Citation: Cheng Pengkun, Li Yunchuan, Chang Shuai. Techniques and Influencing Factors for Single Molecule Electronic Conductance Measurements[J]. Acta Physico-Chimica Sinica, ;2020, 36(11): 190904. doi: 10.3866/PKU.WHXB201909043 shu

Techniques and Influencing Factors for Single Molecule Electronic Conductance Measurements

  • Corresponding author: Chang Shuai, schang23@wust.edu.cn
  • Received Date: 24 September 2019
    Revised Date: 18 November 2019
    Accepted Date: 19 November 2019
    Available Online: 29 November 2019

    Fund Project: the National Natural Science Foundation of China 21705122The project was supported by the National Natural Science Foundation of China (21705122)

  • Molecular electronics is an important field for the application of nanotechnologies with an ultimate goal of building functional devices using single molecules or molecular arrays to realize the same functionality as macroscopic devices. To attain this goal, reliable techniques for measuring and manipulating electron transfer processes through single molecules are essential. There are various techniques and many environmental factors influencing single-molecule electronic conductance measurements. In this review, we first provide a detailed introduction and classification of the current well-accepted techniques in this field for measuring single-molecule conductance. All available techniques are summarized into two categories: the fixed junction technique and break junction technique. The break junction technique involves repeatedly forming and breaking molecular junctions by mechanically controlling a pair of electrodes moving into and out of contact in the presence of target molecules. Single-molecule conductance can be determined from the conductance plateaus that appear in typical conductance decay traces when molecules bind two electrodes during their separation process. In contrast, the fixed junction technique is to fix the distance between a pair of electrodes and measure the conductance fluctuations when a single molecule binds the two electrodes stochastically. Both techniques comprise different application methods and have been employed preferentially by different groups. Specific features of both techniques and their intrinsic advantages are compared and summarized in Section 4.Next, we systematically summarize the factors affecting the molecular conductance during the course of measurements, which are the focus of the current academic community in the field. As shown in the middle of the image above, the electrode, anchoring group, and target molecule are the three key elements in constructing a single-molecule junction. The contact geometry between the molecule and the electrode and the associated coupling strength can profoundly affect the conductance characteristics of single molecules. The properties of anchoring groups can determine whether a molecule is primarily transported by electrons or holes. A good selection of electrode materials can improve the yield of single-molecule junctions and facilitate strong electronic couplings with the target molecules. The conductance characteristics of saturated and conjugated molecules are quite different due to their diverse band gaps. Moreover, various substituents can be modified onto the backbone of the molecules, which can raise or lower the energy level of the frontier orbitals of molecules to different degrees, thereby affecting the conductance properties of target molecules. In addition to these factors for the key elements, the investigated molecules can be measured in a variety of environments, including organic solvents, high vacuum, aqueous solution, ionic liquids, or the atmosphere, and the work function of the metal contact may change in different environments. The change in work function can change the gap between the electrode Fermi energy and the frontier orbital of a target molecule, influencing the measured conductance. Additionally, both the electrical field orientation and the bias values applied have a significant effect on the molecular structures and thus their conductance characteristics. Temperature can also affect the charge transport when hopping dominates the transport mechanism. Meanwhile, pH affects the interactions between H+/OH- and the anchoring groups, which indirectly induces a change in the tunneling barrier.In this review, the influencing factors are comprehensively illustrated from two perspectives: internal factors (anchoring group, electrode, and target molecule) and external factors (voltage, temperature, solvent, pH value, and others). In addition, new approaches for modulating the molecular conductance (modulation of energy levels, light or heat stimulation, and others) that have been developed in recent years are reviewed, and investigations of chemical reactions at the single-molecule level using these methods are highlighted. Finally, the potential applications of these techniques and correlated modulating approaches are summarized and a prospective is provided for the field of single-molecule electronics.
  • 加载中
    1. [1]

      Feynman, R. P. Calif. Inst. Technol. J. Eng. Sci. 1960, 4, 23.

    2. [2]

      Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29, 277. doi: 10.1016/0009-2614(74)85031-1  doi: 10.1016/0009-2614(74)85031-1

    3. [3]

      Qin, L.; Park, S.; Huang, L.; Mirkin, C. A. Science 2005, 309, 113. doi: 10.1126/science.1112666  doi: 10.1126/science.1112666

    4. [4]

      Chen, X.; Yeganeh, S.; Qin, L.; Li, S.; Xue, C.; Braunschweig, A. B.; Schatz, G. C.; Ratner, M. A.; Mirkin, C. A. Nano Lett. 2009, 9, 3974. doi: 10.1021/nl9018726  doi: 10.1021/nl9018726

    5. [5]

      Klein, D. L.; McEuen, P. L.; Katari, J. E. B.; Roth, R.; Alivisatos, A. P. Appl. Phys. Lett. 1996, 68, 2574. doi: 10.1063/1.116188  doi: 10.1063/1.116188

    6. [6]

      Park, H.; Lim, A. K. L.; Alivisatos, A. P. Appl. Phys. Lett. 1999, 75, 301. doi: 10.1063/1.124354  doi: 10.1063/1.124354

    7. [7]

      Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Science 1997, 278, 252. doi: 10.1126/science.278.5336.252  doi: 10.1126/science.278.5336.252

    8. [8]

      Zhang, Y. P.; Chen, L. C.; Zhang, Z. Q.; Cao, J. J.; Tang, C.; Liu, J.; Duan, L. L.; Huo, Y.; Shao, X.; Hong, W.; et al. J. Am. Chem. Soc. 2018, 140, 6531. doi: 10.1021/jacs.8b02825  doi: 10.1021/jacs.8b02825

