Citation: Hu Yimin, Han Jie, Guo Rong. Wormlike Micelle to Gel Transition Induced by Brij 30 in Ionic Liquid-Type Surfactant Aqueous Solution[J]. Acta Physico-Chimica Sinica, ;2020, 36(10): 190904. doi: 10.3866/PKU.WHXB201909049 shu

Wormlike Micelle to Gel Transition Induced by Brij 30 in Ionic Liquid-Type Surfactant Aqueous Solution

  • Corresponding author: Han Jie, hanjie@yzu.edu.cn Guo Rong, guorong@yzu.edu.cn
  • Received Date: 26 September 2019
    Revised Date: 20 November 2019
    Available Online: 29 November 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21673202, 21922202) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, Chinathe National Natural Science Foundation of China 21922202the National Natural Science Foundation of China 21673202

  • Wormlike micelles and low-molecular-weight hydrogels are composed of three-dimensional networks that endow them with viscoelasticity, but their viscoelastic properties are markedly different. The viscosity of wormlike micelles is attributed to a transient network, while that of gels is due to a stable network. Under certain conditions, wormlike micelles can undergo transition to gels with an increase in the density of the network. In our previous study, we found that the wormlike micelle formed by the ionic liquid-type surfactant 1-hexadecyl-3-octyl imidazolium bromide ([C16imC8]Br) without any additive has high viscoelasticity. The inclusion of a nonionic surfactant polyoxyethylene lauryl ether (Brij 30) is expected to enhance the viscoelasticity of [C16imC8]Br wormlike micelles via electrostatic shielding and strong hydrophobic interactions, which may be the driving factor for the wormlike micelle-to-gel structural transition. The morphology and viscoelasticity of [C16imC8]Br wormlike micelles with Brij 30 were studied as a function of concentration by rheological measurements and freeze-fracture transmission electron microscopy. The thermal stability and gel-sol transition temperature of the Brij 30/[C16imC8]Br gels were studied using rheology. The interaction between Brij 30 and [C16imC8]Br was studied by zeta potential measurements and nuclear magnetic resonance (NMR) spectroscopy. Upon the inclusion of Brij 30 into the [C16imC8]Br wormlike micelles, the viscoelasticity of the Brij 30/[C16imC8]Br samples first increased and then decreased with an increase in the Brij 30 concentration, at different initial concentrations of [C16imC8]Br. At a certain Brij 30 concentration, the Brij 30/[C16imC8]Br samples rheologically behaved as a gel. The maximum viscoelasticity of the [C16imC8]Br (4.06% (w))/Brij 30 gel was observed at a Brij 30/[C16imC8]Br molar ratio of 4.55. The viscoelasticity of the Brij 30/[C16imC8]Br gels was positively correlated with the activation energy of the gels. The gel-sol transition temperature of the Brij 30/[C16imC8]Br gels also increased first and then decreased with an increase in the Brij 30 concentration. The highest gel-sol transition temperature of the Brij 30/[C16imC8]Br (4.06% (w)) gel was observed at a Brij 30/[C16imC8]Br molar ratio of 2.93. The Brij 30 concentration had a notable impact on the viscoelasticity, thermal stability, and gel-sol transition temperature of the Brij 30/[C16imC8]Br gels. The zeta potential and 1H NMR measurements revealed that the neutral Brij 30 molecules are inserted into the palisade layer of the [C16imC8]Br wormlike micelles via hydrophobic interactions. This decreased the electrostatic repulsion between the [C16imC8]Br headgroups, which in turn induced the rapid growth of wormlike micelles and the formation of a stiffer network structure. Finally, the wormlike micelles underwent a structural transition to gels. The obtained results would aid in better understanding the relationship between wormlike micelles and gels, and may be of potential value for industrial and technological applications.
  • 加载中
    1. [1]

      Carnall, J. M.; Waudby, A.; Belenguer, C. A.; Stuart, A. M.; Otto, M. C. A. Science 2010, 327, 1502. doi: 10.1126/science.1182767  doi: 10.1126/science.1182767

    2. [2]

      He, X.; Aizenberg, M.; Kuksenok, O.; Zarzar, L. D.; Shastri, A.; Balazs, A.; Aizenberg, C. Nature 2012, 487, 214. doi: 10.1038/nature11223  doi: 10.1038/nature11223

    3. [3]

