Citation: Wang Wenyuan, Zhang Jiefu, Li Zhe, Shao Xiang. Atomic Structure and Adsorption Property of the Singly Dispersed Au/Cu(111) Surface Alloy[J]. Acta Physico-Chimica Sinica, ;2020, 36(8): 191103. doi: 10.3866/PKU.WHXB201911035 shu

Atomic Structure and Adsorption Property of the Singly Dispersed Au/Cu(111) Surface Alloy

  • Corresponding author: Shao Xiang, shaox@ustc.edu.cn
  • Received Date: 19 November 2019
    Revised Date: 25 December 2019
    Accepted Date: 27 December 2019
    Available Online: 13 January 2020

    Fund Project: the National Natural Science Foundation of China 21872130the National Key Research and Development Program of China 2017YFA0205003the National Natural Science Foundation of China 91545128The project was supported by the National Natural Science Foundation of China (21872130, 91545128) and the National Key Research and Development Program of China (2017YFA0205003)

  • Atomic-scale characterization of the atomic structure as well as molecular adsorption on an alloy surface plays a vital role in elucidating the catalytic mechanism of effective catalysts. Au-Cu alloy nanoparticles have important applications in catalyzing CO oxidation and CO2 reduction. However, the atomic-scale properties of Au-Cu alloy surfaces are rarely investigated. In particular, the physical and chemical properties of singly-dispersed doping atoms, either Au in Cu or vice versa, as well as their influence on the overall surface properties, have not been studied in detail. In response, we first prepared low-coverage bimetallic Au/Cu(111) and Cu/Au(111) films, which were then annealed at high temperature to realize single atomically-dispersed Au/Cu(111) and Cu/Au(111) surface alloys (SA). We characterized the surface structures and adsorption properties by low-temperature scanning tunneling microscopy and spectroscopy (LT-STM/STS). For the SA-Au/Cu(111) system, we found that Au atoms can be incorporated in both the skin and subsurface layer of the Cu(111) substrate. These species can be readily distinguished from the topography contrast in STM. Moreover, STS measurements showed clear differences between the electronic states of doped Au atoms and the Cu host. In particular, we found that Au in the skin layer was strengthened while the subsurface Au showed weakened filled states at approximately −0.5 eV compared with the Cu(111) surface, which corresponds to the characteristic Shockley state of an Au surface. These altered electronic properties at the sites of doped atoms are also reflected by changes in the interactions with probe molecules. Adsorption experiments showed that Au atoms in the top surface prevented the binding of CO molecules, causing various adsorption vacancies in the CO adlayer. In contrast, the subsurface Au atoms had little influence on surface binding with CO molecules. For the SA-Cu/Au(111) system, we found that Cu atoms tend to aggregate into small clusters in the subsurface region of the Au(111) substrate. Only few Cu atoms can be stabilized at the elbow positions of the reconstructed top surface of Au(111). Adsorption experiments showed that only Cu atoms in the skin layer can adsorb CO molecules at liquid nitrogen temperature, while the subsurface Cu atoms cannot. On the other hand, the Au atoms around the doped Cu atoms do not seem to be influenced at all, possibly because of the weak effect of Cu. These experimental results provide details on the atomistic aspects of Au-Cu alloy surfaces, which can improve our understanding of the catalytic mechanism of Au-Cu alloy catalysts.
  • 加载中
    1. [1]

      Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Nat. Commun. 2014, 5, 4948. doi: 10.1038/ncomms5948  doi: 10.1038/ncomms5948

    2. [2]

      Liu, X. Y.; Wang, A. Q.; Zhang, T.; Su, D. S.; Mou, C. Y. Catal. Today 2011, 160, 103. doi: 10.1016/j.cattod.2010.05.019  doi: 10.1016/j.cattod.2010.05.019

    3. [3]

      Haruta, M. Catal. Today 1997, 36, 153. doi: 10.1016/S0920-5861(96)00208-8  doi: 10.1016/S0920-5861(96)00208-8

    4. [4]

      Thomas, J. M.; Saghi, Z.; Gai, P. L. Top. Catal. 2011, 54, 588. doi: 10.1007/s11244-011-9677-y  doi: 10.1007/s11244-011-9677-y

    5. [5]

      Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/nchem.1095  doi: 10.1038/nchem.1095

    6. [6]

      Ranocchiari, M.; Lothschutz, C.; Grolimund, D.; van Bokhoven, J. A. Proc. Roy. Soc. A 2012, 468, 1985. doi: 10.1098/rspa.2012.0078  doi: 10.1098/rspa.2012.0078

    7. [7]

      Flytzani-Stephanopoulos, M.; Gates, B. C. Annu. Rev. Chem. Biomol. 2012, 3, 545. doi: 10.1146/annurev-chembioeng-062011-080939  doi: 10.1146/annurev-chembioeng-062011-080939

    8. [8]

      Chen, J. G.; Menning, C. A.; Zellner, M. B. Surf. Sci. Rep. 2008, 63, 201. doi: 10.1016/j.surfrep.2008.02.001  doi: 10.1016/j.surfrep.2008.02.001

    9. [9]

      Greeley, J.; Mavrikakis, M. Nat. Mater. 2004, 3, 810. doi: 10.1038/nmat1223  doi: 10.1038/nmat1223

    10. [10]

      Rodriguez, J. Surf. Sci. Rep. 1996, 24, 223. doi: 10.1016/0167-5729(96)00004-0  doi: 10.1016/0167-5729(96)00004-0

    11. [11]

      Alexeev, O. S.; Gates, B. C. Ind. Eng. Chem. Res. 2003, 42, 1571. doi: 10.1021/ie020351h  doi: 10.1021/ie020351h

    12. [12]

      Ponec, V. Appl. Catal. A 2001, 222, 31. doi: 10.1016/S0926-860X(01)00828-6  doi: 10.1016/S0926-860X(01)00828-6

    13. [13]

      Huang, L.; Shao, X. Acta Phys. -Chim. Sin. 2018, 34, 1390.  doi: 10.3866/PKU.WHXB201804191

    14. [14]

      Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal. 1989, 115, 301. doi: 10.1016/0021-9517(89)90034-1  doi: 10.1016/0021-9517(89)90034-1

    15. [15]

      Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. J. Catal. 1993, 144, 175. doi: 10.1006/jcat.1993.1322  doi: 10.1006/jcat.1993.1322

    16. [16]

      Haruta, M. Catal. Today 1997, 36, 153. doi: 10.1016/S0920-5861(96)00208-8  doi: 10.1016/S0920-5861(96)00208-8

    17. [17]

      Grisel, R. J. H.; Kooyman, P. J.; Nieuwenhuys, B. E. J. Catal. 2000, 191, 430. doi: 10.1006/jcat.1999.2787  doi: 10.1006/jcat.1999.2787

    18. [18]

      Linke, R.; Schneider, U.; Busse, H.; Becker, C.; Schröder, U.; Castro, G. R.; Wandelt, K. Surf. Sci. 1994, 307, 407. doi: 10.1016/0039-6028(94)90427-8  doi: 10.1016/0039-6028(94)90427-8

    19. [19]

      Qi, Y.; Bian, T.; Choi, S. I.; Jiang, Y.; Jin, C.; Fu, M.; Zhang, H.; Yang, D. Chem. Commun. 2014, 50, 560. doi: 10.1039/c3cc48061e  doi: 10.1039/c3cc48061e

    20. [20]

      Liu, X.; Wang, A.; Wang, X.; Mou, C. Y.; Zhang, T. Chem. Commun. 2008, 3187. doi: 10.1039/b804362k  doi: 10.1039/b804362k

    21. [21]

      Liu, X.; Wang, A.; Li, L.; Zhang, T.; Mou, C. Y.; Lee, J. F. J. Catal. 2011, 278, 288. doi: 10.1016/j.jcat.2010.12.016  doi: 10.1016/j.jcat.2010.12.016

    22. [22]

      Chimentão, R. J.; Medina, F.; Fierro, J. L. G.; Llorca, J.; Sueiras, J. E.; Cesteros, Y.; Salagre, P. J. Mater. Chem. A-Chem. 2007, 274, 159. doi: 10.1016/j.molcata.2007.05.008  doi: 10.1016/j.molcata.2007.05.008

    23. [23]