    9. [9]

      Wold, D. J.; Frisbie, C. D. J. Am. Chem. Soc. 2000, 122, 2970. doi: 10.1021/ja994468h  doi: 10.1021/ja994468h

    10. [10]

      Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Science 2001, 294, 571. doi: 10.1126/science.1064354  doi: 10.1126/science.1064354

    11. [11]

      Xu, B.; Xiao, X.; Tao, N. J. J. Am. Chem. Soc. 2003, 125, 16164. doi: 10.1021/ja038949j  doi: 10.1021/ja038949j

    12. [12]

      Xu, B.; Tao, N. J. Science 2003, 301, 1221. doi: 10.1126/science.1087481  doi: 10.1126/science.1087481

    13. [13]

      He, J.; Sankey, O.; Lee, M.; Tao, N.; Li, X.; Lindsay, S. Faraday Discuss. 2006, 131, 145. doi: 10.1039/b508434m  doi: 10.1039/b508434m

    14. [14]

      Haiss, W.; Nichols, R. J.; van Zalinge, H.; Higgins, S. J.; Bethell, D.; Schiffrin, D. J. Phys. Chem. Chem. Phys. 2004, 6, 4330. doi: 10.1039/B404929B  doi: 10.1039/B404929B

    15. [15]

      Pla-Vilanova, P.; Aragones, A. C.; Ciampi, S.; Sanz, F.; Darwish, N.; Diez-Perez, I. Nanotechnology 2015, 26, 381001. doi: 10.1088/0957-4484/26/38/381001  doi: 10.1088/0957-4484/26/38/381001

    16. [16]

      Haiss, W.; van Zalinge, H.; Higgins, S. J.; Bethell, D.; Höbenreich, H.; Schiffrin, D. J.; Nichols, R. J. J. Am. Chem. Soc. 2003, 125, 15294. doi: 10.1021/ja038214e  doi: 10.1021/ja038214e

    17. [17]

      Haiss, W.; Wang, C.; Grace, I.; Batsanov, A. S.; Schiffrin, D. J.; Higgins, S. J.; Bryce, M. R.; Lambert, C. J.; Nichols, R. J. Nat. Mater. 2006, 5 (12), 995. doi: 10.1038/nmat1781  doi: 10.1038/nmat1781

    18. [18]

      Liang, X.; Chou, S. Y. Nano Lett. 2008, 8, 1472. doi: 10.1021/nl080473k  doi: 10.1021/nl080473k

    19. [19]

      Guo, X.; Small, J. P.; Klare, J. E.; Wang, Y.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L.; O'Brien, S. Science 2006, 311, 356. doi: 10.1126/science.1120986  doi: 10.1126/science.1120986

    20. [20]

      Prins, F.; Barreiro, A.; Ruitenberg, J. W.; Seldenthuis, J. S.; Aliaga-Alcalde, N.; Vandersypen, L. M. K.; van der Zant, H. S. J. Nano Lett. 2011, 11, 4607. doi: 10.1021/nl202065x  doi: 10.1021/nl202065x

    21. [21]

      Brandl, T.; El Abbassi, M.; Stefani, D.; Frisenda, R.; Harzmann, G. D.; van der Zant, H. S. J.; Mayor, M. Eur. J. Org. Chem. 2019, 2019, 5334. doi: 10.1002/ejoc.201900432  doi: 10.1002/ejoc.201900432

    22. [22]

      Lumbroso, O. S.; Simine, L.; Nitzan, A.; Segal, D.; Tal, O. Nature 2018, 562, 240. doi: 10.1038/s41586-018-0592-2  doi: 10.1038/s41586-018-0592-2

    23. [23]

      Su, T. A.; Neupane, M.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Nat. Rev. Mater. 2016, 1, 2058. doi: 10.1038/natrevmats.2016.2  doi: 10.1038/natrevmats.2016.2

    24. [24]

      Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Chem. Rev. 2016, 116, 4318. doi: 10.1021/acs.chemrev.5b00680  doi: 10.1021/acs.chemrev.5b00680

    25. [25]

      Yu, P.; Feng, A.; Zhao, S.; Wei, J.; Yang, Y.; Shi, J.; Hong, W. Acta Phys. -Chim. Sin. 2019, 35 829.  doi: 10.3866/PKU.WHXB201811027

    26. [26]

      Muller, C. J.; van Ruitenbeek, J. M.; de Jongh, L. J. Phys. Rev. Lett. 1992, 69, 140. doi: 10.1103/PhysRevLett.69.140  doi: 10.1103/PhysRevLett.69.140

    27. [27]

      Huang, C.; Rudnev, A. V.; Hong, W.; Wandlowski, T. Chem. Soc. Rev. 2015, 44, 889. doi: 10.1039/c4cs00242c  doi: 10.1039/c4cs00242c

    28. [28]

      Konishi, T.; Kiguchi, M.; Takase, M.; Nagasawa, F.; Nabika, H.; Ikeda, K.; Uosaki, K.; Ueno, K.; Misawa, H.; Murakoshi, K. J. Am. Chem. Soc. 2013, 135, 1009. doi: 10.1021/ja307821u  doi: 10.1021/ja307821u

    29. [29]

      Xiang, D.; Jeong, H.; Lee, T.; Mayer, D. Adv. Mater. 2013, 25, 4845. doi: 10.1002/adma.201301589  doi: 10.1002/adma.201301589

