Citation: Liu Tongqing, Xue Fangfang, Yi Ping, Xia Zhiyu, Dong Jinfeng, Li Xuefeng. Structure–Property Relationship of Light-Responsive Wormlike Micelles Using Methoxycinnamate Derivatives as Light-Switchable Molecules[J]. Acta Physico-Chimica Sinica, ;2020, 36(10): 191000. doi: 10.3866/PKU.WHXB201910004 shu

Structure–Property Relationship of Light-Responsive Wormlike Micelles Using Methoxycinnamate Derivatives as Light-Switchable Molecules

  • Corresponding author: Dong Jinfeng, jfdong@whu.edu.cn Li Xuefeng, lixuefeng@whu.edu.cn
  • Received Date: 7 October 2019
    Revised Date: 1 November 2019
    Accepted Date: 7 November 2019
    Available Online: 18 November 2019

    Fund Project: the National Natural Science Foundation of China 21773174the National Natural Science Foundation of China 21573164The project was supported by the National Natural Science Foundation of China (21573164, 21773174)

  • In this work, light-responsive viscoelastic wormlike micelles based on cetyltrimethylammonium hydroxide (CTAOH) and cinnamic acid derivatives, including cinnamic acid (CA), 2-methoxycinnamic acid (2-MCA), 3-methoxycinnamic acid (3-MCA), 4-methoxycinnamic acid (4-MCA), 2, 3-dimethoxycinnamic acid (2, 3-DMCA), 2, 4-dimethoxycinnamic acid (2, 4-DMCA), 2, 3, 4-trimethoxycinnamic acid (2, 3, 4-DMCA), and 3, 4, 5-trimethoxycinnamic acid (3, 4, 5-DMCA), were prepared. The effects of the CA derivative structures, especially the position and number of methoxy moieties, on the formation of wormlike micelles were systematically determined. The CA derivatives facilitated the formation of long and entangled wormlike micelles. 1H NMR results showed that the CA derivatives participated in the formation of wormlike micelles via insertion of the aromatic moieties into the aggregates. The number of methoxy moieties had a much stronger effect on the viscosity of the wormlike micelle solution than the position of this moiety. The larger the number of methoxy moiety, the smaller was the aggregate. Substituted methoxy moieties increased the steric hindrance between the surfactants and CA molecules, thus hindering the formation of large aggregates. However, the position of the methoxy moiety had a predominant effect on the UV-light-induced transition of the wormlike micelles. Specifically, the ortho-methoxy moiety in the CA molecules dramatically enhanced the efficiency of UV-light-induced trans-cis isomerization. For example, the 2-MCA/CTAOH, 3-MCA/CTAOH, and 4-MCA/CTAOH binary systems (90 mmol·L-1/100 mmol·L-1) were gel-like with similar viscosities of around 20 Pa·s, but after UV light irradiation, they were transformed into a fluid with lower viscosity because of the formation of smaller aggregates. However, the irradiation time required for the transition varied significantly, as suggested by the results of viscosity measurements and UV-Vis spectroscopy. The 2-MCA/CTAOH system underwent complete phase transition within 3 h, whereas continuous transitions were observed for the 3-MCA/CTAOH and 4-MCA/CTAOH systems upon irradiation for 24 h. 1H NMR results suggested that the change in the configuration of MCA in the micelles before and after irradiation was the major cause of the abovementioned difference in the phase transition pattern. Initially, all the aromatic moieties of the trans-2-MCA molecules were deeply inserted into the hydrophobic cores of the micelles in a vertical manner, and the ionized carboxyl moiety was located in the palisade layer because of the electrostatic interactions between CTAOH and trans-2-MCA. In contrast, cis-2-MCA was inserted into the micelles in a horizontal manner, and some of the protons in the aromatic moiety were also transferred from the micellar core to the polar palisade layer. Accordingly, the CTAOH and cis-2-MCA molecules were packed loosely in the aggregates, thereby resulting in the formation of spherical micelles. Similar UV-light-induced transitions were observed for the 3-MCA/CTAOH and 4-MCA/CTAOH systems.
  • 加载中
    1. [1]

      Mai, Y.; Eisenberg, A. Chem. Soc. Rev. 2012, 41, 5969. doi: 10.1039/c2cs35115c  doi: 10.1039/c2cs35115c

    2. [2]

      Holder, S. J.; Sommerdijk, N. A. J. M. Polym. Chem. 2011, 2, 1018. doi: 10.1039/c0py00379d  doi: 10.1039/c0py00379d

    3. [3]

      Song, S. S.; Song, A. X.; Hao, J. C. RSC Adv. 2014, 4, 41864. doi: 10.1039/c4ra04849k  doi: 10.1039/c4ra04849k

    4. [4]

      Webber, M. J.; Langer, R. Chem. Soc. Rev. 2017, 46, 6600. doi: 10.1039/c7cs00391a  doi: 10.1039/c7cs00391a

    5. [5]

