b01074  doi: 10.1021/acsanm.9b01074

    76. [76]

      Hernandez-Ramirez, F.; Tarancon, A.; Casals, O.; Pellicer, E.; Rodriguez, J.; Romano-Rodriguez, A.; Morante, J. R.; Barth, S.; Mathur, S. Phys. Rev. B 2007, 76 (8), doi: 10.1103/PhysRevB.76.085429  doi: 10.1103/PhysRevB.76.085429

    77. [77]

      Van, P. T. H.; Dai, D. D.; Van Duy, N.; Hoa, N. D.; Van Hieu, N. Sens. Actuators B 2016, 227, 198. doi: 10.1016/j.snb.2015.12.054  doi: 10.1016/j.snb.2015.12.054

    78. [78]

      Meng, G.; Zhuge, F.; Nagashima, K.; Nakao, A.; Kanai, M.; He, Y.; Boudot, M.; Takahashi, T.; Uchida, K.; Yanagida, T. ACS Sensors 2016, 1 (8), 997. doi: 10.1021/acssensors.6b00364  doi: 10.1021/acssensors.6b00364

    79. [79]

      Nguyet, Q. T. M.; Van Duy, N.; Manh Hung, C.; Hoa, N. D.; Van Hieu, N. Appl. Phys. Lett. 2018, 112 (15), 153110. doi: 10.1063/1.5023851  doi: 10.1063/1.5023851

    80. [80]

      Takahashi, T.; Nichols, P.; Takei, K.; Ford, A. C.; Jamshidi, A.; Wu, M. C.; Ning, C. Z.; Javey, A. Nanotechnology 2012, 23 (4), 045201. doi: 10.1088/0957-4484/23/4/045201  doi: 10.1088/0957-4484/23/4/045201

    81. [81]

      Zhuang, X.; Ning, C. Z.; Pan, A. Adv. Mater. 2012, 24 (1), 13. doi: 10.1002/adma.201103191  doi: 10.1002/adma.201103191

    82. [82]

      Xiong, X.; Jaberansari, L.; Hahm, M. G.; Busnaina, A.; Jung, Y. J. Small 2007, 3 (12), 2006. doi: 10.1002/smll.200700292  doi: 10.1002/smll.200700292

    83. [83]

      Wu, S.; Huang, K.; Shi, E.; Xu, W.; Fang, Y.; Yang, Y.; Cao, A. ACS Nano 2014, 8 (4), 3522. doi: 10.1021/nn406610d  doi: 10.1021/nn406610d

    84. [84]

      Hu, H.; Wang, Z.; Ye, Q.; He, J.; Nie, X.; He, G.; Song, C.; Shang, W.; Wu, J.; Tao, P.; et al. ACS Appl. Mater. Interfaces 2016, 8 (31), 20483. doi: 10.1021/acsami.6b06334  doi: 10.1021/acsami.6b06334

    85. [85]

      Nguyen, H.; Quy, C. T.; Hoa, N. D.; Lam, N. T.; Duy, N. V.; Quang, V. V.; Hieu, N. V. Sens. Actuators B 2014, 193, 888. doi: 10.1016/j.snb.2013.11.043  doi: 10.1016/j.snb.2013.11.043

    86. [86]

      Hung, C. M.; Le, D. T. T.; Van Hieu, N. J. Sci.: Adv. Mater. Devices 2017, 2 (3), 263. doi: 10.1016/j.jsamd.2017.07.009  doi: 10.1016/j.jsamd.2017.07.009

    87. [87]

      Lee, K.; Baek, D. H.; Na, H.; Choi, J.; Kim, J. Sens. Actuators B 2018, 265, 522. doi: 10.1016/j.snb.2018.03.100  doi: 10.1016/j.snb.2018.03.100

    88. [88]

      Xiong, Y.; Zhu, Z.; Guo, T.; Li, H.; Xue, Q. J. Hazard. Mater. 2018, 353, 290. doi: 10.1016/j.jhazmat.2018.04.020  doi: 10.1016/j.jhazmat.2018.04.020

    89. [89]

      Kruefu, V.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S. Sens. Actuators B 2015, 215, 630. doi: 10.1016/j.snb.2015.03.037  doi: 10.1016/j.snb.2015.03.037

    90. [90]

      Van Tong, P.; Hoa, N. D.; Van Duy, N.; Van Hieu, N. RSC Adv. 2015, 5 (32), 25204. doi: 10.1039/c5ra00916b  doi: 10.1039/c5ra00916b

    91. [91]

      Zhao, X.; Ji, H.; Jia, Q.; Wang, M. J. Mater. Sci.: Mater. Electron. 2015, 26 (10), 8217. doi: 10.1007/s10854-015-3484-3  doi: 10.1007/s10854-015-3484-3

