Citation: Guiyun Yu, Fengxian Hu, Weiwei Cheng, Zitong Han, Chao Liu, Yong Dai. ZnCuAl-LDH/Bi2MoO6 Nanocomposites with Improved Visible Light-Driven Photocatalytic Degradation[J]. Acta Physico-Chimica Sinica, ;2020, 36(7): 191101. doi: 10.3866/PKU.WHXB201911016 shu

ZnCuAl-LDH/Bi2MoO6 Nanocomposites with Improved Visible Light-Driven Photocatalytic Degradation

  • Corresponding author: Chao Liu, cliu@ycit.edu.cn Yong Dai, 123daiyong123@163.com
  • Received Date: 7 November 2019
    Revised Date: 20 December 2016
    Available Online: 26 December 2019

    Fund Project: the China Postdoctoral Science Foundation 2018M632283the National Natural Science Foundation of China 51902282The project was supported by the National Natural Science Foundation of China (21603182, 51902282), the Natural Science Foundation of the Jiangsu Higher Education Institutions, China (16KJB150038), and the China Postdoctoral Science Foundation (2018M632283)the Natural Science Foundation of the Jiangsu Higher Education Institutions, China 16KJB150038the National Natural Science Foundation of China 21603182

  • In this study, pure Bi2MoO6 was synthesized via a solvothermal method. A ZnCuAl-layered double hydroxide (LDH)/Bi2MoO6 (denoted as LDH/Bi2MoO6) nanocomposite was synthesized via a steady-state co-precipitation route using Bi2MoO6 as the matric material. LDH was deposited on the surface of Bi2MoO6 with a close contact interface. The specific surface area of the resulting LDH/Bi2MoO6 composite increased up to 19.1 m2∙g−1 owing to the stacking arrangement between LDH and the Bi2MoO6 nanosheets, resulting in the generation of a large number of reactive sites. In addition, the light absorption region of the LDH/Bi2MoO6 composite was larger than those of pure LDH and Bi2MoO6 because of the formation of a heterojunction structure and the possible quantum size effect. The photocatalytic performance of the as-prepared samples was evaluated by carrying out the degradation of rhodamine B (RhB) using them under visible light irradiation. Compared to pure LDH and Bi2MoO6, the LDH/Bi2MoO6 nanocomposite exhibited enhanced photocatalytic activity for the degradation of RhB. With an increase in the LDH content, the photocatalytic activity of the LDH/Bi2MoO6 composite first increased and then decreased. Although the addition of an optimum amount of LDH was beneficial for the generation of electron-hole pairs, excessive LDH on the surface of Bi2MoO6 decreased the visible light absorption ability of both the components, thus reducing photocatalytic activity of the composite. This indicates that an appropriate LDH:Bi2MoO6 molar ratio is necessary for obtaining LDH/Bi2MoO6 composites with excellent photocatalytic activity. Furthermore, the LDH/Bi2MoO6 composite showed high photocatalytic stability and reusability. The structure of the LDH/Bi2MoO6 composite remained almost unchanged even after four photodegradation cycles. The enhanced photocatalytic performance of the composite can be attributed to the combined effect of its heterojunction structure and high specific surface area, which are beneficial for effective separation of photogenerated charge carriers and the availability of a large number of active sites for photocatalysis. It was found that •OH and O2•− were the main reactive species, while e and h+ contributed little to the photodegradation process. The generation, transfer, and separation of photoinduced electrons and holes in the composites were investigated by transient photocurrent responses, electrochemical impedance spectroscopy Nyquist plots, and photoluminescence measurements. The results showed that the heterojunction structure of the composites played a key role in enhancing their photocatalytic activity. A possible photodegradation mechanism was proposed for the composite. This study will provide a facile approach for the preparation of LDH- and/or Bi2MoO6-based nanocomposites. The LDH/Bi2MoO6 nanocomposite prepared in this study showed huge potential to be used as a visible-light photocatalyst for degrading environmental pollutants.
  • 加载中
    1. [1]

      Ge, M.; Tan, M. M.; Cui, G. H. Acta Phys. -Chim. Sin. 2014, 30, 2107.  doi: 10.3866/PKU.WHXB201409041

    2. [2]

      Liu, C.; Zhu, H.; Zhu, Y.; Dong, P.; Hou, H.; Xu, Q.; Chen, X.; Xi, X.; Hou, W. Appl. Catal. B: Environ. 2018, 228, 54. doi: 10.1016/j.apcatb.2018.01.074  doi: 10.1016/j.apcatb.2018.01.074

