Citation: Li Mingliang, Li Shuo, Wang Guozhi, Guo Xuefeng. Effects of Alkyl-Chain Engineering on the Thermodynamic Properties of Amphiphilic Organic Semiconductors[J]. Acta Physico-Chimica Sinica, ;2020, 36(11): 190803. doi: 10.3866/PKU.WHXB201908036 shu

Effects of Alkyl-Chain Engineering on the Thermodynamic Properties of Amphiphilic Organic Semiconductors

  • Corresponding author: Guo Xuefeng, guoxf@pku.edu.cn
  • Received Date: 29 August 2019
    Revised Date: 12 September 2019
    Accepted Date: 12 September 2019
    Available Online: 17 September 2019

    Fund Project: Natural Science Foundation of Beijing, China Z181100004418003National Natural Science Foundation of China 21727806the National Key R & D Program of China 2017YFA0204901The project was supported by the National Key R & D Program of China (2017YFA0204901), National Natural Science Foundation of China (21727806) and Natural Science Foundation of Beijing, China (Z181100004418003)

  • Due to their special polar structure, amphiphilic molecules are simple to process, low in cost and excellent in material properties. Thus, they can be widely applied in the preparation of functional film materials and bionics related to cell membranes. Therefore, amphiphilic organic semiconductor materials are receiving increasing attention in research and industrial fields. The structure of organic amphiphilic semiconductor molecules usually consists of three functional parts: a hydrophilic group, a hydrophobic group, and a linking group between them. The adjustment of their correlation to achieve the target performance is particularly important and needs experimental discussion regarding synthetic methodologies. In this work, we focused on the engineering of a substituent alkyl-chain, and an amphiphilic functional molecule (benzo[b]benzo[4, 5] thieno[2, 3-d]thiophene, named CnPA-BTBT, n = 3–11) was proposed and synthesized. This molecule links the hydrophobic semiconductor backbone and hydrophilic polar group through alkyl chains of different lengths. Fundamental properties were investigated by nuclear magnetic resonance (NMR) and ultraviolet-visible spectroscopy (UV-Vis) to conform the structure and the band gap properties of the designed organic semiconductor. Thermodynamic features were investigated by thermogravimetric analysis (TGA) and corresponding differential thermal gravity (DTG), which indicate that the functional molecule CnPA-BTBT (n = 3–11) has a great stability in ambient conditions. Moreover, the results show that the binding ability of the amphiphilic molecule to water molecules was regulated by the odd-even alternating effect of the alkyl chain and the intramolecular coupling with BTBT. Furthermore, differential scanning calorimetry (DSC) and polarized optical microscopy (POM) were used to study the material properties in detail. As the length of the alkyl chain increased, the functional molecule CnPA-BTBT (n = 3–11) gradually changed from "hard" species with no thermodynamic changes to a transition one with a pair of thermodynamic peaks, and eventually to a "soft" one as a typical liquid crystal with clear observation of Maltese-cross spherulites. The cooling and freezing points were further studied, and the values and trends of their enthalpy and corresponding temperature fluctuated and alternated due to the volume effect, odd-even alternating effect, flexibility, and other functions of the alkyl chain. Three molecular models were proposed according to the thermodynamic study results, namely the brick-like model, transition model, and liquid crystal model. This work presents in-depth discussion on material structure and corresponding thermodynamic properties, and it is an experimental basis for the design, synthesis, optimization, and screening of target performance materials.
  • 加载中
    1. [1]

      Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112, 2208. doi: 10.1021/cr100380z  doi: 10.1021/cr100380z

    2. [2]

      Xu, J.; Wu, H. -C.; Zhu, C.; Ehrlich, A.; Shaw, L.; Nikolka, M.; Wang, S.; Molina-Lopez, F.; Gu, X.; Luo, S.; et al. Nat. Mater. 2019, 18, 594. doi: 10.1038/s41563-019-0340-5  doi: 10.1038/s41563-019-0340-5

