Citation: Tan Congwei, Yu Mengshi, Xu Shipu, Wu Jinxiong, Chen Shulin, Zhao Yan, Liu Cong, Zhang Yichi, Tu Teng, Li Tianran, Gao Peng, Peng Hailin. Vapor-Liquid-Solid Growth of Bi2O2Se Nanoribbons for High-Performance Transistors[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190803. doi: 10.3866/PKU.WHXB201908038 shu

Vapor-Liquid-Solid Growth of Bi2O2Se Nanoribbons for High-Performance Transistors

  • Corresponding author: Peng Hailin, hlpeng@pku.edu.cn
  • †These authors contributed equally to this work.
  • Received Date: 29 August 2019
    Revised Date: 11 October 2019
    Accepted Date: 23 October 2019
    Available Online: 30 January 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21733001, 21525310)the National Natural Science Foundation of China 21525310the National Natural Science Foundation of China 21733001

  • Nanostructured bismuth oxyselenide (Bi2O2Se) semiconductor, a two-dimensional (2D) materials with high-mobility, air-stability, and tunable bandgap, has recently emerged as a candidate of channel material for future digital (electronic and optoelectronic) applications. In terms of material morphology, some basic issues will be addressed when a two-dimensional layered crystal is shaped into a one-dimensional (1D) geometry due to size effect; these include the space-confined transport in a plane, which leads to dramatic changes in electronic, optical, and thermal properties. These novel 1D nanostructures with unique properties are an optimal choice for fabricating next-generation integrated circuits and functional devices within the nanometer scale such as gate-all-around field-effect transistors, single-electron transistors, chemical sensors, and THz detectors. As one of the high-mobility 2D semiconductor, 1D high-quality Bi2O2Se nanoribbons could be promising for applications in high-performance transistors; however, their synthesis has not been completely developed yet. In our study, we report on the facile growth of Bi2O2Se nanoribbons on mica substrates via a bismuth-catalyzed vapor-liquid-solid (VLS) mechanism. The preparation of Bi2O2Se nanoribbons is based on a previous work that emphasized on the oxidation of Bi2Se3 in a chemical vapor deposition (CVD) system and the use of bismuth (Bi) particles as the precursor of Bi catalysis. The morphology, composition, and structure of the as-grown Bi2O2Se nanoribbons were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, transmission electron microscopy (TEM), as well as other methods. For a Bi mediated VLS growth process, the growth of Bi2O2Se nanoribbons can be self-assembled; further, in this process, as-grown epitaxial Bi2O2Se nanoribbons are free-standing with out-of-plane morphology on the mica substrate. Additionally, combining the spherical aberration corrected transmission electron microscope (ACTEM) and selected electron diffraction (SAED) methods, we discovered that the as-synthesized Bi2O2Se nanoribbons were single crystalline with high quality. We further investigated the controllable growth for domain size by optimizing the growth temperature of the Bi2O2Se nanoribbons. As-synthesized single-crystal Bi2O2Se nanoribbons have widths in the range of 100 nm to 20 μm and lengths in the sub-millimeter range. By employing a polymer poly(methyl methacrylate) (PMMA) assisted clean transfer method with the assistance of deionized water, the Bi2O2Se nanoribbons can be easily transferred onto a SiO2/Si substrate. Fabricated into the top-gated field-effect device, the Bi2O2Se nanoribbon sample (transferred to the SiO2/Si substrate) exhibited high electronic performances; these included a high electron mobility of ∼220 cm2∙V−1∙s−1 at room temperature, good switching behavior with on/off ratio of > 106, and high on current density of ∼42 μA∙μm−1 at a channel length of 10 μm. Therefore, Bi2O2Se nanoribbons are expected to be a promising materials for building high-performance transistors in the future.
  • 加载中
    1. [1]

      Larrieu, G.; Han, X. L. Nanoscale 2013, 5, 2437. doi: 10.1039/c3nr33738c  doi: 10.1039/c3nr33738c

    2. [2]

      Ryu, M.; Bien, F.; Kim, Y. AIP Adv. 2016, 6, 015311. doi: 10.1063/1.4940755  doi: 10.1063/1.4940755

    3. [3]

      Lee, Y.; Luo, G.; Hou, F.; Chen, M.; Yang, C.; Shen, C.; Wu, W.; Shieh, J.; Yeh, W. IEEE J. Electron Devi. 2016, 4, 286. doi: 10.1109/jeds.2016.2590580  doi: 10.1109/jeds.2016.2590580

    4. [4]

      Bangsaruntip, S.; Majumdar, A.; Cohen, G. M.; Engelmann, S. U.; Zhang, Y.; Guillorn, M.; Gignac, L. M.; Mittal, S.; Graham, W. S.; Joseph, E. A.; et al. In Gate-all-around silicon nanowire 25-stage CMOS ring oscillators with diameter down to 3 nm. 2010 Symposium on VLSI Technology, Symposium on VLSI Technology, Honolulu, USA, June 15–17, 2010; Dennison, C., Masaaki, N., Eds.; IEEE, 2010, 21–22. doi: 10.1109/vlsit.2010.5556136

