Citation: Wang Yingxiong, Deng Manli, Tang Yongqiang, Han Yuchun, Huang Xu, Hou Yanbo, Wang Yilin. Aggregation of Biodegradable Cationic Gemini Surfactants with Amide or Ester Groups[J]. Acta Physico-Chimica Sinica, ;2020, 36(10): 190904. doi: 10.3866/PKU.WHXB201909046 shu

Aggregation of Biodegradable Cationic Gemini Surfactants with Amide or Ester Groups

  • Corresponding author: Wang Yilin, yilinwang@iccas.ac.cn
  • Received Date: 25 September 2019
    Revised Date: 2 December 2019
    Available Online: 17 December 2019

    Fund Project: 国家自然科学基金(21633002)资助项目国家自然科学基金 21633002

  • In the last thirty years, Gemini surfactants with various structures have been designed, synthesized, and demonstrated to show superior physicochemical properties. However, the utilization of non-degradable surfactants, including these Gemini surfactants, poses a threat to the environment; hence, degradable Gemini surfactants are desirable. Herein, biodegradable cationic Gemini surfactants with amide or ester groups in the hydrophobic chains or the spacer were synthesized. A monomeric surfactant containing an amide group and a Gemini surfactant with amide groups both in the hydrophobic chains and the spacer were synthesized for comparison. The effects of amide group location on the aggregation behavior of Gemini surfactants were studied systematically. The differences between the Gemini surfactants with amide groups and Gemini surfactants with ester groups were evaluated by comparing their aggregation behavior and hydrogen bonding formation. The Gemini surfactants with amide groups (C12A-Cn-AC12) in the chains showed much larger exothermic ΔHmic and more negative ΔGmic values than those of the corresponding monomeric surfactant C12A; besides, their critical micelle concentration (cmc) was more than one order of magnitude lower than that of C12A. The amide groups located in the hydrophobic alkyl chains promoted hydrogen bonding formation and self-assembly of the Gemini surfactants C12A-Cn-AC12. Moreover, 1H NMR spectra revealed that the co-effect of a short spacer and hydrogen bonding leads to slow exchange of the C12A-C2-AC12 molecules between the monomer and the aggregate. For the Gemini surfactant series C12-ACnA-C12, the amide groups notably increased the spacer length, and largest cmc value and smallest exothermic ΔHmic value were observed for C12-AC2A-C12 instead of C12-AC6A-C12. In C12-AC12A-C12, the spacer was long and sufficiently flexible to adopt a "U"-shaped conformation above the cmc, and it acted as the hydrophobic part of the surfactant, as confirmed by 1H NMR spectra. Among the Gemini surfactant with amide groups in both the spacer and the hydrophobic alkyl chains, C12A-AC6A-AC12 had a smaller cmc and I1/I3 ratio as well as more exothermic ΔHmic values than those of C12A-C6-AC12 and C12-AC6A-C12. 1H NMR spectra indicated that an ester-alcohol structural equilibrium exists during aggregation for the Gemini surfactants with ester groups. In addition, the Gemini surfactants with ester groups formed water-mediated hydrogen bonds in the aggregates. This water-mediated hydrogen bonding between ester groups was weaker than the direct hydrogen bonding between amide groups. Therefore, the Gemini surfactants with ester groups, C12E-C6-EC12 and C12-EC6E-C12, exhibited lower surface activity, a larger micelle ionization degree, higher micropolarity, and smaller exothermic ΔHmic and less negative ΔGmic values than their counterparts with amide groups, C12A-C6-AC12 and C12-AC6A-C12.
  • 加载中
    1. [1]

      Menger, F. M.; Littau, C. A. J. Am. Chem. Soc. 1991, 113, 1451. doi: 10.1021/ja00004a077  doi: 10.1021/ja00004a077

    2. [2]

      Menger, F. M.; Keiper, J. S. Angew. Chem. Int. Ed. 2000, 39, 1906. doi: 10.1002/1521-3773(20000602)39:11 < 1906::AIDANIE1906 > 3.0.CO; 2-Q  doi: 10.1002/1521-3773(20000602)39:11<1906::AIDANIE1906>3.0.CO;2-Q

    3. [3]

      Huang, X.; Cao, M.W; Wang, J.B.; Wang, Y. L. J. Phys. Chem. B. 2006, 110, 19479. doi: 10.1021/jp0630121  doi: 10.1021/jp0630121

    4. [4]

      Wang, Y. X.; Han, Y. C.; Huang, X.; Cao, M. W.; Wang, Y. L. J. Colloid Interface Sci. 2008, 319, 534. doi: 10.1016/j.jcis.2007.11.021  doi: 10.1016/j.jcis.2007.11.021