    30. [30]

      Wang, L.; Wang, L.; Zhang, L.; Xiang, D. Top. Curr. Chem. (Cham) 2017, 375, 61. doi: 10.1007/s41061-017-0149-0  doi: 10.1007/s41061-017-0149-0

    31. [31]

      Venkataraman, L.; Klare, J. E.; Tam, I. W.; Nuckolls, C.; Hybertsen, M. S.; Steigerwarld, M. L. Nano Lett. 2006, 6, 458. doi: 10.1021/nl052373+  doi: 10.1021/nl052373+

    32. [32]

      Park, Y. S.; Whalley, A. C.; Kamenetska, M.; Steigerwald, M. L.; Hybertsen, M. S.; Nuckolls, C.; Venkataraman, L. J. Am. Chem. Soc. 2007, 129, 15768. doi: 10.1021/ja0773857  doi: 10.1021/ja0773857

    33. [33]

      Hong, W.; Li, H.; Liu, S. X.; Fu, Y.; Li, J.; Kaliginedi, V.; Decurtins, S.; Wandlowski, T. J. Am. Chem. Soc. 2012, 134, 19425. doi: 10.1021/ja307544w  doi: 10.1021/ja307544w

    34. [34]

      Hong, W.; Manrique, D. Z.; Moreno-Garcia, P.; Gulcur, M.; Mishchenko, A.; Lambert, C. J.; Bryce, M. R.; Wandlowski, T. J. Am. Chem. Soc. 2012, 134, 2292. doi: 10.1021/ja209844r  doi: 10.1021/ja209844r

    35. [35]

      Li, Z.; Smeu, M.; Ratner, M. A.; Borguet, E. J. Phys. Chem. C 2013, 117, 14890. doi: 10.1021/jp309871d  doi: 10.1021/jp309871d

    36. [36]

      Ponce, J.; Arroyo, C. R.; Tatay, S.; Frisenda, R.; Gavina, P.; Aravena, D.; Ruiz, E.; van der Zant, H. S.; Coronado, E. J. Am. Chem. Soc. 2014, 136, 8314. doi: 10.1021/ja5012417  doi: 10.1021/ja5012417

    37. [37]

      Xiao, B.; Liang, F.; Liu, S.; Im, J.; Li, Y.; Liu, J.; Zhang, B.; Zhou, J.; He, J.; Chang, S. Nanotechnology 2018, 29, 365501. doi: 10.1088/1361-6528/aacb63  doi: 10.1088/1361-6528/aacb63

    38. [38]

      Chen, F.; Li, X.; Hihath, J.; Huang, Z.; Tao, N. J. Am. Chem. Soc. 2006, 128, 15874. doi: 10.1021/ja065864k  doi: 10.1021/ja065864k

    39. [39]

      Quek, S. Y.; Venkataraman, L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B. Nano Lett. 2007, 7, 3477. doi: 10.1021/nl072058i  doi: 10.1021/nl072058i

    40. [40]

      Dell'Angela, M.; Kladnik, G.; Cossaro, A.; Verdini, A.; Kamenetska, M.; Tamblyn, I.; Quek, S. Y.; Neaton, J. B.; Cvetko, D.; Morgante, A. Nano Lett. 2010, 10, 2470. doi: 10.1021/nl100817h  doi: 10.1021/nl100817h

    41. [41]

      Venkataraman, L.; Park, Y. S.; Whalley, A. C.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nano Lett. 2007, 7, 502. doi: 10.1021/nl062923j  doi: 10.1021/nl062923j

    42. [42]

      Mishchenko, A.; Zotti, L. A.; Vonlanthen, D.; Bürkle, M.; Pauly, F.; Cuevas, J. C.; Mayor, M.; Wandlowski, T. J. Am. Chem. Soc. 2011, 133, 184. doi: 10.1021/ja107340t  doi: 10.1021/ja107340t

    43. [43]

      Quek, S. Y.; Kamenetska, M.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. Nat. Nanotechnol. 2009, 4, 230. doi: 10.1038/nnano.2009.10  doi: 10.1038/nnano.2009.10

    44. [44]

      Dadosh, T.; Gordin, Y.; Krahne, R.; Khivrich, I.; Mahalu, D.; Frydman, V.; Sperling, J.; Yacoby, A.; Bar-Joseph, I. Nature 2005, 436, 677. doi: 10.1038/nature03898  doi: 10.1038/nature03898

    45. [45]

      Martin, C. A.; Ding, D.; Sorensen, J. K.; Bjornholm, T.; van Ruitenbeek, J. M.; van der Zant, H. S. J. Am. Chem. Soc. 2008, 130, 13198. doi: 10.1021/ja804699a  doi: 10.1021/ja804699a

    46. [46]

      Schneebeli, S. T.; Kamenetska, M.; Cheng, Z.; Skouta, R.; Friesner, R. A.; Venkataraman, L.; Breslow, R. J. Am. Chem. Soc. 2011, 133, 2136. doi: 10.1021/ja111320n  doi: 10.1021/ja111320n

    47. [47]

      Kiguchi, M.; Tal, O.; Wohlthat, S.; Pauly, F.; Krieger, M.; Djukic, D.; Cuevas, J. C.; van Ruitenbeek, J. M. Phys. Rev. Lett. 2008, 101, 046801. doi: 10.1103/PhysRevLett.101.046801  doi: 10.1103/PhysRevLett.101.046801

    48. [48]