    5. [5]

      Guo, H.; Lu, N.; Dai, J.; Wu, X.; Zeng, X. C. J. Phys. Chem. C 2014, 118, 14051. doi: 10.1021/jp505257g  doi: 10.1021/jp505257g

    6. [6]

      Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Science 2008, 319, 1229. doi: 10.2307/20053480  doi: 10.2307/20053480

    7. [7]

      Schwierz, F. Nat. Nanotechnol. 2010, 5, 487. doi: 10.1038/nnano.2010.89  doi: 10.1038/nnano.2010.89

    8. [8]

      Li, S.; Lin, Y. C.; Zhao, W.; Wu, J.; Wang, Z.; Hu, Z.; Shen, Y.; Tang, D. M.; Wang, J.; Zhang, Q.; et al. Nat. Mater. 2018, 17, 535. doi: 10.1038/s41563-018-0055-z  doi: 10.1038/s41563-018-0055-z

    9. [9]

      Watts, M. C.; Picco, L.; Russell-Pavier, F. S.; Cullen, P. L.; Miller, T. S.; Bartuś, S. P.; Payton, O. D.; Skipper, N. T.; Tileli, V.; Howard, C. A. Nature 2019, 568, 216. doi: 10.1038/s41586-019-1074-x  doi: 10.1038/s41586-019-1074-x

    10. [10]

      Lee, S.; Yang, F.; Suh, J.; Yang, S.; Lee, Y.; Li, G.; Choe, H.; Suslu, A.; Chen, Y.; Ko, C.; et al. Nat. Commun. 2015, 6, 8573. doi: 10.1038/ncomms9573  doi: 10.1038/ncomms9573

    11. [11]

      Peng, H.; Lai, K.; Kong, D.; Meister, S.; Chen, Y.; Qi, X. L.; Zhang, S. C.; Shen, Z. X.; Cui, Y. Nat. Mater. 2009, 9, 225. doi: 10.1038/nmat2609  doi: 10.1038/nmat2609

    12. [12]

      Wu, J.; Yuan, H.; Meng, M.; Chen, C.; Sun, Y.; Chen, Z.; Dang, W.; Tan, C.; Liu, Y.; Yin, J.; et al. Nat. Nanotech. 2017, 12, 530. doi: 10.1038/nnano.2017.43  doi: 10.1038/nnano.2017.43

    13. [13]

      Yin, J.; Tan, Z.; Hong, H.; Wu, J.; Yuan, H.; Liu, Y.; Chen, C.; Tan, C.; Yao, F.; Li, T.; et al. Nat. Commun. 2018, 9, 3311. doi: 10.1038/s41467-018-05874-2  doi: 10.1038/s41467-018-05874-2

    14. [14]

      Quhe, R.; Liu, J.; Wu, J.; Yang, J.; Wang, Y.; Li, Q.; Li, T.; Guo, Y.; Yang, J.; Peng, H.; et al. Nanoscale 2019, 11, 532. doi: 10.1039/c8nr08852g  doi: 10.1039/c8nr08852g

    15. [15]

      Yang, J.; Quhe, R.; Li, Q.; Liu, S.; Xu, L.; Pan, Y.; Zhang, H.; Zhang, X.; Li, J.; Yan, J.; et al. Adv. Electron. Mater. 2019, 5, 1800720. doi: 10.1002/aelm.201800720  doi: 10.1002/aelm.201800720

    16. [16]

      Wu, J.; Tan, C.; Tan, Z.; Liu, Y.; Yin, J.; Dang, W.; Wang, M.; Peng, H. Nano Lett. 2017, 17, 3021. doi: 10.1021/acs.nanolett.7b00335  doi: 10.1021/acs.nanolett.7b00335

    17. [17]

      Tong, T.; Zhang, M.; Chen, Y.; Li, Y.; Chen, L.; Zhang, J.; Song, F.; Wang, X.; Zou, W.; Xu, Y.; et al. Appl. Phys. Lett. 2018, 113, 072106. doi: 10.1063/1.5042727  doi: 10.1063/1.5042727

    18. [18]

      Chen, C.; Wang, M.; Wu, J.; Fu, H.; Yang, H.; Tian, Z.; Tu, T.; Peng, H.; Sun, Y.; Xu, X.; et al. Sci. Adv. 2018, 4, eaat8355. doi: 10.1126/sciadv.aat8355  doi: 10.1126/sciadv.aat8355

    19. [19]

      Tan, C.; Tang, M.; Wu, J.; Liu, Y.; Li, T.; Liang, Y.; Deng, B.; Tan, Z.; Tu, T.; Zhang, Y.; et al. Nano Lett. 2019, 19 (3), 2148. doi: 10.1021/acs.nanolett.9b00381  doi: 10.1021/acs.nanolett.9b00381

    20. [20]