      He, X.; Aizenberg, M.; Kuksenok, O.; Zarzar, L. D.; Shastri, A.; Balazs, A.; Aizenberg, C. Nature 2012, 487, 214. doi: 10.1038/nature11223  doi: 10.1038/nature11223

    4. [4]

      Chu, Z. L.; Dreiss, C. A.; Feng, Y. J. Chem. Soc. Rev. 2013, 42, 7174. doi: 10.1039/c3cs35490c  doi: 10.1039/c3cs35490c

    5. [5]

      Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Muller, M.; Szleifer, I.; Minko, S. Nat. Mater. 2010, 9, 101. doi: 10.1038/NMAT2614  doi: 10.1038/NMAT2614

    6. [6]

      Wang, H.; Tang, X. M.; Eike, D. M.; Larson, R. G.; Koenig, P. H. Langmuir 2018, 34, 1564. doi: 10.1021/acs.langmuir.7b03552  doi: 10.1021/acs.langmuir.7b03552

    7. [7]

      Shi, H. F.; Wang, Y.; Fang, B.; Talmon, Y.; Ge, W.; Raghavan, S. R.; Zakin, J. L. Langmuir 2011, 27, 5806. doi: 10.1021/la200080w  doi: 10.1021/la200080w

    8. [8]

      Wu, X. P.; Wu, Y. N.; Yang, S.; Zhao, M. W.; Gao, M. W.; Li, H.; Dai, C. L. Soft Matter 2016, 12, 4549. doi: 10.1039/c6sm00415f  doi: 10.1039/c6sm00415f

    9. [9]

      Sun, B.; Fu, T. J.; Zeng, H. C. Chem. Commun. 2018, 54, 7030. doi: 10.1039/C8CC03236J  doi: 10.1039/C8CC03236J

    10. [10]

      Hu, Y. M.; Han, J.; Ge, L. L.; Guo, R. Soft Matter 2018, 14, 789. doi: 10.1039/c7sm02223a  doi: 10.1039/c7sm02223a

    11. [11]

      Banerjee, S. L.; Swift, T.; Hoskins, R.; Rimmer, S.; Singha, N. K. J. Mater. Chem. B 2019, 7, 1475. doi: 10.1039/C8TB02852D  doi: 10.1039/C8TB02852D

    12. [12]

      Zhang, L.; Li, S. L.; Squillaci, M. A.; Zhong, X. L.; Yao, Y. F.; Orgiu, E.; Samorì, P. J. Am. Chem. Soc. 2017, 139, 14406. doi: 10.1021/jacs.7b04347  doi: 10.1021/jacs.7b04347

    13. [13]

      Singh, B.; Varshney, L.; Sharma, V. Colloids Surf. B: Biointer. 2014, 121, 230. doi: 10.1016/j.colsurfb.2014.06.020  doi: 10.1016/j.colsurfb.2014.06.020

    14. [14]

      Thankam, F. G.; Muthu, J. J. Colloid Interface Sci. 2015, 457, 52. doi: 10.1016/j.jcis.2015.06.034  doi: 10.1016/j.jcis.2015.06.034

    15. [15]

      Du, M. C.; Zhu, Y. M.; Yuan, L. H.; Liang, H. Colloids Surf. A: Physicochem. Eng. Aspects 2013, 434, 78. doi: 10.1016/j.colsurfa.2013.05.044  doi: 10.1016/j.colsurfa.2013.05.044

    16. [16]

      Che, Y. X.; Anatoly, Z.; Murata, S. J. J. Colloid Interface Sci. 2015, 445, 364. doi: 10.1016/j.jcis.2015.01.010  doi: 10.1016/j.jcis.2015.01.010

    17. [17]

      Lescanne, M.; Grondin, P.; Ale'o, A.; Fages, F.; Pozzo, J. L. Langmuir 2004, 20, 3032. doi: 10.1021/la035219g  doi: 10.1021/la035219g

    18. [18]

      Xavier, D. H.; Nicholas, B.; Nataliya, Y.; Gabriel, C.; Nitschke, J. R. J. Am. Chem. Soc. 2011, 133, 3158. doi: 10.1021/ja110575s  doi: 10.1021/ja110575s

    19. [19]

      Paulusse, M. J.; Beek, D. J.; Sijbesma, M. J. Am. Chem. Soc. 2007, 129, 2392. doi: 10.1021/ja067523c  doi: 10.1021/ja067523c

    20. [20]