      Della Pina, C.; Falletta, E.; Rossi, M. J. Catal. 2008, 260, 384. doi: 10.1016/j.jcat.2008.10.003  doi: 10.1016/j.jcat.2008.10.003

    24. [24]

      Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Stephanopoulos, M. F.; Sykes, E. C. H. Science 2012, 335, 1209. doi: 10.1126/science.1215864  doi: 10.1126/science.1215864

    25. [25]

      Marcinkowski, M.; Jewell, A. D.; Stamatakis, M.; Boucher, M. B.; Lewis, E. A.; Murphy, C. J.; Kyriakou, G.; Sykes, E. C. H. Nat. Mater. 2013, 12, 523. doi: 10.1038/nmat3620  doi: 10.1038/nmat3620

    26. [26]

      Baber, A. E.; Tierney, H. L.; Sykes, E. C. H. ACS Nano 2010, 4, 1637. doi: 10.1021/nn901390y  doi: 10.1021/nn901390y

    27. [27]

      Han, P.; Axnanda, S.; Lyubinetsky, I.; Goodman, D. W. J. Am. Chem. Soc. 2007, 129, 14355. doi: 10.1021/ja074891n  doi: 10.1021/ja074891n

    28. [28]

      Shi, H. X.; Wang, W. Y.; Li, Z.; Wang, L.; Shao, X. Chin. J. Chem. Phys. 2017, 30, 443. doi: 10.1063/1674-0068/30/cjcp1704078  doi: 10.1063/1674-0068/30/cjcp1704078

    29. [29]

      Umezawa, K.; Nakanishi, S. Phys. Rev. B 2000, 63, 035402. doi: 10.1103/PhysRevB.63.035402  doi: 10.1103/PhysRevB.63.035402

    30. [30]

      Wang, L.; Li, P.; Shi, H. X.; Li, Z. Y.; Wu, K.; Shao, X. J. Phys. Chem. C 2017, 121, 7977. doi: 10.1021/acs.jpcc.7b00938  doi: 10.1021/acs.jpcc.7b00938

    31. [31]

      Zhao, X. Y.; Liu, P.; Hrbek, J.; Rodriguez, J. A.; Pérez, M. Surf. Sci. 2005, 592, 25. doi: 10.1016/j.susc.2005.06.035  doi: 10.1016/j.susc.2005.06.035

    32. [32]

      Hwang, R. Q.; Schröder, J.; Günther, C.; Behm, R. J. Phys. Rev. Lett. 1991, 67, 3279. doi: 10.1103/PhysRevLett.67.3279  doi: 10.1103/PhysRevLett.67.3279

    33. [33]

      Brune, H.; Röder, H.; Bromann, K.; Kern, K. Thin Solid Films 1995, 264, 230. doi: 10.1016/0040-6090(94)05821-0  doi: 10.1016/0040-6090(94)05821-0

    34. [34]

      Wang, W.; Shi, H.; Wang, L.; Li, Z.; Shi, H.; Wu, K.; Shao, X. J. Phys. Chem. C 2018, 122, 19551. doi: 10.1021/acs.jpcc.8b04783  doi: 10.1021/acs.jpcc.8b04783

    35. [35]

      Meunier, I.; Tréglia, G.; Gay, J. M.; Aufray, B. Phys. Rev. B 1999, 59, 10910. doi: 10.1103/PhysRevB.59.10910  doi: 10.1103/PhysRevB.59.10910

    36. [36]

      Castro, G. R.; Doyen, G. Surf. Sci. 1994, 307, 384. doi: 10.1016/0039-6028(94)90423-5  doi: 10.1016/0039-6028(94)90423-5

    37. [37]

      Castro, G. R.; Schneider, U.; Busse, H.; Janssens, T.; Wandelt, K. Surf. Sci. 1992, 269, 321. doi: 10.1016/0039-6028(92)91268-G  doi: 10.1016/0039-6028(92)91268-G

    38. [38]

      Besenbacher, F.; Chorkendorff, I.; Clausen, B. S.; Hammer, B.; Molenbroek, A. M.; Nørskov, J. K.; Stensgaard, I. Science 1998, 279, 1913. doi: 10.1126/science.279.5358.1913  doi: 10.1126/science.279.5358.1913

    39. [39]