    3. [3]

      Lee, M. Y.; Lee, H. R.; Park, C. H.; Han, S. G.; Oh, J. H. Acc. Chem. Res. 2018, 51, 2829. doi: 10.1021/acs.accounts.8b00465  doi: 10.1021/acs.accounts.8b00465

    4. [4]

      Chen, H.; Dong, S.; Bai, M.; Cheng, N.; Wang, H.; Li, M.; Du, H.; Hu, S.; Yang, Y.; Yang, T.; et al. Adv. Mater. 2015, 27, 2113.doi: 10.1002/adma.201405378  doi: 10.1002/adma.201405378

    5. [5]

      Tee, B. C. K.; Chortos, A.; Berndt, A.; Nguyen, A. K.; Tom, A.; McGuire, A.; Lin, Z. C.; Tien, K.; Bae, W. -G.; Wang, H.; et al. Science 2015, 350, 313. doi: 10.1126/science.aaa9306  doi: 10.1126/science.aaa9306

    6. [6]

      Wang, Y.; Chen, Y.; Li, R.; Wang, S.; Su, W.; Ma, P.; Wasielewski, M. R.; Li, X.; Jiang, J. Langmuir 2007, 23, 5836. doi: 10.1021/la063729f  doi: 10.1021/la063729f

    7. [7]

      Garner, L. E.; Park, J.; Dyar, S. M.; Chworos, A.; Sumner, J. J.; Bazan, G. C. J. Am. Chem. Soc. 2010, 132, 10042. doi: 10.1021/ja1016156  doi: 10.1021/ja1016156

    8. [8]

      Yamamoto, S.; Nishina, N.; Matsui, J.; Miyashita, T.; Mitsuishi, M. Langmuir 2018, 34, 10491. doi: 10.1021/acs.langmuir. 8b01694  doi: 10.1021/acs.langmuir.8b01694

    9. [9]

      Bonini, M.; Zalewski, L.; Orgiu, E.; Breiner, T.; Dötz, F.; Kastler, M.; Samorì, P. J. Phys. Chem. C 2011, 115, 9753. doi: 10.1021/jp201556y  doi: 10.1021/jp201556y

    10. [10]

      Khassanov, A.; Steinrück, H. -G.; Schmaltz, T.; Magerl, A.; Halik, M. Acc. Chem. Res. 2015, 48, 1901. doi: 10.1021/acs.accounts.5b00022  doi: 10.1021/acs.accounts.5b00022

    11. [11]

      Lee, J.; Han, A. R.; Kim, J.; Kim, Y.; Oh, J. H.; Yang, C. J. Am. Chem. Soc. 2012, 134, 20713. doi: 10.1021/ja308927g  doi: 10.1021/ja308927g

    12. [12]

      Smits, E. C. P.; Mathijssen, S. G. J.; van Hal, P. A.; Setayesh, S.; Geuns, T. C. T.; Mutsaers, K. A. H. A.; Cantatore, E.; Wondergem, H. J.; Werzer, O.; Resel, R.; et al. Nature 2008, 455, 956. doi: 10.1038/nature07320  doi: 10.1038/nature07320

    13. [13]

      Whitelam, S.; Jack, R. L. Annu. Rev. Phys. Chem. 2015, 66, 143. doi: 10.1146/annurev-physchem-040214-121215  doi: 10.1146/annurev-physchem-040214-121215

    14. [14]

      Inoue, S.; Minemawari, H.; Tsutsumi, J. Y.; Chikamatsu, M.; Yamada, T.; Horiuchi, S.; Tanaka, M.; Kumai, R.; Yoneya, M.; Hasegawa, T. Chem. Mater. 2015, 27, 3809. doi: 10.1021/acs.chemmater.5b00810  doi: 10.1021/acs.chemmater.5b00810

    15. [15]