      Kaneko, S.; Nakazumi, T.; Kiguchi, M. J. Phys. Chem. Lett. 2010, 1, 3520. doi: 10.1021/jz101506u  doi: 10.1021/jz101506u

    49. [49]

      Li, Y.; Xiao, B.; Chen, R.; Chen, H.; Dong, J.; Liu, Y.; Chang, S. Chem. Commun. 2019, 55, 8325. doi: 10.1039/c9cc02998b  doi: 10.1039/c9cc02998b

    50. [50]

      Cheng, Z. L.; Skouta, R.; Vazquez, H.; Widawsky, J. R.; Schneebeli, S.; Chen, W.; Hybertsen, M. S.; Breslow, R.; Venkataraman, L. Nat. Nanotechnol. 2011, 6, 353. doi: 10.1038/nnano.2011.66  doi: 10.1038/nnano.2011.66

    51. [51]

      Chen, W.; Widawsky, J. R.; Vazquez, H.; Schneebeli, S. T.; Hybertsen, M. S.; Breslow, R.; Venkataraman, L. J. Am. Chem. Soc. 2011, 133, 17160. doi: 10.1021/ja208020j  doi: 10.1021/ja208020j

    52. [52]

      Hines, T.; Diez-Perez, I.; Nakamura, H.; Shimazaki, T.; Asai, Y.; Tao, N. J. Am. Chem. Soc. 2013, 135, 3319. doi: 10.1021/ja3106434  doi: 10.1021/ja3106434

    53. [53]

      Ko, C. H.; Huang, M. J.; Fu, M. D.; Chen, C. H. J. Am. Chem. Soc. 2010, 132, 756. doi: 10.1021/ja9084012  doi: 10.1021/ja9084012

    54. [54]

      Zhou, X. S.; Liang, J. H.; Chen, Z. B.; Mao, B. W. Electrochem. Commun. 2011, 13, 407. doi: 10.1016/j.elecom.2011.02.005  doi: 10.1016/j.elecom.2011.02.005

    55. [55]

      Peng, Z. L.; Chen, Z. B.; Zhou, X. Y.; Sun, Y. Y.; Liang, J. H.; Niu, Z. J.; Zhou, X. S.; Mao, B. W. J. Phys. Chem. C 2012, 116, 21699. doi: 10.1021/jp3069046  doi: 10.1021/jp3069046

    56. [56]

      Wang, Y. H.; Zhou, X. Y.; Sun, Y. Y.; Han, D.; Zheng, J. F.; Niu, Z. J.; Zhou, X. S. Electrochim. Acta 2014, 123, 205. doi: 10.1016/j.electacta.2014.01.041  doi: 10.1016/j.electacta.2014.01.041

    57. [57]

      He, C.; Zhang, Q.; Fan, Y.; Zhao, C.; Zhao, C.; Ye, J.; Dappe, Y.; Nichols, R.; Yang, L. ChemPhysChem 2019, 20, 1830. doi: 10.1002/cphc.201900424  doi: 10.1002/cphc.201900424

    58. [58]

      Zhou, X. S.; Wei, Y. M.; Liu, L.; Chen, Z. B.; Tang, J.; Mao, B. W. J. Am. Chem. Soc. 2008, 130, 13228. doi: 10.1021/ja8055276  doi: 10.1021/ja8055276

    59. [59]

      Zhou, C.; Li, X.; Gong, Z.; Jia, C.; Lin, Y.; Gu, C.; He, G.; Zhong, Y.; Yang, J.; Guo, X. Nat. Commun. 2018, 9, 807. doi: 10.1038/s41467-018-03203-1  doi: 10.1038/s41467-018-03203-1

    60. [60]

      Gu, C.; Hu, C.; Wei, Y.; Lin, D.; Jia, C.; Li, M.; Su, D.; Guan, J.; Xia, A.; Xie, L. Nano Lett. 2018, 18, 4156. doi: 10.1021/acs.nanolett.8b00949  doi: 10.1021/acs.nanolett.8b00949

    61. [61]

      Sarwat, S. G.; Gehring, P.; Rodriguez Hernandez, G.; Warner, J. H.; Briggs, G. A. D.; Mol, J. A.; Bhaskaran, H. Nano Lett. 2017, 17, 3688. doi: 10.1021/acs.nanolett.7b00909  doi: 10.1021/acs.nanolett.7b00909

    62. [62]

      Bellunato, A.; Vrbica, S. D.; Sabater, C.; de Vos, E. W.; Fermin, R.; Kanneworff, K. N.; Galli, F.; van Ruitenbeek, J. M.; Schneider, G. F. Nano Lett. 2018, 18, 2505. doi: 10.1021/acs.nanolett.8b00171  doi: 10.1021/acs.nanolett.8b00171

    63. [63]

      Peiris, C. R.; Vogel, Y.; Le Brun, A. P. C.; Aragonès, A.; Coote, M. L.; Díez-Pérez, I.; Ciampi, S.; Darwish, N. J. Am. Chem. Soc. 2019, 141, 14788. doi: 10.1021/jacs.9b07125  doi: 10.1021/jacs.9b07125

    64. [64]

      Caneva, S.; Gehring, P.; Garcia-Suarez, V. M.; Garcia-Fuente, A.; Stefani, D.; Olavarria-Contreras, I. J.; Ferrer, J.; Dekker, C.; van der Zant, H. S. J. Nat. Nanotechnol. 2018, 13, 1126. doi: 10.1038/s41565-018-0258-0  doi: 10.1038/s41565-018-0258-0

