Citation: Jianchuan Sun, Xuhui Wang, Shuaiqi Chen, Yanqing Liao, Awang Gao, Yuhao Hu, Tao Yang, Xiangyu Xu, Yingxia Wang, Jiaqing Song. Defluoridation of Water Using Active Alumina Derived from Single-Layer Boehmite[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 191100. doi: 10.3866/PKU.WHXB201911009 shu

Defluoridation of Water Using Active Alumina Derived from Single-Layer Boehmite

  • Corresponding author: Jiaqing Song, songjq@126.com
  • Received Date: 5 November 2019
    Revised Date: 13 December 2019
    Accepted Date: 14 December 2019
    Available Online: 20 December 2019

    Fund Project: the Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, China H2016107

  • The preparation of high-efficiency and low-cost adsorbents for the defluoridation of drinking water remains a huge challenge. In this study, single-layer and multi-layer boehmite were first synthesized via an organic-free method, and active alumina used for fluoride removal from water was obtained from the boehmite. The advantage of a single layer is that more aluminum is exposed to the surface, which can provide more adsorption sites for fluoride. The active alumina adsorbent derived from single-layer boehmite exhibits a high specific surface area and excellent adsorption capacity. The high surface area ensures a high adsorption capacity, and the organic-free synthesis method lowers the preparation cost. The as-prepared adsorbent was characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FTIR) and nitrogen adsorption-desorption analysis. The single-layer structure of boehmite was determined from the simulated XRD diffraction pattern of single-layer boehmite. The disappearance of the (020) diffraction peak of boehmite illustrates that the dimensions in the b direction are extremely small, and according to the XRD simulation results, the single-layer structure of boehmite could be determined. Single-layer boehmite with a surface area of 789.4 m2·g-1 was formed first. The active alumina obtained from the boehmite had a surface area of 678.4 m2·g-1, and the pore volume was 3.20 cm3·g-1. The fluoride adsorption of the active alumina was systematically studied as a function of the adsorbent dosage, contact time, concentration, co-existing anions, and pH. The fluoride adsorption capacity of the active alumina obtained from the single-layer boehmite reached up to 67.6 mg·g-1, which is higher than those of most alumina adsorbents reported in the literature. The adsorption capacities of the active alumina are related to the specific surface area and the number of hydroxyl groups on the surface. Dosages of 0.6, 1.0, and 2.6 g·L-1 of active alumina were able to lower the 10, 20, and 50 mg·L-1 fluoride solutions, respectively, below the maximum permissible limit of fluoride in drinking water in China (1.0 mg·L-1), suggesting that the active alumina synthesized in this work is a promising adsorbent for defluoridation of drinking water. In addition, the fluoride adsorption is applicable in a wide pH range from 4 to 9 and is mainly interfered by SO42- and PO43-. Further investigation suggested that the fluoride adsorption of the active alumina follows the pseudo second-order model and Langmuir isotherm model
  • 加载中
    1. [1]

      WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO Press: Geneva, Switzerland, 2011.

    2. [2]

      Jagtap, S.; Yenkie, M. K. N.; Labhsetwar; Rayalu, S. Chem. Rev. 2012, 112 (4), 2454. doi: 10.1021/cr2002855  doi: 10.1021/cr2002855

    3. [3]

      GB 5749-2006. National Standard of the People's Republic of China-Standards for Drinking Water Qualit, 2006.

    4. [4]

      Reardon, E. J.; Wang, Y. Environ. Sci. Technol. 2000, 34 (15), 3247. doi: 10.1021/es990542k  doi: 10.1021/es990542k

    5. [5]

      Zhu, J.; Zhao, H.; Ni, J. Sep. Purif. Technol. 2007, 56 (2), 184. doi: 10.1016/j.seppur.2007.01.030  doi: 10.1016/j.seppur.2007.01.030

    6. [6]

      Lhassani, A.; Rumeau, M.; Benjelloun, D.; Pontie, M. Water Res. 2001, 35 (13), 3260. doi: 10.1016/s0043-1354(01)00020-3  doi: 10.1016/s0043-1354(01)00020-3

    7. [7]

      Arora, M.; Maheshwari, R. C.; Jain, S. K.; Gupta, A. Desalination 2004, 170 (2), 105. doi: 10.1016/j.desal.2004.02.096  doi: 10.1016/j.desal.2004.02.096

    8. [8]

      López-Guzmán, M.; Alarcón-Herrera, M. T.; Irigoyen-Campuzano, J. R.; Torres-Castañón, L. A.; Reynoso-Cuevas, L. Sci. Total Environ. 2019, 678, 181. doi: 10.1016/j.scitotenv.2019.04.400  doi: 10.1016/j.scitotenv.2019.04.400

    9. [9]

      Tahaikt, M.; Achary, I.; Sahli, M. A. M.; Amor, Z.; Taky, M.; Alami, A.; Boughriba, A.; Hafsi, M.; Elmidaoui, A. Desalination 2006, 189 (1-3), 215. doi: 10.1016/j.desal.2005.06.027  doi: 10.1016/j.desal.2005.06.027