      Kim, M. J.; Na, H. J.; Lee, K. C.; Yoob, E. A.; Lee, M. Y. J. Mater. Chem. 2003, 13, 1789. doi: 10.1039/b304006m  doi: 10.1039/b304006m

    40. [40]

      Liu, M.; Zhou, W.; Wang, T.; Wang, D.; Liu, L.; Ye, J. Chem. Commun. 2016, 52, 4694. doi: 10.1039/c6cc00717a  doi: 10.1039/c6cc00717a

    41. [41]

      Kuhn, M.; Sham, T. K. Phys. Rev. B 1994, 49, 1647. doi: 10.1103/PhysRevB.49.1647  doi: 10.1103/PhysRevB.49.1647

    42. [42]

      Hammer, B. J. K. N.; Nørskov, J. K. Surf. Sci. 1995, 343, 211. doi: 10.1016/0039-6028(96)80007-0  doi: 10.1016/0039-6028(96)80007-0

    43. [43]

      Libisch, F.; Geringer, V.; Subramaniam, D.; Burgdörfer, J.; Morgenstern, M. Phys. Rev. B 2014, 90, 035442. doi: 10.1103/PhysRevB.90.035442  doi: 10.1103/PhysRevB.90.035442

    44. [44]

      Chen, W.; Madhavan, V.; Jamneala, T.; Crommie, M. F. Phys. Rev. Lett. 1998, 80, 1469. doi: 10.1103/PhysRevLett.80.1469  doi: 10.1103/PhysRevLett.80.1469

    45. [45]

      Bartels, L.; Meyer, G.; Rieder, K. H. Surf. Sci. 1999, 432, 621. doi: 10.1016/S0039-6028(99)00640-8  doi: 10.1016/S0039-6028(99)00640-8

    46. [46]

      Heinrich, A. J.; Lutz, C. P.; Gupta, J. A.; Eigler, D. M. Science 2002, 298, 1381. doi: 10.1126/science.1076768  doi: 10.1126/science.1076768

    47. [47]

      Neef, M.; Doll, K. Surf. Sci. 2006, 600, 1085. doi: 10.1016/j.susc.2005.12.036  doi: 10.1016/j.susc.2005.12.036

    48. [48]

      Li, W.; Kong, L.; Feng, B.; Fu, H.; Li, H.; Zeng, X. C.; Wu, K.; Chen, L. Nat. Commun. 2018, 9, 198. doi: 10.1038/s41467-017-02634-6  doi: 10.1038/s41467-017-02634-6

    49. [49]

      Hammer, B.; Morikawa, Y.; Nørskov, J. K. Phys. Rev. Lett. 1996, 76, 2141. doi: 10.1103/PhysRevLett.76.2141  doi: 10.1103/PhysRevLett.76.2141

    50. [50]

      Mavrikakis, M.; Hammer, B.; Nørskov, J. K. Phys. Rev. Lett. 1998, 81, 2819. doi: 10.1103/PhysRevLett.81.2819  doi: 10.1103/PhysRevLett.81.2819

    51. [51]

      Rodriguez, J. A.; Goodman, D. W. Science 1992, 257, 897. doi: 10.1126/science.257.5072.897  doi: 10.1126/science.257.5072.897

    52. [52]

      Campbell, R. A.; Rodriguez, J. A.; Goodman, D. W. Surf. Sci. 1991, 256, 272. doi: 10.1016/0039-6028(91)90870-X  doi: 10.1016/0039-6028(91)90870-X

    53. [53]

      Rodriguez, J. A.; Goodman, D. W. J. Phys. Chem. 1991, 95, 4196. doi: 10.1021/j100164a008  doi: 10.1021/j100164a008

    54. [54]

      Chen, M. S.; Goodman, D. W. Science 2004, 306, 252. doi: 10.1126/science.1102420  doi: 10.1126/science.1102420

  • 加载中
    1. [1]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    2. [2]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    7. [7]

      Yanjie LiChaoqun QuSiqi MengJiaqi HuZe GaoHongji XuRui GaoMing Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872

    8. [8]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    9. [9]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    10. [10]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    11. [11]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    12. [12]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    15. [15]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    16. [16]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    17. [17]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    18. [18]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    19. [19]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(20)
  • Abstract views(2312)
  • HTML views(639)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return