    3. [3]

      Ren, J.; Ouyang, S.; Chen, H.; Umezawa, N.; Lu, D.; Wang, D.; Xu, H.; Ye, J. Appl. Catal. B: Environ. 2015, 168, 243. doi: 10.1016/j.apcatb.2014.12.021  doi: 10.1016/j.apcatb.2014.12.021

    4. [4]

      Liu, C.; Gao, X.; Han, Z.; Sun, Y.; Feng, Y.; Yu, G.; Xi, X.; Zhang, Q.; Zou, Z. Nanomaters 2019, 9, 1503. doi: 10.3390/nano9101503  doi: 10.3390/nano9101503

    5. [5]

      Zhang, M.; Shao, C.; Zhang, P.; Su, C.; Zhang, X.; Liang, P.; Sun, Y.; Liu, Y. J. Hazard. Mater. 2012, 225, 155. doi: 10.1016/j.jhazmat.2012.05.006  doi: 10.1016/j.jhazmat.2012.05.006

    6. [6]

      Reilly, L. M.; Sankar, G. S.; Catlow, C. R. A. J. Solid State Chem. 1999, 148, 178. doi: 10.1006/jssc.1999.8486  doi: 10.1006/jssc.1999.8486

    7. [7]

      Pirovano, C.; Saiful, I. M.; Vannier, R.; Nowogrocki, G.; Mairesse, G. Solid State Ion. 2001, 140, 115. doi: 10.1016/S0167-2738(01)00699-3  doi: 10.1016/S0167-2738(01)00699-3

    8. [8]

      Jin, S.; Hao, S.; Gan, Y.; Guo, W.; Li, H.; Hu, X.; Hou, H.; Zhang, G.; Yan, S.; Gao, W.; Liu, G. Mater. Chem. Phys. 2017, 199, 107. doi: 10.1016/j.matchemphys.2017.06.053  doi: 10.1016/j.matchemphys.2017.06.053

    9. [9]

      Du, X.; Wan, J.; Jia, J.; Pan, C.; Hu, X.; Fan, J.; Liu, E. Mater. Design. 2017, 119, 113. doi: 10.1016/j.matdes.2017.01.070  doi: 10.1016/j.matdes.2017.01.070

    10. [10]

      Seftel, E. M.; Puscasu, M. C.; Mertens, M.; Cool, P.; Garja, G. Appl. Catal. B: Environ. 2014, 150, 157. doi: 10.1016/j.apcatb.2013.12.019  doi: 10.1016/j.apcatb.2013.12.019

    11. [11]

      Yan, T.; Sun, M.; Liu, H.; Wu, T.; Liu, X.; Yan, Q.; Xu, W.; Du, B. J. Alloy. Compd. 2015, 634, 223. doi: 10.1016/j.jallcom.2015.02.064  doi: 10.1016/j.jallcom.2015.02.064

    12. [12]

      Xu, Y.; Zhang, W. Appl. Catal. B: Environ. 2013, 140, 306. doi: 10.1016/j.apcatb.2013.04.019  doi: 10.1016/j.apcatb.2013.04.019

    13. [13]

      Chen, Y.; Tian, G.; Shi, Y.; Xiao, Y. Appl. Catal. B: Environ. 2015, 164, 40. doi: 10.1016/j.apcatb.2014.08.036  doi: 10.1016/j.apcatb.2014.08.036

    14. [14]

      Debasmita, K.; Satybadi, M.; Arun, T.; Parida, K.M. ACS Omega 2017, 2, 9040. doi: 10.1021/acsomega.7b01250  doi: 10.1021/acsomega.7b01250

    15. [15]

      Prince, J.; Montoya, A.; Ferrat, G.; Valente, J. S. Chem. Mater. 2009, 21, 5826. doi: 10.1021/cm902741c  doi: 10.1021/cm902741c

    16. [16]

      Ma, R.; Liu, Z.; Takada, K.; Iya, N.; Bando, Y.; Sasaki, T. J. Am. Chem. Soc. 2007, 129, 5257. doi: 10.1021/ja0693035  doi: 10.1021/ja0693035

    17. [17]

      Wang, J.; Wei, Y.; Yu, J. Appl. Clay Sci. 2013, 72, 37. doi: 10.1016/j.clay.2013.01.006  doi: 10.1016/j.clay.2013.01.006