      Minemawari, H.; Tanaka, M.; Tsuzuki, S.; Inoue, S.; Yamada, T.; Kumai, R.; Shimoi, Y.; Hasegawa, T. Chem. Mater. 2017, 29, 1245. doi: 10.1021/acs.chemmater.6b04628  doi: 10.1021/acs.chemmater.6b04628

    16. [16]

      Dincbas-Renqvist, V.; Lendel, C.; Dogan, J.; Wahlberg, E.; Härd, T. J. Am. Chem. Soc. 2004, 126, 11220. doi: 10.1021/ja047727y  doi: 10.1021/ja047727y

    17. [17]

      North, M. L.; Wilcox, D. E. J. Am. Chem. Soc. 2019, doi: 10.1021/jacs.9b06836  doi: 10.1021/jacs.9b06836

    18. [18]

      Chen, H.; Li, M.; Lu, Z.; Wang, X.; Yang, J.; Wang, Z.; Zhang, F.; Gu, C.; Zhang, W.; Sun, Y.; et al. Nat. Commun. 2019, 10, 3872. doi: 10.1038/s41467-019-11887-2  doi: 10.1038/s41467-019-11887-2

    19. [19]

      Minemawari, H.; Tanaka, M.; Tsuzuki, S.; Inoue, S.; Yamada, T.; Kumai, R.; Shimoi, Y.; Hasegawa, T. Chem. Mater. 2017, 29, 1245. doi: 10.1021/acs.chemmater.6b04628  doi: 10.1021/acs.chemmater.6b04628

    20. [20]

      Inoue, S.; Minemawari, H.; Tsutsumi, J. Y.; Chikamatsu, M.; Yamada, T.; Horiuchi, S.; Tanaka, M.; Kumai, R.; Yoneya, M.; Hasegawa, T. Chem. Mater. 2015, 27, 3809. doi: 10.1021/acs.chemmater.5b00810  doi: 10.1021/acs.chemmater.5b00810

    21. [21]

      Chen, H.; Cheng, N.; Ma, W.; Li, M.; Hu, S.; Gu, L.; Meng, S.; Guo, X. ACS Nano 2016, 10, 436. doi: 10.1021/acsnano.5b05313  doi: 10.1021/acsnano.5b05313

    22. [22]

      Schmaltz, T.; Amin, A. Y.; Khassanov, A.; Meyer-Friedrichsen, T.; Steinrück, H. -G.; Magerl, A.; Segura, J. J.; Voitchovsky, K.; Stellacci, F.; Halik, M. Adv. Mater. 2013, 25, 4511. doi: 10.1002/adma.201301176  doi: 10.1002/adma.201301176

    23. [23]

      Yuan, Y.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C. B.; Chen, J.; Nordlund, D.; Toney, M. F.; Huang, J.; Bao, Z. Nat. Commun. 2014, 5, 3005. doi: 10.1038/ncomms4005  doi: 10.1038/ncomms4005

    24. [24]

      Izawa, T.; Miyazaki, E.; Takimiya, K. Adv. Mater. 2008, 20, 3388. doi: 10.1002/adma.200800799  doi: 10.1002/adma.200800799

    25. [25]

      Chunbo, Y.; Ying, W.; Yueming, S.; Zuhong, L.; Juzheng, L. Surf. Sci. 1997, 392, L1. doi: 10.1016/S0039-6028(97)00519-0  doi: 10.1016/S0039-6028(97)00519-0

  • 加载中
    1. [1]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    2. [2]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    3. [3]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    4. [4]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    5. [5]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    6. [6]

      Xin HeFeng LiuTao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621

    7. [7]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    8. [8]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    9. [9]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    10. [10]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    11. [11]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    12. [12]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    13. [13]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    14. [14]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    15. [15]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    16. [16]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    17. [17]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    18. [18]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    19. [19]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    20. [20]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

Metrics
  • PDF Downloads(12)
  • Abstract views(910)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return