Citation: Meng Qingguo, Liu Changling, Li Chengfeng, Hao Xiluo, Hu Gaowei, Sun Jianye, Wu Nengyou. Effect of Common Guest Molecules on the Lattice Constants of Clathrate Hydrates[J]. Acta Physico-Chimica Sinica, ;2020, 36(11): 191001. doi: 10.3866/PKU.WHXB201910010 shu

Effect of Common Guest Molecules on the Lattice Constants of Clathrate Hydrates

  • Corresponding author: Liu Changling, qdliuchangling@163.com
  • Received Date: 8 October 2019
    Revised Date: 6 December 2019
    Accepted Date: 9 December 2019
    Available Online: 11 December 2019

    Fund Project: National Natural Science Foundation of China 41876051National Natural Science Foundation of China 41976074National Key R & D Program of China 2017YFC0307600National Natural Science Foundation of China 41302034the National Marine Geological Survey projects DD20190221The project was supported by the National Marine Geological Survey projects (DD20190221), National Natural Science Foundation of China (41876051, 41976074, 41302034) and National Key R & D Program of China (2017YFC0307600)

  • Natural gas hydrates are considered as ideal alternative energy resources for the future, and the relevant basic and applied research has become more attractive in recent years. The influence of guest molecules on the hydrate crystal lattice parameters is of great significances to the understanding of hydrate structural characteristics, hydrate formation/decomposition mechanisms, and phase stability behaviors. In this study, we test a series of artificial hydrate samples containing different guest molecules (e.g. methane, ethane, propane, iso-butane, carbon dioxide, tetrahydrofuran, methane + 2, 2-dimethylbutane, and methane + methyl cyclohexane) by a low-temperature powder X-ray diffraction (PXRD). Results show that PXRD effectively elucidates structural characteristics of the natural gas hydrate samples, including crystal lattice parameters and structure types. The relationships between guest molecule sizes and crystal lattice parameters reveal that different guest molecules have different controlling behaviors on the hydrate types and crystal lattice constants. First, a positive correlation between the lattice constants and the van der Waals diameters of homologous hydrocarbon gases was observed in the single-guest-component hydrates. Small hydrocarbon homologous gases, such as methane and ethane, tended to form sI hydrates, whereas relatively larger molecules, such as propane and iso-butane, generated sⅡ hydrates. The hydrate crystal lattice constants increased with increasing guest molecule size. The types of hydrates composed of oxygen-containing guest molecules (such as CO2 and THF) were also controlled by the van der Waals diameters. However, no positive correlation between the lattice constants and the van der Waals diameters of guest molecules in hydrocarbon hydrates was observed for CO2 hydrate and THF hydrate, probably due to the special interactions between the guest oxygen atoms and hydrate "cages". Furthermore, the influences of the macromolecules and auxiliary small molecules on the lengths of the different crystal axes of the sH hydrates showed inverse trends. Compared to the methane + 2, 2-dimethylbutane hydrate sample, the length of the a-axis direction of the methane + methyl cyclohexane hydrate sample was slightly smaller, whereas the length of the c-axis direction was slightly longer. The crystal a-axis length of the sH hydrate sample formed with nitrogen molecules was slightly longer, whereas the c-axis was shorter than that of the methane + 2, 2-dimethylbutane hydrate sample at the same temperature.
  • 加载中
    1. [1]

      Li, J. F.; Ye, J. L.; Qin, X. W.; Qiu, H. J.; Wu, N. Y.; Lu, H. L.; Xie, W. W.; Lu, J. A.; Peng, F.; Xu, Z. Q.; et al. China Geology 2018, 1, 5. doi: 10.31035/cg2018003  doi: 10.31035/cg2018003

    2. [2]

      Meng, Q. G. Research on the Multi-Component Gas Hydrates: Structure Characteristics, Formation and Dissociation Process. Ph.D. Dissertation, Chinese Academy of Geological Sciences, Beijing, 2019.

    3. [3]

      Liu, C. L.; Meng, Q. G. Gas Hydrates Experiment and Testing Technologies; Science Press: Beijing, 2016.

    4. [4]

      Chen, H. L.; Wei, C. F.; Tian, H. H.; Wei, H. Z. Acta Phys. -Chim. Sin. 2017, 33, 1599.  doi: 10.3866/PKU.WHXB201704194

    5. [5]

      Sloan, E. D. Nature 2003, 426, 353. doi: 10.1038/nature02135  doi: 10.1038/nature02135

    6. [6]

      Liu, C. L.; Meng, Q. G. Rock & Mineral Anal. 2014, 33, 468.  doi: 10.3969/j.issn.0254-5357.2014.04.003

    7. [7]

      Lu, H.; Seo, Y.; Lee, J.; Moudrakovski, I.; Ripmeester, J. A.; Chapman, N. R.; Coffin, R. B.; Gardner, G.; Pohlman, J. Nature 2007, 445, 303. doi: 10.1038/nature05463  doi: 10.1038/nature05463

    8. [8]

      Liu, C. L.; Meng, Q. G.; He, X. L.; Li, C. F.; Ye, Y. G.; Zhang, G. X.; Liang, J. Q. Mar. Pet. Geol. 2015, 61, 14. doi: 10.1016/j.marpetgeo.2014.11.006  doi: 10.1016/j.marpetgeo.2014.11.006

    9. [9]

      Kida, M.; Jin, Y.; Yoneda, J.; Oshima, M.; Kato, A.; Konno, Y.; Nagao, J.; Tenma, N. Mar. Pet. Geol. 2019, 108, 471. doi: 10.1016/j.marpetgeo.2018.10.012  doi: 10.1016/j.marpetgeo.2018.10.012

