Citation: Zhao Yanan, He Min, Liu Xiaofang, Liu Bin, Yang Jianhui. Self-Assembly and Structural Characterization of Au Binary Nanocrystal Superlattices[J]. Acta Physico-Chimica Sinica, ;2020, 36(9): 190804. doi: 10.3866/PKU.WHXB201908041 shu

Self-Assembly and Structural Characterization of Au Binary Nanocrystal Superlattices

  • Corresponding author: Yang Jianhui, jianhui@nwu.edu.cn
  • Received Date: 30 August 2019
    Revised Date: 23 September 2019
    Accepted Date: 24 September 2019
    Available Online: 27 September 2019

    Fund Project: the National Natural Science Foundation of China 21501141The project was supported by the National Natural Science Foundation of China (21501141), the Cyrus Tang Foundation for Tang Scholar and the "Top-rated Discipline" construction scheme of Shaanxi higher education

  • The assembly of two-component nanocrystals (NCs) such as metals, magnets, and semiconductors into binary nanocrystal superlattices (BNSLs) provides a fabrication route to novel classes of materials. BNSLs with certain structures can exhibit the combined and collective properties of their building blocks and are widespread in the fields of electronics and magnetic devices. As most studies have focused on combined two-component NCs of different sizes for self-assembling BNSLs, there are a few studies on single-component NCs of different sizes for the construction of BNSLs; this is especially true for Au NCs. Noble metallic Au NCs are an excellent candidate material because of their exceptional chemical stability, catalytic activity, process ability, and metallic nature; these characteristics provide them unique size-dependent optical and electronic properties as well as a wide variety of applications in sensing, imaging, electronic devices, medical diagnostics, and cancer therapeutics owing to their strong interactions with external electromagnetic fields. Therefore, it is important to develop a simple and efficient procedure to build BNSLs with different sizes of Au NCs. In our study, we synthesized monodispersed (size distribution < 10%) 6.0, 7.3, and 9.6 nm Au NCs using dodecanethiol-stabilized 3.7 nm Au NCs as seeds through a seed-growth method in oleylamine. The obtained Au NCs exhibited morphology and nanocrystallinity (single-domain and polycrystalline) similar to those of Au seeds. As the size of Au NCs increased from 3.7 to 6.0, 7.3, and 9.6 nm, the surface plasmon resonance peaks narrowed and indicated a red shift. The oleylamine-functionalized 6.0, 7.3, and 9.6 nm Au NCs were mixed with 3.7 nm Au NCs at certain concentration ratios. Au BNSLs with AB2 (hexagonal AlB2 structure), AB13 (NaZn13 structure), and AB (cubic NaCl structure) type were obtained through the solvent evaporation method. The (001) plane of the AlB2-type structure, (001) plane of the NaZn13-type structure, and (100) plane of NaCl-type structure superlattices were observed through transmission electron microscopy (TEM). The effective particle size ratios (γ= Dsmall/Dlarge) serve as the critical determining factor in the formation of the BNSLs. The effective particle size of NCs is equal to the sum of the metal core diameter and twice the thicknesses of the surface ligand. In our study, the effective particle size Dsmall (Au seed) is 5.7 nm; the effective particle sizes Dlarge (6.0, 7.3, and 9.6 nm Au NCs) are 9.0, 10.3, and 12.6 nm, respectively. The effective particle size ratios γ were therefore calculated to be 0.63, 0.55, and 0.45, respectively. The relevant space filling principle predicted the stability of the AlB2, NaZn13, and NaCl-type structures in the range of 0.482 < γ < 0.624, 0.54 < γ < 0.625, and γ < 0.458, respectively; the experimental results adequately matched the relevant space filling principle. The investigation of such a single nanocomponent as a building block is noteworthy with regard to the structures and properties of BNSLs as well as the potential development of novel meta-materials.
  • 加载中
    1. [1]

      Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2010, 110, 389. doi: 10.1021/cr900137k  doi: 10.1021/cr900137k

    2. [2]

      Liu, S.; Tang, Z. Mater. Chem. 2010, 20, 24. doi: 10.1039/B911328M  doi: 10.1039/B911328M

    3. [3]

      Pileni, M. P. J. Colloid Interface Sci. 2012, 388, 1. doi: 10.1016/j.jcis.2012.07.086  doi: 10.1016/j.jcis.2012.07.086

    4. [4]

      Nie, Z.; Petukhova, A.; Kumacheva, E. Nat. Nanotechnol. 2010, 5, 15. doi: 10.1038/nnano.2009.453  doi: 10.1038/nnano.2009.453

    5. [5]

      Vanmaekelbergh, D. Nano Today 2011, 6, 419. doi: 10.1016/j.nantod.2011.06.005  doi: 10.1016/j.nantod.2011.06.005

    6. [6]

      Meng, L.; Peng, Q.; Zhou, H.; Li, Y. Chem. J. Chin. Univ. 2011, 32, 429.  doi: 10.3724/SP.J.1077.2011.00317

    7. [7]

      Gong, J.; Li, G.; Tang, Z. Nano Today 2012, 7, 564. doi: 10.1016/j.nantod.2012.10.008  doi: 10.1016/j.nantod.2012.10.008

    8. [8]

      Qin, X.; Luo, D.; Xue, Z.; Song, Q.; Wang, T. Adv. Mater. 2018, 30, 1706327. doi: 10.1002/adma.201706327  doi: 10.1002/adma.201706327

    9. [9]

      Xue, Z.; Yan, C.; Wang, T. Adv. Funct. Mater. 2019, 29, 1807658. doi: 10.1002/adfm.201807658  doi: 10.1002/adfm.201807658

    10. [10]

      Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797. doi: 10.1021/cr0680282  doi: 10.1021/cr0680282

    11. [11]

      Prasad, B. L. V.; Sorensen, C. M.; Klabunde, K. J. Chem. Soc. Rev. 2008, 37, 1871. doi: 10.1039/B712175J  doi: 10.1039/B712175J

    12. [12]

      Kiely, C. J.; Fink, J.; Brust, M.; Bethell, D.; Schiffrin, D. J. Nature 1998, 396, 444. doi: 10.1038/24808  doi: 10.1038/24808

    13. [13]

      Redl, F. X.; Cho, K. S.; Murray, C. B.; O'Brien, S. Nature 2003, 423, 968. doi: 10.1038/nature01702  doi: 10.1038/nature01702

    14. [14]

      Dong, A.; Chen, J.; Vora, P. M.; Kikkawa, J. M.; Murray, C. B. Nature 2010, 466, 474. doi: 10.1038/nature09188  doi: 10.1038/nature09188

    15. [15]

      Podsiadlo, P.; Krylova, G. V.; Demortiere, A.; Shevchenko, E. V. J. Nanopart. Res. 2011, 13, 15. doi: 10.1007/s11051-010-0174-1  doi: 10.1007/s11051-010-0174-1

    16. [16]

      Parthe, E. Z. Kristallogr. 1961, 115, 52. doi: 10.1524/zkri.1961.115.1-2.52  doi: 10.1524/zkri.1961.115.1-2.52

    17. [17]

      Cottin, X.; Monson, P. A. J. Chem. Phys. 1995, 102, 3354. doi: 10.1063/1.469209  doi: 10.1063/1.469209

    18. [18]

      Trizac, E.; Eldridge, M. D.; Madden, P. A. Mol. Phys. 1997, 90, 67. doi: 10.1080/00268979709482651  doi: 10.1080/00268979709482651

    19. [19]

      Ben-Simon, A.; Eshet, H.; Rabani, E. ACS Nano 2013, 7, 978. doi: 10.1021/nn302712h  doi: 10.1021/nn302712h

    20. [20]

      Auyeung, E.; Cutler, J. I.; Macfarlane, R. J.; Jones, M. R.; Wu, J.; Liu, G.; Zhang, K.; Osberg, K. D.; Mirkin, C. A. Nat. Nanotechnol. 2012, 7, 24. doi: 10.1038/NNANO.2011.222  doi: 10.1038/NNANO.2011.222

    21. [21]

      Goodfellow, B.W.; Rasch, M. R.; Hessel, C. M.; Patel, R. N.; Smilgies, D. M.; Korgel, B. A. Nano Lett. 2013, 13, 5710. doi: 10.1021/nl403458q  doi: 10.1021/nl403458q

    22. [22]

      Zheng, N.; Fan, J.; Stucky, G. D. J. Am. Chem. Soc. 2006, 128, 6550. doi: 10.1021/ja0604717  doi: 10.1021/ja0604717

    23. [23]

      Goubet, N.; Tempra, I.; Yang, J.; Soavi, G.; Polli, D.; Cerullo, G.; Pileni, M. P. Nanoscale 2015, 7, 3237. doi: 10.1039/c4nr06513a  doi: 10.1039/c4nr06513a

    24. [24]

      Liu, X.; Atwater, M. A.; Wang, J.; Huo, Q. Colloids Surfaces B 2007, 58, 3. doi: 10.1016/j.colsurfb.2006.08.005  doi: 10.1016/j.colsurfb.2006.08.005

    25. [25]

      Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G. Anal. Chem. 2007, 79, 4215. doi: 10.1021/ac0702084  doi: 10.1021/ac0702084

    26. [26]

      Yang, J.; Khazen, K.; Pileni, M. P. J. Phys.: Condens. Matter 2014, 26, 295303. doi: 10.1088/0953-8984/26/29/295303  doi: 10.1088/0953-8984/26/29/295303

    27. [27]

      Mourdikoudis, S.; Liz-Marzan, L. M. Chem. Mater. 2013, 25, 1465. doi: 10.1021/cm4000476  doi: 10.1021/cm4000476

    28. [28]

      Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668. doi: 10.1021/jp026731y  doi: 10.1021/jp026731y

    29. [29]

      Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293. doi: 10.1021/cr030698+  doi: 10.1021/cr030698+

    30. [30]

      Murray, M. J.; Sanders, J. V. Philos. Mag. A 1980, 42, 721. doi: 10.1080/01418618008239380  doi: 10.1080/01418618008239380

    31. [31]

      Bodnarchuk, M. I.; Kovalenko, M. V.; Heiss, W.; Talapin, D. V. J. Am. Chem. Soc. 2010, 132, 11967. doi: 10.1021/ja103083q  doi: 10.1021/ja103083q

    32. [32]

      Wei, J.; Schaeffer, N.; Pileni, M. P. J. Am. Chem. Soc. 2015, 137, 14773. doi: 10.1021/jacs.5b09959  doi: 10.1021/jacs.5b09959

    33. [33]

      Wei, J.; Schaeffer, N.; Albouy, P. A.; Pileni, M. P. Chem. Mater. 2015, 27, 5614. doi: 10.1021/acs.chemmater.5b01940  doi: 10.1021/acs.chemmater.5b01940

  • 加载中
    1. [1]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    2. [2]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    3. [3]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    4. [4]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    5. [5]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    6. [6]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    7. [7]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    8. [8]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    9. [9]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    10. [10]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    11. [11]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    12. [12]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    13. [13]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    14. [14]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    15. [15]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    16. [16]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    17. [17]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    18. [18]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    19. [19]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    20. [20]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

Metrics
  • PDF Downloads(6)
  • Abstract views(585)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return