      Schramm, L. L.; Stasiuk, E. N.; Marangoni, D. G. Annu. Rep. Sect. C (Phys. Chem.) 2003, 99, 3. doi: 10.1039/b208499f  doi: 10.1039/b208499f

    6. [6]

      Sachse, A.; Garcia-Martinez, J. Chem. Mater. 2017, 29, 3827. doi: 10.1021/acs.chemmater.7b00599  doi: 10.1021/acs.chemmater.7b00599

    7. [7]

      Gong, L. Y.; Liao, G. Z.; Chen, Q. S.; Luan, H. X.; Feng, Y. J. Acta Phys. -Chim. Sin. 2019, 35, 816.  doi: 10.3866/PKU.WHXB201810060

    8. [8]

      Zarzar, L. D.; Sresht, V.; Sletten, E. M.; Kalow, J. A.; Blankschtein, D.; Swager, T. M. Nature 2015, 518, 520. doi: 10.1038/nature14168  doi: 10.1038/nature14168

    9. [9]

      Brown, P.; Butts, C. P.; Eastoe, J. Soft Matter 2013, 9, 2365. doi: 10.1039/c3sm27716j  doi: 10.1039/c3sm27716j

    10. [10]

      Hu, X.; Zhang, Y. Q.; Xie, Z. G.; Jing, X. B.; Bellotti, A.; Gu, Z. Biomacromolecules 2017, 18, 649. doi: 10.1021/acs.biomac.6b01704  doi: 10.1021/acs.biomac.6b01704

    11. [11]

      Wang, Z.; Jia, K. L.; Liu, T. Q.; Hu, J. W.; Li, X. F.; Dong, J. F. Acta Phys. -Chim. Sin. 2019, 35, 84.  doi: 10.3866/PKU.WHXB201712251

    12. [12]

      Zhang, W. B.; Gao, C. Y. J. Mater. Chem. A 2017, 5, 16059. doi: 10.1039/c7ta02038d  doi: 10.1039/c7ta02038d

    13. [13]

      Li, L.; Yang, Y.; Dong, J. F.; Li, X. F. J. Colloid Interface Sci. 2010, 343, 504. doi: 10.1016/j.jcis.2009.11.056  doi: 10.1016/j.jcis.2009.11.056

    14. [14]

      Wang, D.; Dong, R. H.; Long, P. F.; Hao, J. C. Soft Matter 2011, 7, 10713. doi: 10.1039/c1sm05949a  doi: 10.1039/c1sm05949a

    15. [15]

      Lin, Y. Y.; Cheng, X. H.; Qiao, Y.; Yu, C. L.; Li, Z. B.; Yan, Y.; Huang, J. B. Soft Matter 2010, 6, 902. doi: 10.1039/b916721h  doi: 10.1039/b916721h

    16. [16]

      Xia, Z. Y.; Jia, K. L.; Li, X. F.; Dong, J. F. RSC Adv. 2016, 6, 45673. doi: 10.1039/c6ra05529j  doi: 10.1039/c6ra05529j

    17. [17]

      Faure, D.; Gravier, J.; Labrot, T.; Desbat, B.; Oda, R.; Bassani, D. M. Chem. Commun. 2005, 1167. doi: 10.1039/b416287k  doi: 10.1039/b416287k

    18. [18]

      Song B. L.; Hu, Y. F.; Zhao, J. X. J. Colloid Interface Sci. 2009, 333, 820. doi: 10.1016/j.jcis.2009.02.030  doi: 10.1016/j.jcis.2009.02.030

    19. [19]

      Lu, Y. C.; Zhou, T. F.; Fan, Q.; Dong, J. F.; Li, X. F. J. Colloid Interface Sci. 2013, 412, 107. doi: 10.1016/j.jcis.2013.09.014  doi: 10.1016/j.jcis.2013.09.014

    20. [20]

      Li, J.; Zhao, M. W.; Zhou, H. T.; Gao, H. J.; Zheng, L. Q. Soft Matter 2012, 8, 7858. doi: 10.1039/c2sm25218j  doi: 10.1039/c2sm25218j

    21. [21]

      Jiang, H. J.; Jiang, Y. Q.; Han, J. L.; Zhang, L.; Liu, M. H. Angew. Chem. Int. Ed. 2019, 58, 785. doi: 10.1002/anie.201811060  doi: 10.1002/anie.201811060

    22. [22]

      Davies, T. S.; Ketner, A. M.; Raghavan, S. R. J. Am. Chem. Soc. 2006, 128, 6669. doi: 10.1021/ja060021e  doi: 10.1021/ja060021e

    23. [23]

      Tu, Y.; Gao, M. G.; Teng, H. N.; Shang, Y. Z.; Fang, B.; Liu, H. L. RSC Adv. 2018, 8, 16004. doi: 10.1039/c8ra01070f  doi: 10.1039/c8ra01070f

    24. [24]