    65. [65]

      Xiang, L.; Hines, T.; Palma, J. L.; Lu, X.; Mujica, V.; Ratner, M. A.; Zhou, G.; Tao, N. J. Am. Chem. Soc. 2016, 138, 679. doi: 10.1021/jacs.5b11605  doi: 10.1021/jacs.5b11605

    66. [66]

      Nitzan, A. Annu. Rev. Phys. Chem. 2001, 52, 681. doi: 10.1146/annurev.physchem.52.1.681  doi: 10.1146/annurev.physchem.52.1.681

    67. [67]

      Nitzan, A. J. Phys. Chem. A 2001, 105, 2677. doi: 10.1021/jp003884h  doi: 10.1021/jp003884h

    68. [68]

      Ie, Y.; Okamoto, Y.; Inoue, T.; Tone, S.; Seo, T.; Honda, Y.; Tanaka, S.; Lee, S. K.; Ohto, T.; Yamada, R. J. Phys. Chem. Lett. 2019, 10, 3197. doi: 10.1021/acs.jpclett.9b00747  doi: 10.1021/acs.jpclett.9b00747

    69. [69]

      Yasini, P.; Afsari, S.; Peng, H.; Pikma, P.; Perdew, J. P.; Borguet, E. J. Am. Chem. Soc. 2019, 141, 10109. doi: 10.1021/jacs.9b05448  doi: 10.1021/jacs.9b05448

    70. [70]

      Stuyver, T.; Fias, S.; Geerlings, P.; De Proft, F.; Alonso, M. J. Phys. Chem. C 2018, 122, 19842. doi: 10.1021/acs.jpcc.8b01424  doi: 10.1021/acs.jpcc.8b01424

    71. [71]

      Ramos-Berdullas, N.; Graña, A. M.; Mandado, M. Theor. Chem. Acc. 2015, 134. doi: 10.1007/s00214-015-1620-z  doi: 10.1007/s00214-015-1620-z

    72. [72]

      Ramos-Berdullas, N.; Mandado, M. Chemistry 2013, 19, 3646. doi: 10.1002/chem.201203324  doi: 10.1002/chem.201203324

    73. [73]

      Chen, W.; Li, H.; Widawsky, J. R.; Appayee, C.; Venkataraman, L.; Breslow, R. J. Am. Chem. Soc. 2014, 136, 918. doi: 10.1021/ja411143s  doi: 10.1021/ja411143s

    74. [74]

      Mahendran, A.; Gopinath, P.; Breslow, R. Tetrahedron Lett. 2015, 56, 4833. doi: 10.1016/j.tetlet.2015.06.076  doi: 10.1016/j.tetlet.2015.06.076

    75. [75]

      Stuyver, T.; Perrin, M. L.; Geerlings, P.; Proft, F. D.; Alonso, M. J. Am. Chem. Soc. 2018, 140, 1313. doi: 10.1021/jacs.7b09464  doi: 10.1021/jacs.7b09464

    76. [76]

      Gil-Guerrero, S.; Ramos-Berdullas, N.; Mandado, M. Org. Electron. 2018, 61, 177. doi: 10.1016/j.orgel.2018.05.043  doi: 10.1016/j.orgel.2018.05.043

    77. [77]

      Zhang, G. P.; Xie, Z.; Song, Y.; Wei, M. Z.; Hu, G. C.; Wang, C. K. Org. Electron. 2017, 48, 29. doi: 10.1016/j.orgel.2017.05.032  doi: 10.1016/j.orgel.2017.05.032

    78. [78]

      Liu, J.; Zhao, X.; Al-Galiby, Q.; Huang, X.; Zheng, J.; Li, R.; Huang, C.; Yang, Y.; Shi, J.; Manrique, D. Z. Angew. Chem. Int. Ed. 2017, 56, 13061. doi: 10.1002/anie.201707710  doi: 10.1002/anie.201707710

    79. [79]

      Hua, Y.; Zhang, H.; Xia, H. Chin. J. Org. Chem. 2018, 38, 11.  doi: 10.6023/cjoc201709009

    80. [80]

      Pauly, F.; Viljas, J. K.; Cuevas, J. C.; Schön, G. Phys. Rev. B 2008, 77, 155312. doi: 10.1103/PhysRevB.77.155312  doi: 10.1103/PhysRevB.77.155312

    81. [81]

      Huang, B.; Liu, X.; Yuan, Y.; Hong, Z. W.; Zheng, J. F.; Pei, L. Q.; Shao, Y.; Li, J. F.; Zhou, X. S.; Chen, J. J. Am. Chem. Soc. 2018, 140, 17685. doi: 10.1021/jacs.8b10450  doi: 10.1021/jacs.8b10450

    82. [82]

      Li, Y.; Buerkle, M.; Li, G.; Rostamian, A.; Wang, H.; Wang, Z.; Bowler, D. R.; Miyazaki, T.; Xiang, L.; Asai, Y. Nat. Mater. 2019, 18, 357. doi: 10.1038/s41563-018-0280-5  doi: 10.1038/s41563-018-0280-5

    83. [83]

      Quinn, J. R.; Foss, F. W.; Venkataraman, L.; Hybertsen, M. S.; Breslow, R. J. Am. Chem. Soc. 2007, 129, 6714. doi: 10.1021/ja0715804  doi: 10.1021/ja0715804

    84. [84]

      Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nature 2006, 442, 904. doi: 10.1038/nature05037  doi: 10.1038/nature05037