      Tian, X.; Luo, H.; Wei, R.; Zhu, C.; Guo, Q.; Yang, D.; Wang, F.; Li, J.; Qiu, J. Adv. Mater. 2018, 30, 1801021. doi: 10.1002/adma.201801021  doi: 10.1002/adma.201801021

    21. [21]

      Wu, M.; Zeng, X. C. Nano Lett. 2017, 17, 6309. doi: 10.1021/acs.nanolett.7b03020  doi: 10.1021/acs.nanolett.7b03020

    22. [22]

      Fu, Q.; Zhu, C.; Zhao, X.; Wang, X.; Chaturvedi, A.; Zhu, C.; Wang, X.; Zeng, Q.; Zhou, J.; Liu, F.; et al. Adv. Mater. 2019, 31, 1804945. doi: 10.1002/adma.201804945  doi: 10.1002/adma.201804945

    23. [23]

      Li, J.; Wang, Z.; Wen, Y.; Chu, J.; Yin, L.; Cheng, R.; Lei, L.; He, P.; Jiang, C.; Feng, L.; et al. Adv. Funct. Mater. 2018, 28, 1706437. doi: 10.1002/adfm.201706437  doi: 10.1002/adfm.201706437

    24. [24]

      Khan, U.; Luo, Y.; Tang, L.; Teng, C.; Liu, J.; Liu, B.; Cheng, H. M. Adv. Funct. Mater. 2019, 29, 1807979. doi: 10.1002/adfm.201807979  doi: 10.1002/adfm.201807979

    25. [25]

      Wu, J.; Qiu, C.; Fu, H.; Chen, S.; Zhang, C.; Dou, Z.; Tan, C.; Tu, T.; Li, T.; Zhang, Y.; et al. Nano Lett. 2019, 19, 197. doi: 10.1021/acs.nanolett.8b03696  doi: 10.1021/acs.nanolett.8b03696

    26. [26]

      Wang, S.; Rong, Y.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J. H. Chem. Mater. 2014, 26, 6371. doi: 10.1021/cm5025662  doi: 10.1021/cm5025662

    27. [27]

      Yella, A.; Mugnaioli, E.; Panthofer, M.; Therese, H. A.; Kolb, U.; Tremel, W. C. Angew. Chem. Int. Ed. 2009, 48, 6426. doi: 10.1002/anie.200900546  doi: 10.1002/anie.200900546

    28. [28]

      Xiang, Y.; Cao, L.; Arbiol, J.; Brongersma, M. L.; Fontcuberta i Morral, A. Appl. Phys. Lett. 2009, 94, 163101. doi: 10.1063/1.3116625  doi: 10.1063/1.3116625

    29. [29]

      Stanley, S. A.; Stuttle, C.; Caruana, A. J.; Cropper, M. D.; Walton, A. S. O. J. Phys. D: Appl. Phys. 2012, 45, 435304. doi: 10.1088/0022-3727/45/43/435304  doi: 10.1088/0022-3727/45/43/435304

    30. [30]

      Lee, S. K. C.; Yu, Y.; Perez, O.; Puscas, S.; Kosel, T. H.; Kuno, M. Chem. Mater. 2010, 22, 77. doi: 10.1021/cm902049p  doi: 10.1021/cm902049p

    31. [31]

      Loubet, N.; Hook, T.; Montanini, P.; Yeung, C.; Kanakasabapathy, S.; Guillom, M.; Yamashita, T.; Zhang, J.; Miao, X.; Wang, J.; et al. 2017 Sym. VLSI Technol. 2017, T230. doi: 10.23919/vlsit.2017.7998183  doi: 10.23919/vlsit.2017.7998183

    32. [32]

      Cheng, R.; Liu, B.; Guo, P.; Yang, Y.; Zhou, Q.; Gong, X.; Dong, Y.; Tong, Y.; Bourdelle, K.; Daval, N.; et al. Asymetrically Strained High Performance Germanium Gate-All-Around Nanowire p-FETs Featuring 3.5 nm Wire Width and Contractible Phase Change Liner Stressor (Ge2Sb2Te5). 2013 IEEE International Electron Devices Meeting, International Electron Devices Meeting (IEDM), Washington, USA, Dec. 9–11, 2013; Ghani, T., eds.; IEEE, 2013. doi: 10.1109/iedm.2013.6724699

    33. [33]

      Zhang, C.; Li, X. Sol. State Electron. 2014, 93, 40. doi: 10.1016/j.sse.2013.12.005  doi: 10.1016/j.sse.2013.12.005

  • 加载中
    1. [1]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    2. [2]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    3. [3]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    4. [4]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    5. [5]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    6. [6]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    7. [7]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    8. [8]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    9. [9]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    10. [10]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    11. [11]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    12. [12]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    13. [13]

      Feng WuXuemin KongYixuan LiuShuli WangZhong ChenXu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754

    14. [14]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    15. [15]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    16. [16]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    17. [17]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    18. [18]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    19. [19]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    20. [20]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

Metrics
  • PDF Downloads(8)
  • Abstract views(184)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return