Vapor-Liquid-Solid Growth of Bi2O2Se Nanoribbons for High-Performance Transistors
- Corresponding author: Peng Hailin, hlpeng@pku.edu.cn †These authors contributed equally to this work.
Citation: Tan Congwei, Yu Mengshi, Xu Shipu, Wu Jinxiong, Chen Shulin, Zhao Yan, Liu Cong, Zhang Yichi, Tu Teng, Li Tianran, Gao Peng, Peng Hailin. Vapor-Liquid-Solid Growth of Bi2O2Se Nanoribbons for High-Performance Transistors[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190803. doi: 10.3866/PKU.WHXB201908038
Larrieu, G.; Han, X. L. Nanoscale 2013, 5, 2437. doi: 10.1039/c3nr33738c
doi: 10.1039/c3nr33738c
Ryu, M.; Bien, F.; Kim, Y. AIP Adv. 2016, 6, 015311. doi: 10.1063/1.4940755
doi: 10.1063/1.4940755
Lee, Y.; Luo, G.; Hou, F.; Chen, M.; Yang, C.; Shen, C.; Wu, W.; Shieh, J.; Yeh, W. IEEE J. Electron Devi. 2016, 4, 286. doi: 10.1109/jeds.2016.2590580
doi: 10.1109/jeds.2016.2590580
Bangsaruntip, S.; Majumdar, A.; Cohen, G. M.; Engelmann, S. U.; Zhang, Y.; Guillorn, M.; Gignac, L. M.; Mittal, S.; Graham, W. S.; Joseph, E. A.; et al. In Gate-all-around silicon nanowire 25-stage CMOS ring oscillators with diameter down to 3 nm. 2010 Symposium on VLSI Technology, Symposium on VLSI Technology, Honolulu, USA, June 15–17, 2010; Dennison, C., Masaaki, N., Eds.; IEEE, 2010, 21–22. doi: 10.1109/vlsit.2010.5556136
Guo, H.; Lu, N.; Dai, J.; Wu, X.; Zeng, X. C. J. Phys. Chem. C 2014, 118, 14051. doi: 10.1021/jp505257g
doi: 10.1021/jp505257g
Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Science 2008, 319, 1229. doi: 10.2307/20053480
doi: 10.2307/20053480
Schwierz, F. Nat. Nanotechnol. 2010, 5, 487. doi: 10.1038/nnano.2010.89
doi: 10.1038/nnano.2010.89
Li, S.; Lin, Y. C.; Zhao, W.; Wu, J.; Wang, Z.; Hu, Z.; Shen, Y.; Tang, D. M.; Wang, J.; Zhang, Q.; et al. Nat. Mater. 2018, 17, 535. doi: 10.1038/s41563-018-0055-z
doi: 10.1038/s41563-018-0055-z
Watts, M. C.; Picco, L.; Russell-Pavier, F. S.; Cullen, P. L.; Miller, T. S.; Bartuś, S. P.; Payton, O. D.; Skipper, N. T.; Tileli, V.; Howard, C. A. Nature 2019, 568, 216. doi: 10.1038/s41586-019-1074-x
doi: 10.1038/s41586-019-1074-x
Lee, S.; Yang, F.; Suh, J.; Yang, S.; Lee, Y.; Li, G.; Choe, H.; Suslu, A.; Chen, Y.; Ko, C.; et al. Nat. Commun. 2015, 6, 8573. doi: 10.1038/ncomms9573
doi: 10.1038/ncomms9573
Peng, H.; Lai, K.; Kong, D.; Meister, S.; Chen, Y.; Qi, X. L.; Zhang, S. C.; Shen, Z. X.; Cui, Y. Nat. Mater. 2009, 9, 225. doi: 10.1038/nmat2609
doi: 10.1038/nmat2609
Wu, J.; Yuan, H.; Meng, M.; Chen, C.; Sun, Y.; Chen, Z.; Dang, W.; Tan, C.; Liu, Y.; Yin, J.; et al. Nat. Nanotech. 2017, 12, 530. doi: 10.1038/nnano.2017.43
doi: 10.1038/nnano.2017.43
Yin, J.; Tan, Z.; Hong, H.; Wu, J.; Yuan, H.; Liu, Y.; Chen, C.; Tan, C.; Yao, F.; Li, T.; et al. Nat. Commun. 2018, 9, 3311. doi: 10.1038/s41467-018-05874-2
doi: 10.1038/s41467-018-05874-2