    85. [85]

      Huang, J. R.; Huang, H.; Tao, C. P.; Zheng, J. F.; Yuan, Y.; Hong, Z. W.; Shao, Y.; Niu, Z. J.; Chen, J. Z.; Zhou, X. S. Nanoscale Res. Lett. 2019, 14, 253. doi: 10.1186/s11671-019-3087-7  doi: 10.1186/s11671-019-3087-7

    86. [86]

      Chen, Z.; Chen, L.; Liu, J.; Li, R.; Tang, C.; Hua, Y.; Chen, L.; Shi, J.; Yang, Y.; Liu, J. J. Phys. Chem. Lett. 2019, 10, 3453. doi: 10.1021/acs.jpclett.9b00796  doi: 10.1021/acs.jpclett.9b00796

    87. [87]

      Mao, J. C.; Peng, L. L.; Li, W. Q.; Chen, F.; Wang, H. G.; Shao, Y.; Zhou, X. S.; Zhao, X. Q.; Xie, H. J.; Niu, Z. J. J. Phys. Chem. C 2017, 121, 1472. doi: 10.1021/acs.jpcc.6b10925  doi: 10.1021/acs.jpcc.6b10925

    88. [88]

      Zhen, S.; Mao, J. C.; Chen, L.; Ding, S.; Luo, W.; Zhou, X. S.; Qin, A.; Zhao, Z.; Tang, B. Z. Nano Lett. 2018, 18, 4200. doi: 10.1021/acs.nanolett.8b01082  doi: 10.1021/acs.nanolett.8b01082

    89. [89]

      Yang, G.; Wu, H.; Wei, J.; Zheng, J.; Chen, Z.; Liu, J.; Shi, J.; Yang, Y.; Hong, W. Chin. Chem. Lett. 2018, 29, 147. doi: 10.1016/j.cclet.2017.06.015  doi: 10.1016/j.cclet.2017.06.015

    90. [90]

      Li, H.; Garner, M. H.; Shangguan, Z.; Zheng, Q.; Su, T. A.; Neupane, M.; Li, P.; Velian, A.; Steigerwald, M. L.; Xiao, S. Chem. Sci. 2016, 7, 5657. doi: 10.1039/c6sc01360k  doi: 10.1039/c6sc01360k

    91. [91]

      Garner, M. H.; Li, H.; Chen, Y.; Su, T. A.; Shangguan, Z.; Paley, D. W.; Liu, T.; Ng, F.; Li, H.; Xiao, S. Nature 2018, 558, 415. doi: 10.1038/s41586-018-0197-9  doi: 10.1038/s41586-018-0197-9

    92. [92]

      Widawsky, J. R.; Kamenetska, M.; Klare, J.; Nuckolls, C.; Steigerwald, M. L.; Hybertsen, M. S.; Venkataraman, L. Nanotechnology 2009, 20, 434009. doi: 10.1088/0957-4484/20/43/434009  doi: 10.1088/0957-4484/20/43/434009

    93. [93]

      Guo, S.; Hihath, J.; Diez-Perez, I.; Tao, N. J. Am. Chem. Soc. 2011, 133, 19189. doi: 10.1021/ja2076857  doi: 10.1021/ja2076857

    94. [94]

      Isshiki, Y.; Fujii, S.; Nishino, T.; Kiguchi, M. J. Am. Chem. Soc. 2018, 140, 3760. doi: 10.1021/jacs.7b13694  doi: 10.1021/jacs.7b13694

    95. [95]

      Aragones, A. C.; Haworth, N. L.; Darwish, N.; Ciampi, S.; Bloomfield, N. J.; Wallace, G. G.; Diez-Perez, I.; Coote, M. L. Nature 2016, 531, 88. doi: 10.1038/nature16989  doi: 10.1038/nature16989

    96. [96]

      Zhang, L.; Laborda, E.; Darwish, N.; Noble, B. B.; Tyrell, J. H.; Pluczyk, S.; Le Brun, A. P.; Wallace, G. G.; Gonzalez, J.; Coote, M. L. J. Am. Chem. Soc. 2018, 140, 766. doi: 10.1021/jacs.7b11628  doi: 10.1021/jacs.7b11628

    97. [97]

      Li, X.; Hihath, J.; Chen, F.; Masuda, T.; Zang, L.; Tao, N. J. Am. Chem. Soc. 2007, 129, 11535. doi: 10.1021/ja072990v  doi: 10.1021/ja072990v

    98. [98]

      Darwish, N.; Diez-Perez, I.; Da Silva, P.; Tao, N.; Gooding, J. J.; Paddon-Row, M. N. Angew. Chem. Int. Ed. 2012, 51, 3203. doi: 10.1002/anie.201107765  doi: 10.1002/anie.201107765

    99. [99]

      Osorio, E. A.; Bjornholm, T.; Lehn, J. M.; Ruben, M.; van der Zant, H. S. J. Phys. Condens. Matter 2008, 20, 374121. doi: 10.1088/0953-8984/20/37/374121  doi: 10.1088/0953-8984/20/37/374121

    100. [100]

      Brooke, R. J.; Szumski, D. S.; Vezzoli, A.; Higgins, S. J.; Nichols, R. J.; Schwarzacher, W. Nano Lett. 2018, 18, 1317. doi: 10.1021/acs.nanolett.7b04995  doi: 10.1021/acs.nanolett.7b04995

    101. [101]

