Citation: Xie An, Pan Zhonghua, Luo Genggeng. Synthesis of Six Bio-Inspired Nickel-Based Complexes Ligated with Diselenolate Derivatives and Diphosphine Ligands, and Application to Electrocatalytic H2 Evolution[J]. Acta Physico-Chimica Sinica, ;2021, 37(3): 191005. doi: 10.3866/PKU.WHXB201910058 shu

Synthesis of Six Bio-Inspired Nickel-Based Complexes Ligated with Diselenolate Derivatives and Diphosphine Ligands, and Application to Electrocatalytic H2 Evolution

  • Corresponding author: Luo Genggeng, ggluo@hqu.edu.cn
  • Received Date: 28 October 2019
    Revised Date: 8 December 2019
    Accepted Date: 26 December 2019
    Available Online: 31 December 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21641011) and the Fujian Key Laboratory of Functional Materials and Applications, China (fma2017107)the Fujian Key Laboratory of Functional Materials and Applications, China fma2017107the National Natural Science Foundation of China 21641011

  • In recent years, there has been an intense effort to develop renewable alternatives to fossil fuels for meeting the ever-increasing global energy need. Molecular dihydrogen (H2) is the ideal energy carrier for the 21st century because it has high energy density and its combustion releases only water, and electrocatalysis is a powerful tool for its wide use. Developing new H2-evolving molecular electrocatalysts with cheap and earth-abundant elements is highly desirable. Among all kinds of H2-generating catalysts, [NiFe]-hydrogenases (H2ases) have the active site featuring a redox-active {Ni(cysteinate)4} center bridged through two of its cysteine residues to a redox-inactive {Fe(CN2)(CO)} moiety. As a class of known natural enzymes, [NiFe]-H2ases are promising candidates because they have inexpensive nickel and/or iron atoms at the active sites and can catalyze the reversible reduction of H+ to H2 with high efficiency comparable to the noble-metal platinum. However, the catalytic behaviors of most artificial H2ases-like active sites are usually inhibited by the existence of a small amount of O2, which strongly limit their practical application. As such, it is attractive to develop new analogues of enzyme active sites to address this issue. On the other hand, [NiFeSe]-H2ases, which are obtained by the introduction of Se into [NiFe]-H2ases, have exceptional properties conducive for H2 production, such as high H2 generation performance, marginal inhibition by H2, and high tolerance to O2. The mechanistic understanding of [NiFeSe]-H2ases function guides the design and synthesis of Se-substituted Ni-based molecular catalysts, and selection of suitable bio-inspired catalysts enables applications in catalysis for hydrogen evolution reaction (HER). In this contribution, six bio-inspired neutral nickel-based complexes (2a–2c, 3a–3b, 4) with diselenolate derivatives and diphosphine ligands have been prepared and structurally characterized. These complexes are important in the function of [NiFeSe]-hydrogenase models toward their application as electrocatalysts for the HER. The substituent effects of diselenolate and diphosphine ligands on the catalytic activities of hydrogen production by these nickel(Ⅱ) complexes are studied experimentally. When using a glassy carbon electrode, all the complexes are efficient electrocatalysts for H2 production with different turnover frequencies (TOFs) of 12182 s-1 (2a), 15385 s-1 (2b), 20359 s-1 (2c), 106 s-1 (3a), 794 s-1 (3b), 13580 s-1 (4). The present results indicate that the nickel(Ⅱ) complex 2c ligated by a 4, 5-dimethyl-1, 2-benzenediselenolate and 1, 1'-bis(diphenylphosphino)ferrocene ligand, shows the highest efficiency, which surpasses the activity of a previously dppf-supported nickel(Ⅱ) 1, 2-benzenediselenolate with a TOF of 7838 s-1. We believe that our results will encourage the development of the design of highly efficient Ni-based selenolate molecular catalysts.
  • 加载中
    1. [1]

      Chang, J. F.; Xiao, Y.; Luo, Z. Y.; Ge, J. J.; Liu, C. P.; Xing, W. Acta Phys. -Chim. Sin. 2016, 32 (7), 1556.  doi: 10.3866/PKU.WHXB201604291

    2. [2]

      Xiao, A.; Lu, H.; Zhao, Y.; Luo, G. G. Acta Phys. -Chim. Sin. 2016, 32 (12), 2968.  doi: 10.3866/PKU.WHXB201609194

    3. [3]

      Wang, M.; Chen, L.; Sun, L. Energy Environ. Sci. 2012, 5 (5), 6763. doi: 10.1039/C2EE03309G  doi: 10.1039/C2EE03309G

    4. [4]

      Luo, G. G.; Zhang, H. L.; Tao, Y. W.; Wu, Q. Y.; Tian, D.; Zhang, Q. C. Inorg. Chem. Frontier 2019, 6 (2), 354. doi: 10.1039/C8QI01220B  doi: 10.1039/C8QI01220B

    5. [5]

      Zhao, Y.; Wang, Y.; Wu, Q.; Lin, J.; Wu, S.; Hou, W.; Wu, R.; Luo, G. Chin. J. Catal. 2018, 39 (3), 517. doi: 10.1016/S1872-2067(17)62940-1  doi: 10.1016/S1872-2067(17)62940-1

    6. [6]