    5. [5]

      Fan, Y. X.; Han, Y. C.; Wang, Y. L. Acta Phys. -Chim. Sin. 2016, 32, 214.  doi: 10.3866/PKU.WHXB201511022

    6. [6]

      Johnsson, M.; Wagenaar, A.; Engberts, J. B. F. N. J. Am. Chem. Soc. 2003, 125, 757. doi: 10.1021/ja028195t  doi: 10.1021/ja028195t

    7. [7]

      Wagenaar, A.; Engberts, J. B. F. N. Tetrahedron 2007, 63, 10622. doi: 10.1016/j.tet.2007.08.023  doi: 10.1016/j.tet.2007.08.023

    8. [8]

      Zana, R. J. Colloid Interface Sci. 1980, 78, 330. doi: 10.1016/0021-9797(80)90571-8  doi: 10.1016/0021-9797(80)90571-8

    9. [9]

      Pérez, L.; Pinazo, A.; Pons, R.; Infante, M. Adv. Colloid Interface Sci. 2014, 205, 134. doi: 10.1016/j.cis.2013.10.020  doi: 10.1016/j.cis.2013.10.020

    10. [10]

      Tripathy, D. B.; Mishra, A.; Clark, J.; Farmer, T. Comptes Rendus Chim. 2018, 21, 112. doi: 10.1016/j.crci.2017.11.005  doi: 10.1016/j.crci.2017.11.005

    11. [11]

      Tehrani-Bagha, A. R.; Holmberg, K.; van Ginkel, C. G.; Kean, M. J. Colloid Interface Sci. 2015, 449, 72. doi: 10.1016/j.jcis.2014.09.072  doi: 10.1016/j.jcis.2014.09.072

    12. [12]

      Qi, R. L.; Zhang, P. B.; Liu, J.; Zhou, L. Y.; Zhou, C. C.; Zhang, N.; Han, Y. C.; Wang, S.; Wang, Y. L. ACS Appl. Bio. Mater. 2018, 1, 21. doi: 10.1021/acsabm.8b00005  doi: 10.1021/acsabm.8b00005

    13. [13]

      Tehrani-Bagha, A.; Holmberg, K. Curr. Opin Colloid Interface Sci. 2007, 12, 81. doi: 10.1016/j.cocis.2007.05.006  doi: 10.1016/j.cocis.2007.05.006

    14. [14]

      Hoque, J.; Gonuguntla, S.; Yarlagadda, V.; Aswal, V. K.; Haldar, J. Phys. Chem. Chem. Phys. 2014, 16, 11279. doi: 10.1039/c3cp55244f  doi: 10.1039/c3cp55244f

    15. [15]

      Liang, Y. Q; Li, H.; Li, M.; Mao, X. M; Li, Y.; Wang, Z. H; Xue, L. Y.; Chen, X. H.; Hao, X. J. J. Mol. Liquids 2019, 280, 319. doi: 10.1016/j.molliq.2019.02.018  doi: 10.1016/j.molliq.2019.02.018

    16. [16]

      Fan, Y. R.; Li, Y. J.; Yuan, G. C; Wang, Y. L; Wang, J. B; Han, C. C.; Yan, H. K; Li, Z.; Thomas, R. K. Langmuir 2005, 21, 3814. doi: 10.1021/la047129x  doi: 10.1021/la047129x

    17. [17]

      Kalyanasundaram, K.; Thomas, J. K. J. Am. Chem. Soc. 1977, 99, 2039. doi: 10.1021/ja00449a004  doi: 10.1021/ja00449a004

    18. [18]

      Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512. doi: 10.1021/jo971176v  doi: 10.1021/jo971176v

    19. [19]

      Luo, S. Q.; Wang, M. N.; Zhao, W. W.; Wang, Y. L. Acta Phys. -Chim. Sin. 2019, 35, 766.  doi: 10.3866/PKU.WHXB201809038

    20. [20]

      Wang, X. Y.; Li, Y. J; Wang, J. B; Wang, Y. L; Ye, J. P.; Yan, H. K. J. Phys. Chem. B 2005, 109, 12850. doi: 10.1021/jp050651n  doi: 10.1021/jp050651n

    21. [21]

      Kresheck, G. C.; Hargraves, W. A. J. Colloid Interface Sci. 1974, 48, 481. doi: 10.1016/0021-9797(74)90193-3  doi: 10.1016/0021-9797(74)90193-3

    22. [22]

      Sadaghiania, A. S.; Khan, A. J. Colloid Interface Sci. 1991, 144, 191. doi: 10.1016/0021-9797(91)90250-C  doi: 10.1016/0021-9797(91)90250-C