    18. [18]

      Zhang, X. Q.; Xu, Y.; Yang, C. H.; Zhang, Y. P.; Ying, Y. X.; Shang, S. Y. Acta Phys. -Chim. Sin. 2015, 31, 948.  doi: 10.3886/PKU.WHXB201503111

    19. [19]

      Huang, G.; Sun, Y.; Zhao, C.; Zhao, Y.; Song, Z.; Chen, J.; Ma, S.; Du, J.; Yin, Z. J. Colloid Interface Sci. 2017, 494, 215. doi: 10.1016/ j.jcis.2017.01.079  doi: 10.1016/j.jcis.2017.01.079

    20. [20]

      Zubair, M.; Daud, M.; McKay, G.; Shehzad, F.; Al-Harthi, M. A. Appl. Clay Sci. 2017, 143, 279. doi: 10.1016/j.jcis.2017.01.079  doi: 10.1016/j.jcis.2017.01.079

    21. [21]

      Oh, J. M.; Choi, S. J.; Lee, G. E.; Han, S. H.; Choy, J. H. Adv. Funct. Mater. 2009, 19, 1617. doi: 10.1002/adfm.200801127  doi: 10.1002/adfm.200801127

    22. [22]

      Shao, M.; Ning, F.; Zhao, J.; Wei, M.; Evans, D. G.; Duan, X. J. Am. Chem. Soc. 2012, 134, 1071. doi: 10.1021/ja2086323  doi: 10.1021/ja2086323

    23. [23]

      He, J.; Yang, Z.; Zhang, L.; Li, Y.; Pan, L. Int. J. Hydrog. Energy 2017, 42, 9930. doi: 10.1016/j.ijhydene.2017.01.229  doi: 10.1016/j.ijhydene.2017.01.229

    24. [24]

      Bernardo, M. P.; Moreira, F. K. V.; Ribeiro, C. Appl. Clay Sci. 2017, 137, 143. doi: 10.1016/j.clay.2016.12.022  doi: 10.1016/j.clay.2016.12.022

    25. [25]

      Mohapatra, L.; Parida, K. M. Sep. Purif. Technol. 2012, 91, 73. doi: 10.1016/j.seppur.2011.10.028  doi: 10.1016/j.seppur.2011.10.028

    26. [26]

      Parida, K. M.; Mohapatra, L. Chem. Eng. J. 2012, 179, 131. doi: 10.1016/j.cej.2011.10.070  doi: 10.1016/j.cej.2011.10.070

    27. [27]

      Nayak, S.; Mohapatra, L.; Parida, K. J. Mater. Chem. A 2015, 3, 18622. doi: 10.1039/C5TA05002B  doi: 10.1039/C5TA05002B

    28. [28]

      Ma, J.; Ding, J.; Yu, L.; Li, L.; Kong, Y. Appl. Clay Sci. 2015, 109, 76. doi: 10.1016/j.clay.2015.02.009  doi: 10.1016/j.clay.2015.02.009

    29. [29]

      Mohapatra, L.; Parida, K. M. Phys. Chem. Chem. Phys. 2014, 16, 16985. doi: 10.1039/C4CP01665C  doi: 10.1039/C4CP01665C

    30. [30]

      Dai, W. L.; Hu, X.; Wang, T.; Xiong, W.; Luo, X.; Zou, J. Appl. Surf. Sci. 2018, 434, 481. doi:10.1016/j.apsusc.2017.10.207  doi: 10.1016/j.apsusc.2017.10.207

    31. [31]

      Liu, Y.; Zhu, G.; Gao, J.; Hojamberdiev, M.; Zhu, R.; Wei, X.; Guo, Q.; Liu, Q. Appl. Catal. B: Environ. 2017, 200, 72. doi: 10.1016/j.apcatb.2016.06.069  doi: 10.1016/j.apcatb.2016.06.069

    32. [32]

      Zhu, Y.; Laipan, M.; Zhu, R.; Xu, T.; Liu, J.; Zhu, J.; Xi, Y.; Zhu, G.; He, H. J. Mol. Catal. A: Chem. 2017, 427, 54. doi: 10.1016/j.molcata.2016.11.031  doi: 10.1016/j.molcata.2016.11.031

    33. [33]