      Schilter, D.; Camara, J. M.; Huynh, M. T.; Hammes-Schiffer, S.; Rauchfuss, T. B. Chem. Rev. 2016, 116 (15), 8693. doi: 10.1021/acs.chemrev.6b00180  doi: 10.1021/acs.chemrev.6b00180

    7. [7]

      Luo, G. G.; Wang, Y. H.; Wang, J.; Wu, J.; Wu, R. Chem. Commun. 2017, 53 (52), 7007. doi: 10.1039/C7CC01942D  doi: 10.1039/C7CC01942D

    8. [8]

      Parkin, A.; Goldet, G.; Cavazza, C.; Fontecilla-Camps, J. C.; Armstrong, F. A. J. Am. Chem. Soc. 2008, 130 (40), 13410. doi: 10.1021/ja803657d  doi: 10.1021/ja803657d

    9. [9]

      Wombwell, C.; Caputo, C. A.; Reisner, E. Acc. Chem. Res. 2015, 4 8(11), 2858. doi: 10.1021/acs.accounts.5b00326  doi: 10.1021/acs.accounts.5b00326

    10. [10]

      Wombwell, C.; Reisner, E. Chem. -Eur. J. 2015, 21 (22), 8096. doi: 10.1002/chem..201500311  doi: 10.1002/chem..201500311

    11. [11]

      Xie, A.; Tao, Y. W.; Peng, C.; Luo, G. G. Inorg. Chem. Commun. 2019, 110, 107598. doi: 10.1016/j.inoche.2019.107598  doi: 10.1016/j.inoche.2019.107598

    12. [12]

      Xie. A.; Pan, Z. H.; Yu, M.; Luo, G. G.; Sun, D. Chin. Chem. Lett. 2019, 30 (1), 225. doi: 10.1016/j.cclet.2018.05.003  doi: 10.1016/j.cclet.2018.05.003

    13. [13]

      Luo, G. G.; Pan, Z. H.; Lin, J. Q.; Sun, D. Dalton Trans. 2018, 47 (44), 15633. doi: 10.1039/C8DT02831A  doi: 10.1039/C8DT02831A

    14. [14]

      Xie, A.; Zhu, J.; Luo, G. G. Int. J. Hydro. Energy. 2018, 43 (5), 2772. doi: 10.1016/j.ijhydene.2017.12.120  doi: 10.1016/j.ijhydene.2017.12.120

    15. [15]

      Luo, G. G.; Fang, K.; Wu. J. H.; Dai, J. C.; Zhao, Q. H. Phys. Chem. Chem. Phys. 2014, 16 (43), 23884. doi: 10.1039/C4CP03343D  doi: 10.1039/C4CP03343D

    16. [16]

      Luo, G. G.; Lu, H.; Zhang, X. L.; Dai, J. C.; Wu, J. H.; Wu, J. J. Phys. Chem. Chem. Phys. 2015, 17 (15), 9716. doi: 10.1039/C5CP00732A  doi: 10.1039/C5CP00732A

    17. [17]

      Luo, G. G.; Fang, K.; Wu, J. H.; Mo, J. Chem. Commun. 2015, 51 (62), 12361. doi: 10.1039/C5CC0389A  doi: 10.1039/C5CC0389A

    18. [18]

      Pan, Z. H.; Tao, Y.W.; He, Q. F.; Wu, Q. Y.; Cheng, L. P.; Wei, Z. H.; Wu, J. H.; Lin, J. Q.; Sun, D.; Zhang, Q. C.; et al. Chem. -Eur. J. 2018, 24 (33), 8275. doi: 10.1002/chem..201801893  doi: 10.1002/chem..201801893

    19. [19]

      Sandman, D. J.; Allen, G. W.; Acampora, L. A.; Stark, J. C.; Jansen, S.; Jones, M. T.; Ashwell, G. J.; Foxman, B. M. Inorg. Chem. 1987, 26 (11), 1664. doi: 10.1021/ic00258a007  doi: 10.1021/ic00258a007

    20. [20]

      Highshi, T. ABSCOR, Empirical Absorption Correction Based on Fourier Series Approximations. Tokyo: Rigaku Corporation, 1995.

    21. [21]

      Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Determination. Germany: University of Gottingen, 1997.

    22. [22]

      Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal Structure Refinement. Germany: University of Gottingen, 1997.

    23. [23]

      Li, X. C.; Luo, G. G.; Fang, K.; Zhou, J. W.; Zhao, Q. H.; Wu, R. B. Scientia Sinica Chim. 2015, 45 (8), 843.  doi: 10.1360/N5-00046

    24. [24]

      Wakerley, D. W.; Reisner, E. Energy Environ. Sci. 2015, 8 (8), 2283. doi: 10.1039/C5EE01167A  doi: 10.1039/C5EE01167A

    25. [25]

      Garrett, B. R.; Polen, S. M.; Click, K. A.; He, M.; Huang, Z.; Hadad, C. M.; Wu, Y. Inorg. Chem. 2016, 55 (8), 3960. doi: 10.1021/acs.inorgchem.6b00206  doi: 10.1021/acs.inorgchem.6b00206

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    6. [6]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    9. [9]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    10. [10]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    11. [11]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    16. [16]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    17. [17]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    18. [18]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    19. [19]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    20. [20]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

Metrics
  • PDF Downloads(7)
  • Abstract views(873)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return