      Yang, Y.; Liu, J.; Yan, R.; Wu, D.; Tian, Z. Chem. J. Chin. Univ. 2015, 36, 9.  doi: 10.7503/cjcu20140941

    102. [102]

      Lee, T.; Wang, W.; Reed, M. A. Ann. New York Acad. Sci. 2003, 1006, 21. doi: 10.1196/annals.1292.001  doi: 10.1196/annals.1292.001

    103. [103]

      Esposito, T.; Dinolfo, P. H.; Lewis, K. M. Org. Electron. 2018, 63, 58. doi: 10.1016/j.orgel.2018.08.040  doi: 10.1016/j.orgel.2018.08.040

    104. [104]

      Selzer, Y.; Cabassi, M. A.; Mayer, T. S.; Allara, D. L. Nanotechnology 2004, 15, S483. doi: 10.1088/0957-4484/15/7/057  doi: 10.1088/0957-4484/15/7/057

    105. [105]

      Selzer, Y.; Cabassi, M. A.; Mayer, T. S.; Allara, D. L. J. Am. Chem. Soc. 2004, 126, 4052. doi: 10.1021/ja039015y  doi: 10.1021/ja039015y

    106. [106]

      Taniguchi, M.; Morimoto, K.; Tsutsui, M.; Kawai, T. Chem. Lett. 2008, 37, 990. doi: 10.1246/cl.2008.990  doi: 10.1246/cl.2008.990

    107. [107]

      Leary, E.; Höbenreich, H.; Higgins, S. J.; van Zalinge, H.; Haiss, W.; Nichols, R. J.; Finch, C. M.; Grace, I.; Lambert, C. J.; McGrath, R. Phys. Rev. Lett. 2009, 102, 086801. doi: 10.1103/PhysRevLett.102.086801  doi: 10.1103/PhysRevLett.102.086801

    108. [108]

      Fatemi, V.; Kamenetska, M.; Neaton, J. B.; Venkataraman, L. Nano Lett. 2011, 11, 1988. doi: 10.1021/nl200324e  doi: 10.1021/nl200324e

    109. [109]

      Milan, D. C.; Al-Owaedi, O. A.; Oerthel, M. C.; Marqués-González, S.; Brooke, R. J.; Bryce, M. R.; Cea, P.; Ferrer, J.; Higgins, S. J.; Lambert, C. J. J. Phys. Chem. C 2015, 120, 15666. doi: 10.1021/acs.jpcc.5b08877  doi: 10.1021/acs.jpcc.5b08877

    110. [110]

      Gunasekaran, S.; Hernangomez-Perez, D.; Davydenko, I.; Marder, S.; Evers, F.; Venkataraman, L. Nano Lett. 2018, 18, 6387. doi: 10.1021/acs.nanolett.8b02743  doi: 10.1021/acs.nanolett.8b02743

    111. [111]

      Liu, X.; Sangtarash, S.; Reber, D.; Zhang, D.; Sadeghi, H.; Shi, J.; Xiao, Z. Y.; Hong, W.; Lambert, C. J.; Liu, S. X. Angew. Chem. Int. Ed. 2017, 56, 173. doi: 10.1002/anie.201609051  doi: 10.1002/anie.201609051

    112. [112]

      Xiao, X.; Xu, B.; Tao, N. J. Am. Chem. Soc. 2004, 126, 5370. doi: 10.1021/ja049469a  doi: 10.1021/ja049469a

    113. [113]

      Scullion, L.; Doneux, T.; Bouffier, L.; Fernig, D. G.; Higgins, S. J.; Bethell, D.; Nichols, R. J. J. Phys. Chem. C 2011, 115, 8361. doi: 10.1021/jp201222b  doi: 10.1021/jp201222b

    114. [114]

      Yang, G.; Sangtarash, S.; Liu, Z.; Li, X.; Sadeghi, H.; Tan, Z.; Li, R.; Zheng, J.; Dong, X.; Liu, J. Chem. Sci. 2017, 8, 7505. doi: 10.1039/c7sc01014a  doi: 10.1039/c7sc01014a

    115. [115]

      Roldan, D.; Kaliginedi, V.; Cobo, S.; Kolivoska, V.; Bucher, C.; Hong, W.; Royal, G.; Wandlowski, T. J. Am. Chem. Soc. 2013, 135, 5974. doi: 10.1021/ja401484j  doi: 10.1021/ja401484j

    116. [116]

      van der Molen, S. J.; Liao, J.; Kudernac, T.; Agustsson, J. S.; Bernard, L.; Calame, M.; van Wees, B. J.; Feringa, B. L.; Schönenberger, C. Nano Lett. 2009, 9, 76. doi: 10.1021/nl802487j  doi: 10.1021/nl802487j

    117. [117]

      Huang, C.; Jevric, M.; Borges, A.; Olsen, S. T.; Hamill, J. M.; Zheng, J. T.; Yang, Y.; Rudnev, A.; Baghernejad, M.; Broekmann, P.; et al. Nat. Commun. 2017, 8, 15436. doi: 10.1038/ncomms15436  doi: 10.1038/ncomms15436

    118. [118]

      Leary, E.; Limburg, B.; Alanazy, A.; Sangtarash, S.; Grace, I.; Swada, K.; Esdaile, L. J.; Noori, M.; Gonzalez, M. T.; Rubio-Bollinger, G. J. Am. Chem. Soc. 2018, 140, 12877. doi: 10.1021/jacs.8b06338  doi: 10.1021/jacs.8b06338

    119. [119]