    23. [23]

      Zana, R. Langmuir 1996, 12, 1208. doi: 10.1021/la950691q  doi: 10.1021/la950691q

    24. [24]

      Chen, X. Y.; Yu, G. J.; Mao, S. Z.; Liu, M. L.; Du, Y. R. Chinese J. Mag Res. 2019, 36, 219.  doi: 10.11938/cjmr20172610

    25. [25]

      Zana, R.; Benrraou, M.; Rueff, R. Langmuir 1991, 7, 1072. doi: 10.1021/la00054a008  doi: 10.1021/la00054a008

    26. [26]

      Tanford, C. J. Phys. Chem. 1972, 76, 3020. doi: 10.1021/j100665a018  doi: 10.1021/j100665a018

    27. [27]

      Chen, X. Y.; Yu, G. J.; Mao, S. Z.; Liu, M. L.; Du, Y. R. Chin. J. Mag Res. 2018, 35, 75.  doi: 10.11938/cjmr20172577

    28. [28]

      Shimizu, S.; El Seoud, O. A. Langmuir 2003, 19, 238. doi: 10.1021/la026286y  doi: 10.1021/la026286y

    29. [29]

      Wettig, S. D.; Verrall, R. E. J. Colloid Interface Sci. 2001, 235, 310. doi: 10.1006/jcis.2000.7348  doi: 10.1006/jcis.2000.7348

    30. [30]

      Wettig, S. D.; Verrall, R. E. J. Colloid Interface Sci. 2001, 235, 310. doi: 10.1006/jcis.2000.7348  doi: 10.1006/jcis.2000.7348

    31. [31]

      Zana, R. J. Colloid Interface Sci. 2002, 248, 203. doi: 10.1006/jcis.2001.8104  doi: 10.1006/jcis.2001.8104

    32. [32]

      Fung, B. M.; Mamrosh, D. L.; O'Rear, E. A.; Frech, C. B.; Afzal, J. J. Phys. Chem. 1988, 92, 4405. doi: 10.1021/j100326a032  doi: 10.1021/j100326a032

    33. [33]

      Guo, W.; Brown, T. A.; Fung, B. M. J. Phys. Chem. 1991, 95, 1829. doi: 10.1021/j100157a060  doi: 10.1021/j100157a060

    34. [34]

      Kondo, Y.; Miyazawa, H.; Sakai, H.; Abe, M.; Yoshino, N. J. Am. Chem. Soc. 2002, 124, 6516. doi: 10.1021/ja0178564  doi: 10.1021/ja0178564

    35. [35]

      Leyendekkers, J. V. J. Chem. Soc. Faraday Trans. 1982, 78, 357. doi: 10.1039/F19827800357  doi: 10.1039/F19827800357

    36. [36]

      Huc, I.; Oda, R. Chem. Commun. 1999, 20, 2025. doi: 10.1039/A906141J  doi: 10.1039/A906141J

    37. [37]

      Danino, D.; Talmon, Y.; Zana, R. Langmuir 1995, 11, 1448. doi: 10.1021/la00005a008  doi: 10.1021/la00005a008

    38. [38]

      Zana, R.; Talmon, Y. Nature 1993, 362, 228. doi: 10.1038/362228a0  doi: 10.1038/362228a0

    39. [39]

      Gillitt, N. D.; Savelli, G.; Bunton, C. A. Langmuir 2006, 22, 5570. doi: 10.1021/la0606695  doi: 10.1021/la0606695

    40. [40]

      Ulmius, J.; Wennerström, H. J. Mag. Res. 1977, 28, 309. doi: 10.1016/0022-2364(77)90161-5  doi: 10.1016/0022-2364(77)90161-5

    41. [41]

      Das, S.; Bhirud, R. G.; Nayyar, N.; Narayan, K. S.; Kumar, V. V. J. Phys. Chem. 1992, 96, 7454. doi: 10.1021/j100197a059  doi: 10.1021/j100197a059

    42. [42]

      Villeneuve, M.; Ootsu, R.; Ishiwata, M.; Nakahara, H. J. Phys. Chem. B 2006, 110, 17830. doi: 10.1021/jp062145j  doi: 10.1021/jp062145j

  • 加载中
    1. [1]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    2. [2]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    3. [3]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    4. [4]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    5. [5]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    6. [6]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    9. [9]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    10. [10]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    11. [11]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    12. [12]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    13. [13]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    14. [14]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    15. [15]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    16. [16]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    17. [17]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    18. [18]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    19. [19]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    20. [20]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

Metrics
  • PDF Downloads(15)
  • Abstract views(1017)
  • HTML views(311)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return