      Zhang, Y.; Liu, J.; Li, Y.; Yu, M.; Yin, X.; Li, S. J. Wuhan Univ. Technol. 2017, 32, 1199. doi: 10.1007/s11595-017-1731-6  doi: 10.1007/s11595-017-1731-6

    34. [34]

      Nayak, S.; Parida, K. M. Int. J. Hydrog. Energy 2016, 41, 21166. doi: 10.1016/j.ijhydene.2016.08.062  doi: 10.1016/j.ijhydene.2016.08.062

    35. [35]

      Iftekhar, S.; Srivastava, V.; Ramasamy, D. L.; Naseer, W. A.; Sillanpää, M. Chem. Eng. J. 2018, 347, 398. doi: 10.1016/j.cej.2018.04.126  doi: 10.1016/j.cej.2018.04.126

    36. [36]

      Li, H.; Liu, C.; Li, K.; Wang, H. J. Mater. Sci. 2008, 43, 7026. doi: 10.1007/s10853-008-3034-y  doi: 10.1007/s10853-008-3034-y

    37. [37]

      Phuruangrat, A.; Ekthammathat, N.; Kuntalue, B.; Dumrongrojthanath, P.; Thongtem, S.; Thongtem, T. J. Nanomater. 2014, 934165. doi: 10.1155/2014/934165  doi: 10.1155/2014/934165

    38. [38]

      Tian, Y.; Cheng, F.; Zhang, X.; Yan, F.; Zhou, B.; Chen, Z.; Liu, J.; Xi, F.; Dong, X. Powder Technol. 2014, 267, 126. doi: 10.1016/j.powtec.2014.07.021  doi: 10.1016/j.powtec.2014.07.021

    39. [39]

      Ezeh, C. I.; Tomatis, M.; Yang, X.; He, J.; Sun, C. Ultrason. Sonochem. 2018, 40, 341. doi: 10.1016/j.ultsonch.2017.07.013  doi: 10.1016/j.ultsonch.2017.07.013

    40. [40]

      Martínez-de la Cruz, A.; Alfaro, S. O. J. Mol. Catal. A: Chem. 2010, 320, 85. doi: 10.1016/j.molcata.2010.01.008  doi: 10.1016/j.molcata.2010.01.008

    41. [41]

      Li, Y.; Ouyang, S.; Xu, H.; Hou, W.; Zhao, M.; Chen, H.; Ye, J. Adv. Funct. Mater. 2019, 29, 1901024. doi: 10.1002/adfm.201901024.  doi: 10.1002/adfm.201901024

    42. [42]

      Guzmán-Vargas, A.; Lima, E.; Uriostegui-Ortega, G. A.; Oliver-Tolentino, M. A.; Rodríguez, E. E. Appl. Surf. Sci. 2016, 363, 372. doi: 10.1016/j.apsusc.2015.12.050  doi: 10.1016/j.apsusc.2015.12.050

    43. [43]

      Jiang, H.; Katsumata, K. I.; Hong, J.; Yamaguchi, A.; Nakata, K.; Terashima, C.; Matsushita, N.; Miyauchi, M.; Fujishima, A. Appl. Catal. B: Environ. 2018, 224, 783. doi: 10.1016/j.apcatb.2017.11.011  doi: 10.1016/j.apcatb.2017.11.011

    44. [44]

      Jin, L.; Zhu, G.; Hojamberdiev, M.; Luo, X.; Tan, C.; Peng, J.; Wei, X.; Li, J.; Liu, P. Ind. Eng. Chem. Res. 2014, 53, 13718. doi: 10.1021/ie502133x  doi: 10.1021/ie502133x

    45. [45]

      Lu, H.; Xu, L.; Wei, B.; Zhang, M.; Gao, H.; Sun, W. Appl. Surf. Sci. 2014, 303, 360. doi: 10.1016/j.apsusc.2014.03.006  doi: 10.1016/j.apsusc.2014.03.006

    46. [46]

      Hu, R.; Xiao, X.; Tu, S.; Zuo, X.; Nan, J. Appl. Catal. B: Environ. 2015, 163, 510. doi: 10.1016/j.apcatb.2014.08.025  doi: 10.1016/j.apcatb.2014.08.025

    47. [47]

      Chen, Z.; Lin, B.; Chen, Y.; Zhang, K.; Li, B.; Zhu, H. J. Phys. Chem. Solids 2010, 71, 841. doi: 10.1016/j.jpcs.2010.02.011  doi: 10.1016/j.jpcs.2010.02.011