      Li, J. J.; Bai, M. L.; Chen, Z. B.; Zhou, X. S.; Shi, Z.; Zhang, M.; Ding, S. Y.; Hou, S. M.; Schwarzacher, W.; Nichols, R. J.; et al. J. Am. Chem. Soc. 2015, 137, 5923. doi: 10.1021/ja512483y  doi: 10.1021/ja512483y

    120. [120]

      Aragones, A. C.; Aravena, D.; Cerda, J. I.; Acis-Castillo, Z.; Li, H.; Real, J. A.; Sanz, F.; Hihath, J.; Ruiz, E.; Diez-Perez, I. Nano Lett. 2016, 16, 218. doi: 10.1021/acs.nanolett.5b03571  doi: 10.1021/acs.nanolett.5b03571

    121. [121]

      Iwane, M.; Fujii, S.; Nishino, T.; Kiguchi, M. J. Phys. Chem. C 2016, 120, 8936. doi: 10.1021/acs.jpcc.5b12728  doi: 10.1021/acs.jpcc.5b12728

    122. [122]

      Kiguchi, M.; Ohto, T.; Fujii, S.; Sugiyasu, K.; Nakajima, S.; Takeuchi, M.; Nakamura, H. J. Am. Chem. Soc. 2014, 136, 7327. doi: 10.1021/ja413104g  doi: 10.1021/ja413104g

    123. [123]

      Leary, E.; Roche, C.; Jiang, H. W.; Grace, I.; Gonzalez, M. T.; Rubio-Bollinger, G.; Romero-Muniz, C.; Xiong, Y.; Al-Galiby, Q.; Noori, M. J. Am. Chem. Soc. 2018, 140, 710. doi: 10.1021/jacs.7b10542  doi: 10.1021/jacs.7b10542

    124. [124]

      Nichols, R. J.; Higgins, S. J. Acc. Chem. Res. 2016, 49, 2640. doi: 10.1021/acs.accounts.6b00373  doi: 10.1021/acs.accounts.6b00373

    125. [125]

      Liu, J.; Huang, X.; Wang, F.; Hong, W. Acc. Chem. Res. 2019, 52, 151. doi: 10.1021/acs.accounts.8b00429  doi: 10.1021/acs.accounts.8b00429

    126. [126]

      Chen, L.; Feng, A.; Wang, M.; Liu, J.; Hong, W.; Guo, X.; Xiang, D. Sci. China Chem. 2018, 61, 1368. doi: 10.1007/s11426-018-9356-2  doi: 10.1007/s11426-018-9356-2

    127. [127]

      Gu, C.; Guo, X. Acta Phys. -Chim. Sin. 2017, 33, 1927.  doi: 10.3866/PKU.WHXB201706144

    128. [128]

      Šebera, J.; Lindner, M.; Gasior, J.; Mészáros, G.; Fuhr, O.; Mayor, M.; Valášek, M.; Kolivoška, V.; Hromadová, M. Nanoscale 2019, 11, 12959. doi: 10.1039/c9nr04071d  doi: 10.1039/c9nr04071d

    129. [129]

      Zhang, W.; Gan, S.; Vezzoli, A.; Davidson, R. J.; Milan, D. C.; Luzyanin, K. V.; Higgins, S. J.; Nichols, R. J.; Beeby, A.; Low, P. J. ACS Nano 2016, 10, 5212. doi: 10.1021/acsnano.6b00786  doi: 10.1021/acsnano.6b00786

    130. [130]

      Chang, S.; He, J.; Lin, L.; Zhang, P.; Liang, F.; Young, M.; Huang, S.; Lindsay, S. Nanotechnology 2009, 20, 185102. doi: 10.1088/0957-4484/20/18/185102  doi: 10.1088/0957-4484/20/18/185102

    131. [131]

      Chang, S.; Huang, S.; He, J.; Liang, F.; Zhang, P.; Li, S.; Chen, X.; Sankey, O.; Lindsay, S. Nano Lett. 2010, 10, 1070. doi: 10.1021/nl1001185  doi: 10.1021/nl1001185

    132. [132]

      Chang, S.; He, J.; Kibel, A.; Lee, M.; Sankey, O.; Zhang, P.; Lindsay, S. Nat. Nanotechnol. 2009, 4, 297. doi: 10.1038/nnano.2009.48  doi: 10.1038/nnano.2009.48

    133. [133]

      Huang, S.; He, J.; Chang, S.; Zhang, P.; Liang, F.; Li, S.; Tuchband, M.; Fuhrmann, A.; Ros, R.; Lindsay, S. Nat. Nanotechnol. 2010, 5, 868. doi: 10.1038/nnano.2010.213  doi: 10.1038/nnano.2010.213

    134. [134]

      Wheeler, D. A.; Srinivasan, M.; Egholm, M.; Shen, Y.; Chen, L.; McGuire, A.; He, W.; Chen, Y. J.; Makhijani, V.; Roth, G. T. Nature 2008, 452, 872. doi: 10.1038/nature06884  doi: 10.1038/nature06884

  • 加载中
    1. [1]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    2. [2]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    3. [3]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    6. [6]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    7. [7]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    8. [8]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    9. [9]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    10. [10]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    11. [11]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    12. [12]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    13. [13]

      Laiying Zhang Weitai Wu Yiru Wang Shunliu Deng Zhaobin Chen Jiajia Chen Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    16. [16]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    20. [20]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

Metrics
  • PDF Downloads(35)
  • Abstract views(1708)
  • HTML views(615)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return