Quhe, R.; Liu, J.; Wu, J.; Yang, J.; Wang, Y.; Li, Q.; Li, T.; Guo, Y.; Yang, J.; Peng, H.; et al. Nanoscale 2019, 11, 532. doi: 10.1039/c8nr08852g
doi: 10.1039/c8nr08852g
Yang, J.; Quhe, R.; Li, Q.; Liu, S.; Xu, L.; Pan, Y.; Zhang, H.; Zhang, X.; Li, J.; Yan, J.; et al. Adv. Electron. Mater. 2019, 5, 1800720. doi: 10.1002/aelm.201800720
doi: 10.1002/aelm.201800720
Wu, J.; Tan, C.; Tan, Z.; Liu, Y.; Yin, J.; Dang, W.; Wang, M.; Peng, H. Nano Lett. 2017, 17, 3021. doi: 10.1021/acs.nanolett.7b00335
doi: 10.1021/acs.nanolett.7b00335
Tong, T.; Zhang, M.; Chen, Y.; Li, Y.; Chen, L.; Zhang, J.; Song, F.; Wang, X.; Zou, W.; Xu, Y.; et al. Appl. Phys. Lett. 2018, 113, 072106. doi: 10.1063/1.5042727
doi: 10.1063/1.5042727
Chen, C.; Wang, M.; Wu, J.; Fu, H.; Yang, H.; Tian, Z.; Tu, T.; Peng, H.; Sun, Y.; Xu, X.; et al. Sci. Adv. 2018, 4, eaat8355. doi: 10.1126/sciadv.aat8355
doi: 10.1126/sciadv.aat8355
Tan, C.; Tang, M.; Wu, J.; Liu, Y.; Li, T.; Liang, Y.; Deng, B.; Tan, Z.; Tu, T.; Zhang, Y.; et al. Nano Lett. 2019, 19 (3), 2148. doi: 10.1021/acs.nanolett.9b00381
doi: 10.1021/acs.nanolett.9b00381
Tian, X.; Luo, H.; Wei, R.; Zhu, C.; Guo, Q.; Yang, D.; Wang, F.; Li, J.; Qiu, J. Adv. Mater. 2018, 30, 1801021. doi: 10.1002/adma.201801021
doi: 10.1002/adma.201801021
Wu, M.; Zeng, X. C. Nano Lett. 2017, 17, 6309. doi: 10.1021/acs.nanolett.7b03020
doi: 10.1021/acs.nanolett.7b03020
Fu, Q.; Zhu, C.; Zhao, X.; Wang, X.; Chaturvedi, A.; Zhu, C.; Wang, X.; Zeng, Q.; Zhou, J.; Liu, F.; et al. Adv. Mater. 2019, 31, 1804945. doi: 10.1002/adma.201804945
doi: 10.1002/adma.201804945
Li, J.; Wang, Z.; Wen, Y.; Chu, J.; Yin, L.; Cheng, R.; Lei, L.; He, P.; Jiang, C.; Feng, L.; et al. Adv. Funct. Mater. 2018, 28, 1706437. doi: 10.1002/adfm.201706437
doi: 10.1002/adfm.201706437
Khan, U.; Luo, Y.; Tang, L.; Teng, C.; Liu, J.; Liu, B.; Cheng, H. M. Adv. Funct. Mater. 2019, 29, 1807979. doi: 10.1002/adfm.201807979
doi: 10.1002/adfm.201807979
Wu, J.; Qiu, C.; Fu, H.; Chen, S.; Zhang, C.; Dou, Z.; Tan, C.; Tu, T.; Li, T.; Zhang, Y.; et al. Nano Lett. 2019, 19, 197. doi: 10.1021/acs.nanolett.8b03696
doi: 10.1021/acs.nanolett.8b03696
Wang, S.; Rong, Y.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J. H. Chem. Mater. 2014, 26, 6371. doi: 10.1021/cm5025662
doi: 10.1021/cm5025662
Yella, A.; Mugnaioli, E.; Panthofer, M.; Therese, H. A.; Kolb, U.; Tremel, W. C. Angew. Chem. Int. Ed. 2009, 48, 6426. doi: 10.1002/anie.200900546
doi: 10.1002/anie.200900546
Xiang, Y.; Cao, L.; Arbiol, J.; Brongersma, M. L.; Fontcuberta i Morral, A. Appl. Phys. Lett. 2009, 94, 163101. doi: 10.1063/1.3116625
doi: 10.1063/1.3116625
Stanley, S. A.; Stuttle, C.; Caruana, A. J.; Cropper, M. D.; Walton, A. S. O. J. Phys. D: Appl. Phys. 2012, 45, 435304. doi: 10.1088/0022-3727/45/43/435304
doi: 10.1088/0022-3727/45/43/435304