      Peng, F.; Li, G.; Liu, X.; Wu, S.; Tong, Z. J. Am. Chem. Soc. 2008, 130, 16166. doi: 10.1021/ja807087z  doi: 10.1021/ja807087z

    21. [21]

      Debnath, A.; Ayappa, K. G.; Kumaran, V.; Maiti, P. K. J. Phys. Chem. B 2009, 113, 10660. doi: 10.1021/jp901551d  doi: 10.1021/jp901551d

    22. [22]

      Koynova, R. L.; MacDonald, R. C. J. Phys. Chem. B 2007, 111, 7786. doi: 10.1021/jp071286y  doi: 10.1021/jp071286y

    23. [23]

      Wang, Y.; Xing, P.; Li, S.; Ma, M.; Yang, M.; Zhang, Y. Langmuir 2016, 32, 10705. doi: 10.1021/acs.langmuir.6b02478  doi: 10.1021/acs.langmuir.6b02478

    24. [24]

      Qiao, Y.; Lin, Y. Y.; Wang, Y. J.; Huang, J. B. Langmuir 2011, 27, 1718. doi: 10.1021/la104447d  doi: 10.1021/la104447d

    25. [25]

      Raghavan, S. R.; Kaler, E. W. Langmuir 2001, 17, 300. doi: 10.1021/la0007933  doi: 10.1021/la0007933

    26. [26]

      Hu, Y. M.; Han, J.; Ge, L. L.; Guo, R. Soft Matter 2015, 11, 5624. doi: 10.1039/c5sm01084e  doi: 10.1039/c5sm01084e

    27. [27]

      Hu, Y. M.; Han, J.; Ge, L. L.; Guo, R. Langmuir 2015, 31, 12618. doi: 10.1021/acs.langmuir.5b03382  doi: 10.1021/acs.langmuir.5b03382

    28. [28]

      Dou, Y. Y.; Long, P. F.; Dong, S. L.; Hao, J. C. Langmuir 2013, 29, 12901. doi: 10.1021/la402993y  doi: 10.1021/la402993y

    29. [29]

      Wang, L. H.; Zhao, W. R.; Dong, R. H.; Hao, J. C. Langmuir 2016, 32, 8366. doi: 10.1021/acs.langmuir.6b01596  doi: 10.1021/acs.langmuir.6b01596

    30. [30]

      Cao, Y. Y.; Wang, D.; Zhou, P.; Zhao, Y. R.; Sun, Y. W. Langmuir 2017, 33, 5446. doi: 10 1021/acs.langmuir.7b00405  doi: 10.1021/acs.langmuir.7b00405

    31. [31]

      Menger, F. M.; Seredyuk, V. A.; Apkarian, R. P.; Wright, E. R. J. Am. Chem. Soc. 2002, 124, 12408. doi: 10.1021/ja021025w  doi: 10.1021/ja021025w

    32. [32]

      Yue, H.; Guo, P.; Guo, R. J. Chem. Eng. Data 2009, 54, 2923. doi: 10.1021/je900023t  doi: 10.1021/je900023t

    33. [33]

      Seiffert, S.; Sprakel, J. Chem. Soc. Rev. 2012, 41, 909. doi: 10.1039/c1cs15191f  doi: 10.1039/c1cs15191f

    34. [34]

      Appel, E. A.; del Barrio, J.; Loh, X. J.; Scherman, O. A. Chem. Soc. Rev. 2012, 41, 6195. doi: 10.1039/c2cs35264h  doi: 10.1039/c2cs35264h

    35. [35]

      Wojtecki, R. J.; Meador, M. A.; Rowan, S. J. Nat. Mater. 2011, 10, 14. doi: 10.1038/NMAT2891  doi: 10.1038/NMAT2891

    36. [36]

      Fan, H.; Li, B.; Yan, Y.; Huang, J. B.; Kang, W. Soft Matter 2014, 10, 4506. doi: 10.1039/c4sm00098f  doi: 10.1039/c4sm00098f

    37. [37]

      Zhao, Y. R.; Chen, X.; Jing, B.; Wang, X. D.; Ma, F. M. J. Phys. Chem. B 2009, 113, 983. doi: 10.1021/jp809048u  doi: 10.1021/jp809048u

    38. [38]

      Lin, Y. Y.; Qiao, Y.; Yan, Y.; Huang, J. B. Soft Matter 2009, 5, 3047. doi: 10.1039/b906960g  doi: 10.1039/b906960g