      Jiang, H. J.; Jiang, Y. Q.; Zhang, L.; Guo, Z. X.; Liu, M. H. J. Phys. Chem. C 2018, 122, 12559. doi: 10.1021/acs.jpcc.8b03412  doi: 10.1021/acs.jpcc.8b03412

    25. [25]

      Jia, K. L.; Hu, J. W.; Dong, J. F.; Li, X. F. J. Colloid Interface Sci. 2016, 477, 156. doi: 10.1016/j.jcis.2016.05.046  doi: 10.1016/j.jcis.2016.05.046

    26. [26]

      Kumar, R.; Ketner, A. M.; Raghavan, S. R. Langmuir 2010, 26, 5405. doi: 10.1021/la903834q  doi: 10.1021/la903834q

    27. [27]

      Feitosa, E.; Brazolin, M. R. S.; Naal, R. M. Z. G.; de Morais Del, M. P. F.; Lopes, J. R.; Loh, W.; Vasilescu, M. J. Colloid Interface Sci. 2006, 299, 883. doi: 10.1016/j.jcis.2006.02.051  doi: 10.1016/j.jcis.2006.02.051

    28. [28]

      Liu, C. C.; Cui, J. W.; Song, A. X.; Hao, J. C. Soft Matter 2011, 7, 8952. doi: 10.1039/c1sm05635b  doi: 10.1039/c1sm05635b

    29. [29]

      Dreiss, C. A. Soft Matter. 2007, 3, 956. doi: 10.1039/b705775j  doi: 10.1039/b705775j

    30. [30]

      Candau, S. J.; Oda, R. Colloids Surf. A: Physicochem. Eng. Asp. 2001, 183, 5. doi: 10.1016/S0927-7757(01)00535-0  doi: 10.1016/S0927-7757(01)00535-0

    31. [31]

      Candau, S. J.; Khatory, A.; Lequeux, F.; Kern, F. J. Phys. IV 1993, 3, 197. doi: 10.1051/jp4:1993117  doi: 10.1051/jp4:1993117

    32. [32]

      Moitzi, C.; Freiberger, N.; Glatter, O. J. Phys. Chem. B 2005, 109, 16161. doi: 10.1021/jp0441691  doi: 10.1021/jp0441691

    33. [33]

      Oh, H.; Ketner, A. M.; Heymann, R.; Kesselman, E.; Danino, D.; Falvey, D. E.; Raghavan, S. R. Soft Matter 2013, 9, 5025. doi: 10.1039/c3sm00070b  doi: 10.1039/c3sm00070b

    34. [34]

      Yang, Y.; Dong, J. F.; Li, X. F. J. Disper. Sci. Technol. 2013, 34, 47. doi: 10.1080/01932691.2011.646616  doi: 10.1080/01932691.2011.646616

    35. [35]

      Han, Y. X.; Wei, Y. Q.; Wang, H.; Mei, Y. J.; Zhou, H. J. Surfact. Deterg. 2013, 16, 139. doi: 10.1007/s11743-012-1364-x  doi: 10.1007/s11743-012-1364-x

    36. [36]

      Bachofer, S. J.; Simonis, U.; Nowicki, T. A. J. Phys. Chem. 1991, 95, 480. doi: 10.1021/j100154a084  doi: 10.1021/j100154a084

    37. [37]

      Ketner, A. M.; Kumar, R.; Davies, T. S.; Elder, P. W.; Raghavan, S. R. J. Am. Chem. Soc. 2007, 129, 1553. doi: 10.1021/ja065053g  doi: 10.1021/ja065053g

    38. [38]

      Tu, Y.; Chen, Q. H.; Shang, Y. H.; Teng, H. N.; Liu, H. L. Langmuir 2019, 35, 4634. doi: 10.1021/acs.langmuir.8b04290  doi: 10.1021/acs.langmuir.8b04290

    39. [39]

      Sakai, H.; Taki, S.; Tsuchiya, K.; Matsumura, A.; Sakai, K.; Abel, M. Chem. Lett. 2012, 41, 247. doi: 10.1246/cl.2012.247  doi: 10.1246/cl.2012.247

    40. [40]

      Miyazaki, Y.; Yamamoto, K.; Aoki, J.; Ikeda, T.; Inokuchi, Y.; Ehara, M.; Ebata, T. J. Chem. Phys. 2014, 141, 244313. doi: 10.1063/1.4904268  doi: 10.1063/1.4904268

    41. [41]

      Song, S.; Han, Y.; Hao, W.; Lu, J.; Qian Y. Tenside Surf. Det. 2017, 54, 45. doi: 10.3139/113.110479  doi: 10.3139/113.110479

  • 加载中
    1. [1]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    2. [2]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    3. [3]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    4. [4]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    5. [5]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    6. [6]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    7. [7]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    8. [8]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

    9. [9]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    10. [10]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    11. [11]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    12. [12]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    13. [13]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    14. [14]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    15. [15]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    16. [16]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    17. [17]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    18. [18]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    19. [19]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    20. [20]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

Metrics
  • PDF Downloads(10)
  • Abstract views(462)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return