Inverse Decoration of ZnO on Small-Sized Cu/Sio2 with Controllable Cu-ZnO Interaction for CO2 Hydrogenation to Produce Methanol
- Corresponding author: Hong Xinlin, hongxl@whu.edu.cn Zhuang Lin, lzhuang@whu.edu.cn
Citation: Lyu Hanlin, Hu Bing, Liu Guoliang, Hong Xinlin, Zhuang Lin. Inverse Decoration of ZnO on Small-Sized Cu/Sio2 with Controllable Cu-ZnO Interaction for CO2 Hydrogenation to Produce Methanol[J]. Acta Physico-Chimica Sinica, ;2020, 36(11): 191100. doi: 10.3866/PKU.WHXB201911008
Centi, G.; Perathoner, S. Catal. Today 2009, 148, 191. doi: 10.1016/j.cattod.2009.07.075
doi: 10.1016/j.cattod.2009.07.075
Kaeding, W. W.; Butter, S. A. J. Catal. 1980, 61, 155. doi: 10.1016/0021-9517(80)90351-6
doi: 10.1016/0021-9517(80)90351-6
Olah, G. A. Angew. Chem. Int. Edit. 2005, 44, 2636. doi: 10.1002/anie.200462121
doi: 10.1002/anie.200462121
Olah, G. A.; Goeppert, A.; Prakash, G. K. S. J. Org. Chem. 2009, 74, 487. doi: 10.1021/jo801260f
doi: 10.1021/jo801260f
Liao, F.; Wu, X. P.; Zheng, J.; Li, M. M. J.; Kroner, A.; Zeng, Z.; Hong, X.; Yuan, Y.; Gong, X. Q.; Tsang, S. C. E. Green Chem. 2017, 19, 270. doi: 10.1039/c6gc02366e
doi: 10.1039/c6gc02366e
Yu, K. M. K.; Curcic, I.; Gabriel, J.; Tsang, S. C. E. ChemSusChem 2008, 1, 893. doi: 10.1002/cssc.200800169
doi: 10.1002/cssc.200800169
Hu, B.; Yin, Y.; Liu, G.; Chen, S.; Hong, X.; Tsang, S. C. E. J. Catal. 2018, 359, 17. doi: 10.1016/j.jcat.2017.12.029
doi: 10.1016/j.jcat.2017.12.029
Lee, J. S.; Lee, K. H.; Lee, S. Y.; Kim, Y. G. J. Catal. 1993, 144, 414. doi: 10.1006/jcat.1993.1342
doi: 10.1006/jcat.1993.1342
Klier, K. Adv. Catal. 1982, 243. doi: 10.1016/s0360-0564(08)60455-1
doi: 10.1016/s0360-0564(08)60455-1
Liu, X. M.; Lu, G. Q.; Yan, Z. F.; Beltramini, J. Ind. Eng. Chem. Res. 2003, 42, 6518. doi: 10.1021/ie020979s
doi: 10.1021/ie020979s
Tisseraud, C.; Comminges, C.; Belin, T.; Ahouari, H.; Soualah, A.; Pouilloux, Y.; Le Valant, A. J. Catal. 2015, 330, 533. doi: 10.1016/j.jcat.2015.04.035
doi: 10.1016/j.jcat.2015.04.035
Kattel, S.; Ramirez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Science 2017, 355, 1296. doi: 10.1126/science.aal3573
doi: 10.1126/science.aal3573
Lisiecki, I.; Pileni, M. P. J. Am. Chem. Soc. 1993, 115, 3887. doi: 10.1021/ja00063a006
doi: 10.1021/ja00063a006
Tang, X. F.; Yang, Z. G.; Wang, W. J. Colloid Surf. A-Physicochem. Eng. Asp. 2010, 360, 99. doi: 10.1016/j.colsurfa.2010.02.011
doi: 10.1016/j.colsurfa.2010.02.011
Yang, H.; Gao, P.; Zhang, C.; Zhong, L.; Li, X.; Wang, S.; Wang, H.; Wei, W.; Sun, Y. Catal. Commun. 2016, 84, 56. doi: 10.1016/j.catcom.2016.06.010
doi: 10.1016/j.catcom.2016.06.010
Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem. Int. Edit. 2006, 45, 7896. doi: 10.1002/anie.200602454
doi: 10.1002/anie.200602454
Jiang, X.; Koizumi, N.; Guo, X.; Song, C. Appl. Catal. B-Environ. 2015, 170–171, 173. doi: 10.1016/j.apcatb.2015.01.010
doi: 10.1016/j.apcatb.2015.01.010
van den Berg, R.; Prieto, G.; Korpershoek, G.; van der Wal, L. I.; van Bunningen, A. J.; Lægsgaard-Jørgensen, S.; de Jongh, P. E.; de Jong, K. P. Nat. Commun. 2016, 7, 13057. doi: 10.1038/ncomms13057
doi: 10.1038/ncomms13057
Wang, X.; Zhuang, J.; Chen, J.; Zhou, K.; Li, Y. Angew. Chem. 2004, 116, 2051. doi: 10.1002/ange.200353507
doi: 10.1002/ange.200353507
Wang, Y.; Wang, G.; Wang, H.; Cai, W.; Zhang, L. Chem. Commun. 2008, 6555. doi: 10.1039/b816751f