    39. [39]

      Li, H.; Wei, S. Q.; Qing, C. L.; Yang, J. S. J. Colloid Interface Sci. 2003, 258, 40. doi: 10.1016/S0021-9797[02]00077-2  doi: 10.1016/S0021-9797[02]00077-2

    40. [40]

      Ramasamy, P.; El-Maghrabi, M. R.; Halada, G.; Miller, L. M.; Rafailovich, M. Langmuir 2007, 23, 2021. doi: 10.1021/la062365o  doi: 10.1021/la062365o

    41. [41]

      Shukla, A.; Rehage, H. Langmuir 2008, 24, 8507. doi: 10.1021/la800816e  doi: 10.1021/la800816e

    42. [42]

      Lin, C. H.; Chaudhury, M. K. Langmuir 2008, 24, 14276. doi: 10.1021/la8027572  doi: 10.1021/la8027572

    43. [43]

      Lai, V. M. F.; Wong, P. A. L.; Li, C. Y. J. Food Sci. 2000, 65, 1332. doi: 10.1111/j.1365-2621.2000.tb10607.x  doi: 10.1111/j.1365-2621.2000.tb10607.x

    44. [44]

      Stemfka, K.; Michael, G. Langmuir 2008, 24, 10123. doi: 10.1021/la801452z  doi: 10.1021/la801452z

    45. [45]

      Han, C. H.; Guo, Y.; Chen, X. X.; Yao, M. H.; Zhang, Y. T.; Zhang, Q. R.; Wei, X. L. Soft Matter 2017, 13, 1171. doi: 10.1039/c6sm02654k  doi: 10.1039/c6sm02654k

    46. [46]

      Fischer, P.; Rehage, H. Langmuir 1997, 13, 7012. doi: 10.1021/LA970571D  doi: 10.1021/LA970571D

    47. [47]

      Firestone, M. A.; Dzielawa, J. A.; Zapol, P.; Curtiss, L. A.; Seifert, S.; Dietz, M. L.; Kakehashi, R. M.; Shizuma, S. J. J. Colloid Interface Sci. 2005, 289, 498. doi: 10.1016/j.jcis.2005.03.090  doi: 10.1016/j.jcis.2005.03.090

    48. [48]

      Huang, X.; Han, Y. C.; Wang, Y. X.; Wang, Y. L. J. Phys. Chem. B 2007, 111, 12439. doi: 10.1021/jp0731046  doi: 10.1021/jp0731046

    49. [49]

      Fielding, L. A.; Lane, J. A.; Derry, M. J.; Mykhaylyk, O. O.; Armes, S. P. J. Am. Chem. Soc. 2014, 136, 5790. doi: 10.1021/ja501756h  doi: 10.1021/ja501756h

    50. [50]

      Shi, L.; Zheng, L. J. Phys. Chem. B 2012, 116, 2162. doi: 10.1021/jp211338k  doi: 10.1021/jp211338k

    51. [51]

      Kumar, R.; Kalur, G. C.; Ziserman, L.; Danino, D.; Raghavan, S. R. Langmuir 2007, 23, 12849. doi: 10.1021/la7028559  doi: 10.1021/la7028559

    52. [52]

      Love, C. S.; Hirst, A. R.; Chechik, V.; Smith, D. K.; Ashworth, I.; Brennan, C. Langmuir 2004, 20, 6580. doi: 10.1021/la049575q  doi: 10.1021/la049575q

    53. [53]

      Chen, Y. L.; Lv, Y. X.; Han, Y.; Zhu, B.; Zhang, F.; Bo, Z. S.; Liu, C. Y. Langmuir 2009, 25, 8548. doi: 10.1021/la803436h  doi: 10.1021/la803436h

  • 加载中
    1. [1]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    2. [2]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    3. [3]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    4. [4]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    5. [5]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    6. [6]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    7. [7]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    8. [8]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    9. [9]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    10. [10]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    11. [11]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    12. [12]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    13. [13]

      Ying-Yu ZhangJia-Qi LuoYan HanWan-Ying ZhangYi ZhangHai-Feng LuDa-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530

    14. [14]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    15. [15]

      Shunyu WangYanan ZhuYang ZhaoWanli NieHong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555

    16. [16]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    17. [17]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    18. [18]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    19. [19]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    20. [20]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

Metrics
  • PDF Downloads(15)
  • Abstract views(992)
  • HTML views(223)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return