Lee, S. K. C.; Yu, Y.; Perez, O.; Puscas, S.; Kosel, T. H.; Kuno, M. Chem. Mater. 2010, 22, 77. doi: 10.1021/cm902049p
doi: 10.1021/cm902049p
Loubet, N.; Hook, T.; Montanini, P.; Yeung, C.; Kanakasabapathy, S.; Guillom, M.; Yamashita, T.; Zhang, J.; Miao, X.; Wang, J.; et al. 2017 Sym. VLSI Technol. 2017, T230. doi: 10.23919/vlsit.2017.7998183
doi: 10.23919/vlsit.2017.7998183
Cheng, R.; Liu, B.; Guo, P.; Yang, Y.; Zhou, Q.; Gong, X.; Dong, Y.; Tong, Y.; Bourdelle, K.; Daval, N.; et al. Asymetrically Strained High Performance Germanium Gate-All-Around Nanowire p-FETs Featuring 3.5 nm Wire Width and Contractible Phase Change Liner Stressor (Ge2Sb2Te5). 2013 IEEE International Electron Devices Meeting, International Electron Devices Meeting (IEDM), Washington, USA, Dec. 9–11, 2013; Ghani, T., eds.; IEEE, 2013. doi: 10.1109/iedm.2013.6724699
Zhang, C.; Li, X. Sol. State Electron. 2014, 93, 40. doi: 10.1016/j.sse.2013.12.005
doi: 10.1016/j.sse.2013.12.005
Zhijia Zhang , Shihao Sun , Yuefang Chen , Yanhao Wei , Mengmeng Zhang , Chunsheng Li , Yan Sun , Shaofei Zhang , Yong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922
Jing Chen , Peisi Xie , Pengfei Wu , Yu He , Zian Lin , Zongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
Rui Cheng , Xin Huang , Tingting Zhang , Jiazhuang Guo , Jian Yu , Su Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278
Pan Liu , Yanming Sun , Alberto J. Fernández-Carrión , Bowen Zhang , Hui Fu , Lunhua He , Xing Ming , Congling Yin , Xiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641
Xin Dong , Jing Liang , Zhijin Xu , Huajie Wu , Lei Wang , Shihai You , Junhua Luo , Lina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708
Benjian Xin , Rui Wang , Lili Liu , Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Dong-Ling Kuang , Song Chen , Shaoru Chen , Yong-Jie Liao , Ning Li , Lai-Hon Chung , Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301
Tao LIU , Yuting TIAN , Ke GAO , Xuwei HAN , Ru'nan MIN , Wenjing ZHAO , Xueyi SUN , Caixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
Feng Wu , Xuemin Kong , Yixuan Liu , Shuli Wang , Zhong Chen , Xu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754
Zhe Wang , Li-Peng Hou , Qian-Kui Zhang , Nan Yao , Aibing Chen , Jia-Qi Huang , Xue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570
Pengcheng Su , Shizheng Chen , Zhihong Yang , Ningning Zhong , Chenzi Jiang , Wanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357
Qijun Tang , Wenguang Tu , Yong Zhou , Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170
Qiangwei Wang , Huijiao Liu , Mengjie Wang , Haojie Zhang , Jianda Xie , Xuanwei Hu , Shiming Zhou , Weitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743
Changzhu Huang , Wei Dai , Shimao Deng , Yixin Tian , Xiaolin Liu , Jia Lin , Hong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372