    48. [48]

      Vázquez-Cuchillo, O.; Gómez, R.; Cruz-López, A.; Torres-Martínez, L. M.; Zanella, R.; Sandoval, F. J. A.; Ángel-Sánchez, K. D. J. Photochem. Photobiol. A 2013, 266, 6. doi: 10.1016/j.jphotochem.2013.05.007  doi: 10.1016/j.jphotochem.2013.05.007

    49. [49]

      Zhang, L.; Li, F.; Evans, D. G.; Duan, X. Ind. Eng. Chem. Res. 2010, 49, 5959. doi: 10.1021/ie9019193  doi: 10.1021/ie9019193

    50. [50]

      Bi, J.; Wu, L.; Li, J.; Li, Z.; Wang, X.; Fu, X. Acta Mater. 2007, 55, 4699. doi: 10.1016/j.actamat.2007.04.034  doi: 10.1016/j.actamat.2007.04.034

    51. [51]

      Liu, C.; Wu, Q.; Ji, M.; Zhu, H.; Hou, H.; Yang, Q.; Jiang, C.; Wang, J.; Tian, L.; Chen, J.; Hou, H. J. Alloy. Compd. 2017, 723, 1121. doi: 10.1016/j.jallcom.2017.07.003  doi: 10.1016/j.jallcom.2017.07.003

    52. [52]

      Vadivel, S.; Kamalakannan, V.P.; Balasubramanian, N. Ceram. Int. 2014, 40, 14051. doi: 10.1016/j.ceramint.2014.05.133  doi: 10.1016/j.ceramint.2014.05.133

    53. [53]

      Liu, C.; Xu, Q.; Zhang, Q.; Zhu, Y.; Ji, M.; Tong, Z.; Hou, W.; Zhang, Y.; Xu, J. J. Mater. Sci. 2019, 54, 2458. doi: 10.1007/s10853-018-2990-0  doi: 10.1007/s10853-018-2990-0

    54. [54]

      Liu, C.; Sun, T.; Wu, L.; Liang, J.; Huang, Q.; Chen, T.; Hou, W. Appl. Catal. B: Environ. 2015, 170, 17. doi: 10.1016/j.apcatb.2015.01.026  doi: 10.1016/j.apcatb.2015.01.026

    55. [55]

      Wang, W.; Fang, J.; Shao, S.; Lai, M.; Lu, C. Appl. Catal. B: Environ. 2017, 217, 57. doi: 10.1016/j.apcatb.2017.05.037  doi: 10.1016/j.apcatb.2017.05.037

    56. [56]

      Huang, Y.; Fan, W.; Long, B.; Li, H.; Zhao, F.; Liu, Z.; Tong, Y.; Ji, H. Appl. Catal. B: Environ. 2016, 185, 68. doi: 10.1016/j.apcatb.2015.11.043  doi: 10.1016/j.apcatb.2015.11.043

    57. [57]

      Guo, C.; Xu, J.; Wang, S.; Li, L.; Zhang, Y.; Li, X. CrystEngComm 2012, 14, 3602. doi: 10.1039/c2ce06757a  doi: 10.1039/c2ce06757a

  • 加载中
    1. [1]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    2. [2]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    3. [3]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    4. [4]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    5. [5]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    6. [6]

      Zheng ZhangLei ShiBin WangJingyuan QuXiaoling WangTao WangQitao JiangWuhong XueXiaohong Xu . Epitaxial growth of full-vdW α-In2Se3/MoS2 heterostructures for all-in-one sensing and memory-computing artificial visual system. Chinese Chemical Letters, 2025, 36(3): 109687-. doi: 10.1016/j.cclet.2024.109687

    7. [7]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    8. [8]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    9. [9]

      Sinong WangShanshan JinXue YangYanyan HuangPeng LiuYi TangYuliang Yang . Development of Mg-Al LDH and LDO as novel protective materials for deacidification of paper-based relics. Chinese Chemical Letters, 2024, 35(9): 109890-. doi: 10.1016/j.cclet.2024.109890

    10. [10]

      Xiaomeng HuJie YuLijie SunLinfeng ZhangWei ZhouDongpeng YanXinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466

    11. [11]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    12. [12]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    13. [13]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    14. [14]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    15. [15]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    18. [18]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    19. [19]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    20. [20]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

Metrics
  • PDF Downloads(33)
  • Abstract views(1295)
  • HTML views(294)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return