    10. [10]

      Gmar, S.; Ilhem, B. S. S.; Helali, N.; Tlili, M.; Ben Amor, M. Environ. Process. 2015, 2 (1), 209. doi: 10.1007/s40710-015-0112-4  doi: 10.1007/s40710-015-0112-4

    11. [11]

      Vaaramaa, K.; Lehto, J. Desalination 2003, 155 (2), 157. doi: 10.1016/S0011-9164(03)00293-5  doi: 10.1016/S0011-9164(03)00293-5

    12. [12]

      Meenakshi S.; Viswanathan, N. J. Colloid Interface Sci. 2007, 308 (2), 438. doi: 10.1016/j.jcis.2006.12.032  doi: 10.1016/j.jcis.2006.12.032

    13. [13]

      Xu, X.; Liao, Y.; Sun, J.; Wang, X.; Chen, S.; Lv, Z.; Song, J. Acta Phys. -Chim. Sin. 2019, 35 (3), 317.  doi: 10.3866/PKU.WHXB201805021

    14. [14]

      Mirna, H.; Andrew, F. Materials 2014, 7 (9), 6317. doi: 10.3390/ma7096317  doi: 10.3390/ma7096317

    15. [15]

      Kamble, S. P.; Deshpande, G.; Barve, P. P.; Rayalu, S.; Labhsetwar, N. K.; Malyshew, A.; Kulkarni, B. D. Desalination 2010, 264 (1-2), 15. doi: 10.1016/j.desal.2010.07.001  doi: 10.1016/j.desal.2010.07.001

    16. [16]

      Tripathy, S. S.; Raichur, A. M. J. Hazard. Mater. 2008, 153 (3), 1043. doi: 10.1016/j.jhazmat.2007.09.100  doi: 10.1016/j.jhazmat.2007.09.100

    17. [17]

      Tripathy, S. S.; Bersillon, J. L.; Gopal, K. Sep. Purif. Technol. 2006, 50 (3), 310. doi: 10.1016/j.seppur.2005.11.036  doi: 10.1016/j.seppur.2005.11.036

    18. [18]

      Goswami, A.; Purkait, M. K. Chem. Eng. Res. Des. 2012, 90(12), 2316. doi: 10.1016/j.cherd.2012.05.002  doi: 10.1016/j.cherd.2012.05.002

    19. [19]

      Abe, I.; Iwasaki, S.; Tokimoto, T.; Kawasaki, N.; Nakamura, T.; Tanada, S. J. Colloid Interface Sci. 2004, 275 (1), 35. doi: 10.1016/j.jcis.2003.12.031  doi: 10.1016/j.jcis.2003.12.031

    20. [20]

      Li, Y. H.; Wang, S.; Zhang, X.; Wei, J.; Xu, C.; Luan, Z.; Wu, D. Mater. Res. Bull. 2003, 38 (3), 469. doi: 10.1016/s0025-5408(02)01063-2  doi: 10.1016/s0025-5408(02)01063-2

    21. [21]

      Cai, J.; Zhao, X.; Zhang, Y.; Zhang, Q.; Pan, B. J. Colloid Interface Sci. 2018, 509, 353. doi: 10.1016/j.jcis.2017.09.038  doi: 10.1016/j.jcis.2017.09.038

    22. [22]

      Zhang, T.; Li, Q.; Xiao, H.; Mei, Z.; Zhou, Y. Appl. Clay Sci. 2013, 72, 117. doi: 10.1016/j.clay.2012.12.003  doi: 10.1016/j.clay.2012.12.003

    23. [23]

      Onyango, M. S.; Kojima, Y.; Kumar, A.; Kuchar, D.; Kubota, M.; Matsuda, H. Sep. Sci. Technol. 2006, 41 (4), 683. doi: 10.1080/01496390500527019  doi: 10.1080/01496390500527019

    24. [24]

      Tor, A.; Danaoglu, N.; Arslan, G.; Cengeloglu, Y. J. Hazard. Mater. 2009, 164 (1), 271. doi: 10.1016/j.jhazmat.2008.08.011  doi: 10.1016/j.jhazmat.2008.08.011

    25. [25]

      Agarwal, M.; Rai, K.; Shrivastav, R.; Dass, S. J. Clean Prod. 2003, 11 (4), 439. doi: 10.1016/S0959-6526(02)00065-3  doi: 10.1016/S0959-6526(02)00065-3

    26. [26]

      Lee, G.; Chen, C.; Yang, S. T.; Ahn, W. S. Microporous Mesoporous Mat. 2010, 127 (1-2), 152. doi: 10.1016/j.micromeso.2009.07.007  doi: 10.1016/j.micromeso.2009.07.007

    27. [27]

      Song, J.; Li, Z.; Xu, X.; He M.; Yan, L. Ind. Eng. Chem. Res. 2013, 52 (23), 7752. doi: 10.1021/ie400627y  doi: 10.1021/ie400627y

    28. [28]

      Peng, L.; Xu, X.; Lv, Z.; Song, J.; He, M.; Wang, Q.; Yan, L.; Li, Y.; Li, Z. J. Therm. Anal. Calorim. 2012, 110 (2), 749. doi: 10.1007/s10973-011-1962-2  doi: 10.1007/s10973-011-1962-2

    29. [29]

      Song, J.; Sun, J.; Lu, L.; Xu, X.; Lv, Z. A Kind of Controllable Method for Preparing of Boehmite with Large Surface Area and Large Pore Volume. CN Patent 104692429 B, 2015-02-16.