    10. [10]

      Liu, C. L.; Meng, Q. G.; Hu, G. W.; Li, C. F.; Sun, J. Y.; He, X. L.; Wu, N. Y.; Yang, S. X.; Liang, J. Q. Interpretation 2017, 5, SM13. doi: 10.1190/INT-2016-0211.1  doi: 10.1190/INT-2016-0211.1

    11. [11]

      Tian, M.; Meng, Q. G.; Liu, C. L.; Li, C. F; Hu, G. W.; Feng, J.; Zhao, Q. S. Rock Miner. Anal. 2017, 36, 43.  doi: 10.15898/j.enki.11-2131/td.201703160033

    12. [12]

      Chen, Y. F.; Zhou, X. B.; Liang, D. Q.; Wu, N. Y. Spectrosc. Spect. Anal. 2019, 39, 2889.  doi: 10.3964/j.issn.1000-0593(2019)09-2889-05

    13. [13]

      Takeya, S.; Hori, A.; Uchida, T.; Ohmura, R. J. Phys. Chem. B 2006, 110, 12943. doi: 10.1021/jp060198v  doi: 10.1021/jp060198v

    14. [14]

      Takeya, S.; Nagaya, H.; Matsuyama, T.; Hondoh, T.; Lipenkov, V. Y. J. Phys. Chem. B 2000, 104, 668. doi: 10.1021/jp993344o  doi: 10.1021/jp993344o

    15. [15]

      Shin, K.; Moudrakovski, I. L.; Davari, M. D.; Alavi, S.; Ratcliffe, C. I.; Ripmeester, J. A. CrystEngComm 2014, 16, 7209. doi: 10.1039/c3ce41661e  doi: 10.1039/c3ce41661e

    16. [16]

      Kim, D. Y.; Lee, H. J. Am. Chem. Soc. 2005, 127, 9996. doi: 10.1021/ja0523183  doi: 10.1021/ja0523183

    17. [17]

      Takeya, S.; Ripmeester, J. A. Angew. Chem. 2008, 120, 1296. doi: 10.1002/ange.200703718  doi: 10.1002/ange.200703718

    18. [18]

      Takeya, S.; Uchida, T.; Kamata, Y.; Nagao, J.; Kida, M.; Minami, H.; Sakagami, H.; Hachikubo, A.; Takahashi, N.; Shoji, H.; et al. Angew. Chem. 2005, 117, 7088. doi: 10.1002/anie.200501845  doi: 10.1002/anie.200501845

    19. [19]

      Tezuka, K.; Murayama, K.; Takeya, S.; Alavi, S.; Ohmura, R. J. Phys. Chem. C 2013, 117, 10473. doi: 10.1021/jp4005899  doi: 10.1021/jp4005899

    20. [20]

      Daghash, S. M.; Servio, P.; Rey, A. D. Mol. Simul. 2019, 45, 1524. doi: 10.1080/08927022.2019.1660326  doi: 10.1080/08927022.2019.1660326

    21. [21]

      Kondori, J.; Zendehboudi, S.; James, L. Chem. Eng. Res. Des. 2019, 149, 81. doi: 10.1016/j.cherd.2019.05.048  doi: 10.1016/j.cherd.2019.05.048

    22. [22]

      Zhou, X. B.; Liu, C. J.; Luo, J. Q.; Liang, D. Q. CIESC J. 2019, 70, 1042.  doi: 10.11949/j.issn.0438-1157.20180821

    23. [23]

      Meng, Q. G.; Liu, C. L.; Ye, Y. G.; Li, C. F. Nat. Gas Ind. 2015, 35, 135.  doi: 10.3787/j.issn.1000-0976.2015.03.022

    24. [24]

      Udachin, K. A.; Ratcliffe, C. I.; Ripmeester, J. A. J. Supramol. Chem. 2002, 2, 405. doi: 10.1016/S1472-7862(03)00049-2  doi: 10.1016/S1472-7862(03)00049-2

    25. [25]

      Stern, L. A.; Susan, C.; Stephen, H. K. J. Phys. Chem. B 2001, 105, 1756. doi: 10.1021/jp003061s  doi: 10.1021/jp003061s

    26. [26]

      Jin, Y.; Kida, M; Nagao, J. J. Phys. Chem. C 2013, 117, 23469. doi: 10.1021/jp403430z  doi: 10.1021/jp403430z

    27. [27]

      Lee, J. W.; Lu, H.; Moudrakovski, I. L.; Ratcliffe, C. I.; Ohmura, R.; Alavi, S.; Ripmeester, J. A. J. Phys. Chem. A 2011, 115, 1650. doi: 10.1021/jp1118184  doi: 10.1021/jp1118184

    28. [28]

      Udachin, K. A.; Ratcliffe, C. I.; Ripmeester, J. A. J. Phys. Chem. B 2001, 105, 4200. doi: 10.1021/jp004389o  doi: 10.1021/jp004389o

    29. [29]

      Jin, Y.; Kida, M.; Nagao, J. J. Phys. Chem. C 2015, 119, 9069. doi: 10.1021/acs.jpcc.5b00529  doi: 10.1021/acs.jpcc.5b00529

  • 加载中
    1. [1]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    2. [2]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    3. [3]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    4. [4]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    5. [5]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    6. [6]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    7. [7]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    8. [8]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    9. [9]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    10. [10]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    11. [11]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    12. [12]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    15. [15]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(10)
  • Abstract views(979)
  • HTML views(148)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return