doi: 10.1039/b816751f
Zhang, F.; An, Y.; Zhai, W.; Gao, X.; Feng, J.; Ci, L.; Xiong, S. Mater. Res. Bull. 2015, 70, 573. doi: 10.1016/j.materresbull.2015.05.029
doi: 10.1016/j.materresbull.2015.05.029
Sheng, Y.; Zeng, H. C. Chem. Mater. 2015, 27, 658. doi: 10.1021/cm502691s
doi: 10.1021/cm502691s
Wang, Z. Q.; Xu, Z. N.; Peng, S. Y.; Zhang, M. J.; Lu, G.; Chen, Q. S.; Chen, Y.; Guo, G. C. ACS Catal. 2015, 5, 4255. doi: 10.1021/acscatal.5b00682
doi: 10.1021/acscatal.5b00682
Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603. doi: 10.1351/pac198557040603
doi: 10.1351/pac198557040603
Fujitani, T.; Saito, M.; Kanai, Y.; Watanabe, T.; Nakamura, J.; Uchijima, T. Appl. Catal. A-Gen. 1995, 125, L199. doi: 10.1016/0926-860x(95)00049-6
doi: 10.1016/0926-860x(95)00049-6
Lei, H.; Nie, R.; Wu, G.; Hou, Z. Fuel 2015, 154, 161. doi: 10.1016/j.fuel.2015.03.052
doi: 10.1016/j.fuel.2015.03.052
Li, C.; Yuan, X.; Fujimoto, K. Appl. Catal. A-Gen. 2014, 469, 306. doi: 10.1016/j.apcata.2013.10.010
doi: 10.1016/j.apcata.2013.10.010
Liu, Y.; Zhang, Y.; Wang, T.; Tsubaki, N. Chem. Lett. 2007, 36, 1182. doi: 10.1246/cl.2007.1182
doi: 10.1246/cl.2007.1182
Liao, F.; Huang, Y.; Ge, J.; Zheng, W.; Tedsree, K.; Collier, P.; Hong, X.; Tsang, S. C. Angew. Chem. Int. Edit. 2011, 50, 2162. doi: 10.1002/anie.201007108
doi: 10.1002/anie.201007108
Li, H.; Su, Z.; Hu, S.; Yan, Y. Appl. Catal. B 2017, 207, 134. doi: 10.1016/j.apcatb.2017.02.013
doi: 10.1016/j.apcatb.2017.02.013
Liu, T.; Yao, T.; Wei, L.; Shi, Z.; Han, L.; Yuan, H.; Li, B.; Dong, L.; Wang, F.; Sun, C. Z. J. Phys. Chem. C 2017, 121, 12757. doi: 10.1021/acs.jpcc.7b02052
doi: 10.1021/acs.jpcc.7b02052
Liu, P.; Hensen, E. J. M. J. Am. Chem. Soc. 2013, 135, 14032. doi: 10.1021/ja406820f
doi: 10.1021/ja406820f
Schumann, J.; Kröhnert, J.; Frei, E.; Schlögl, R.; Trunschke, A. Top. Catal. 2017, 60, 1735. doi: 10.1007/s11244-017-0850-9
doi: 10.1007/s11244-017-0850-9
Gervasini, A.; Bennici, S. Appl. Catal. A-Gen. 2005, 281, 199. doi: 10.1016/j.apcata.2004.11.030
doi: 10.1016/j.apcata.2004.11.030
van der Grift, C. J. G.; Wielers, A. F. H.; Joghi, B. P. J.; van Beijnum, J.; de Boer, M.; Versluijs-Helder, M.; Geus, J. W. J. Catal. 1991, 131, 178. doi: 10.1016/0021-9517(91)90334-z
doi: 10.1016/0021-9517(91)90334-z
Gao, P.; Li, F.; Zhan, H.; Zhao, N.; Xiao, F.; Wei, W.; Zhong, L.; Wang, H.; Sun, Y. J. Catal. 2013, 298, 51. doi: 10.1016/j.jcat.2012.10.030
doi: 10.1016/j.jcat.2012.10.030
Fujitani, T.; Nakamura, I.; Uchijima, T.; Nakamura, J. Surf. Sci. 1997, 383, 285. doi: 10.1016/s0039-6028(97)00192-1
doi: 10.1016/s0039-6028(97)00192-1
Fujitani, T.; Nakamura, I.; Watanabe, T.; Uchijima, T.; Nakamura, J. Catal. Lett. 1995, 35, 297. doi: 10.1007/bf00807186
doi: 10.1007/bf00807186
Yoshihara, J.; Campbell, C. T. J. Catal. 1996, 161, 776. doi: 10.1006/jcat.1996.0240
doi: 10.1006/jcat.1996.0240
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Junchen Peng , Xue Yin , Dandan Dong , Zhongyuan Guo , Qinqin Wang , Minmin Liu , Fei He , Bin Dai , Chaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Zhijia Zhang , Shihao Sun , Yuefang Chen , Yanhao Wei , Mengmeng Zhang , Chunsheng Li , Yan Sun , Shaofei Zhang , Yong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Wenhao Chen , Muxuan Wu , Han Chen , Lue Mo , Yirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698