    92. [92]

      Park, J. Y.; Choi, S. W.; Kim, S. S. J. Phys. Chem. C 2011, 115 (26), 12774. doi: 10.1021/jp202113x  doi: 10.1021/jp202113x

    93. [93]

      Lee, D. S.; Nam, K. H.; Lee, D. D. Thin Solid Films 2000, 375, 142. doi: 10.1016/S0040-6090(00)01261-X  doi: 10.1016/S0040-6090(00)01261-X

    94. [94]

      Sun, H. T.; Cantalini, C.; Lozzi, L.; Passacantando, M.; Santucci, S.; Pelino, M. Thin Solid Films 1996, 287, 258. doi: 10.1016/S0040-6090(96)08745-7  doi: 10.1016/S0040-6090(96)08745-7

    95. [95]

      Penza, M.; Tagliente, M. A.; Mirenghi, L.; Gerardi, C.; Martucci, C.; Cassano, G. Sens. Actuators B 1998, 50, 9. doi: 10.1016/S0925-4005(98)00149-X  doi: 10.1016/S0925-4005(98)00149-X

    96. [96]

      Jaroenapibal, P.; Boonma, P.; Saksilaporn, N.; Horprathum, M.; Amornkitbamrung, V.; Triroj, N. Sens. Actuators B 2018, 255, 1831. doi: 10.1016/j.snb.2017.08.199  doi: 10.1016/j.snb.2017.08.199

    97. [97]

      An, S.; Park, S.; Ko, H.; Lee, C. Ceram. Int. 2014, 40 (1), 1423. doi: 10.1016/j.ceramint.2013.07.025  doi: 10.1016/j.ceramint.2013.07.025

    98. [98]

      Wu, Y. Q.; Hu, M.; Wei, X. Y. Chin. Phys. B 2014, 23 (4), 040704. doi: 10.1088/1674-1056/23/4/040704  doi: 10.1088/1674-1056/23/4/040704

    99. [99]

      Ngoc, T. M.; Van Duy, N.; Hung, C. M.; Hoa, N. D.; Nguyen, H.; Tonezzer, M.; Van Hieu, N. Anal. Chim. Acta 2019, 1069, 108. doi: 10.1016/j.aca.2019.04.020  doi: 10.1016/j.aca.2019.04.020

    100. [100]

      Park, W. J.; Choi, K. J.; Kim, M. H.; Koo, B. H.; Lee, J. L.; Baik, J. M. ACS Appl. Mater. Interfaces 2013, 5 (15), 6802. doi: 10.1021/am401635e  doi: 10.1021/am401635e

    101. [101]

      Sysoev, V. V.; Schneider, T.; Goschnick, J.; Kiselev, I.; Habicht, W.; Hahn, H.; Strelcov, E.; Kolmakov, A. Sens. Actuators B 2009, 139 (2), 699. doi: 10.1016/j.snb.2009.03.065  doi: 10.1016/j.snb.2009.03.065

    102. [102]

      Prades, J. D.; Jimenez-Diaz, R.; Hernandez-Ramirez, F.; Barth, S.; Cirera, A.; Romano-Rodriguez, A.; Mathur, S.; Morante, J. R. Appl. Phys. Lett. 2008, 93 (12), 123110. doi: 10.1063/1.2988265  doi: 10.1063/1.2988265

    103. [103]

      Zhao, D.; Huang, H.; Chen, S.; Li, Z.; Li, S.; Wang, M.; Zhu, H.; Chen, X. Nano Lett. 2019, 19 (6), 3448. doi: 10.1021/acs.nanolett.8b04846  doi: 10.1021/acs.nanolett.8b04846

    104. [104]

      Tan, H. M.; Manh Hung, C.; Ngoc, T. M.; Nguyen, H.; Duc Hoa, N.; Van Duy, N.; Hieu, N. V. ACS Appl. Mater. Interfaces 2017, 9 (7), 6153. doi: 10.1021/acsami.6b14516  doi: 10.1021/acsami.6b14516

    105. [105]

      Liu, H.; He, Y.; Nagashima, K.; Meng, G.; Dai, T.; Tong, B.; Deng, Z.; Wang, S.; Zhu, N.; Yanagida, T.; et al. Sens. Actuators B 2019, 293, 342. doi: 10.1016/j.snb.2019.04.078  doi: 10.1016/j.snb.2019.04.078

  • 加载中
    1. [1]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    2. [2]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    3. [3]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    4. [4]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    5. [5]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    6. [6]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    7. [7]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    8. [8]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    9. [9]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    13. [13]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    14. [14]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    15. [15]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    18. [18]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    19. [19]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    20. [20]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

Metrics
  • PDF Downloads(5)
  • Abstract views(599)
  • HTML views(161)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return