    30. [30]

      Charles, E.; Corbató. Clay Clay Min. 1985, 33 (1), 71. doi: 10.1346/CCMN.1985.0330108  doi: 10.1346/CCMN.1985.0330108

    31. [31]

      Tettenhorst, R. T. Clay Clay Min. 1988, 36 (2), 181. doi: 10.1346/CCMN.1988.0360213  doi: 10.1346/CCMN.1988.0360213

    32. [32]

      Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57 (4), 603. doi: 10.1002/9783527610044.hetcat0065  doi: 10.1002/9783527610044.hetcat0065

    33. [33]

      Schüth, F.; Sing, K. S. W.; Weitkamp, J. Handbook of Porous Solids; Wiley-Vch, 2002, p. 261. doi: 10.1002/9783527618286

    34. [34]

      Wang, M.; Yu, X.; Yang, C.; Yang, X.; Lin, M.; Guan, L.; Ge, M. Chem. Eng. J. 2017, 322, 246. doi: 10.1016/j.cej.2017.03.155  doi: 10.1016/j.cej.2017.03.155

    35. [35]

      Wang, S. G.; Ma, Y.; Shi, Y. J.; Gong, W. X. J. Chem. Technol. Biotechnol. 2009, 84 (7), 1043. doi: 10.1002/jctb.2131  doi: 10.1002/jctb.2131

    36. [36]

      He, Y. X.; Zhang, M. L.; An, X.; Wan, G. P.; Zhu, W. J.; Luo, Y. M. Sci. Total Environ. 2019, 688, 184. doi: 10.1016/j.scitotenv.2019.06.175  doi: 10.1016/j.scitotenv.2019.06.175

    37. [37]

      Lagergren, S. K. Seven. Vetensk. Acad. Handl. 1898, 24, 1.

    38. [38]

      Ho, Y. S. J. Hazard. Mater. 2006, 136 (3), 681. doi: 10.1002/chin.200648222  doi: 10.1002/chin.200648222

    39. [39]

      Langmuir, I. J. Am. Chem. Soc. 1916, 38 (11), 2221. doi: 10.1016/S0016-0032(17)90938-X  doi: 10.1016/S0016-0032(17)90938-X

    40. [40]

      Freundlich, H. Z. Phys. Chem. 1907, 57 (1), 385. doi: 10.1515/zpch-1907-5723  doi: 10.1515/zpch-1907-5723

    41. [41]

      Jiménez-Becerril, J.; Solache-Ríos, M.; García-Sosa, I. Water Air Soil Pollut. 2012, 223 (3), 1073. doi: 10.1007/s11270-011-0925-3  doi: 10.1007/s11270-011-0925-3

    42. [42]

      Kumar, E.; Bhatnagar, A.; Kumar, U.; Sillanpää, M. J. Hazard. Mater. 2011, 186 (2-3), 1042. doi: 10.1016/j.jhazmat.2010.11.102  doi: 10.1016/j.jhazmat.2010.11.102

    43. [43]

      Raichur, A. M.; Basu, M. J. Sep. Purif. Technol. 2001, 24 (1-2), 121. doi: 10.1016/S1383-5866(00)00219-7  doi: 10.1016/S1383-5866(00)00219-7

    44. [44]

      Valdivieso, A. L.; Bahena, J. L. R.; Song, S.; Urbina, R. H. J. Colloid Interface Sci. 2006, 298 (1), 1. doi: 10.1016/j.jcis.2005.11.060  doi: 10.1016/j.jcis.2005.11.060

    45. [45]

      de Lint, W. B. S.; Benes, N. E.; Lyklema, J.; Bouwmeester, H. J. M.; van der Linde, A. J.; Wessling, M. Langmuir 2003, 19 (14), 5861. doi: 10.1021/la026864a  doi: 10.1021/la026864a

  • 加载中
    1. [1]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    2. [2]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    3. [3]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    4. [4]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    5. [5]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    6. [6]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    7. [7]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    8. [8]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    9. [9]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    10. [10]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    11. [11]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    12. [12]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    13. [13]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    14. [14]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    15. [15]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    16. [16]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    17. [17]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    18. [18]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    19. [19]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    20. [20]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

Metrics
  • PDF Downloads(7)
  • Abstract views(497)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return