Citation: Liu Ziyi, Xia Miaoren, Chai Zhifang, Wang Dongqi. Parameterization and Validation of AMBER Force Field for Np4+, Am3+, and Cm3+[J]. Acta Physico-Chimica Sinica, ;2020, 36(11): 190803. doi: 10.3866/PKU.WHXB201908035 shu

Parameterization and Validation of AMBER Force Field for Np4+, Am3+, and Cm3+

  • Corresponding author: Wang Dongqi, dwang@ihep.ac.cn
  • Received Date: 29 August 2019
    Revised Date: 24 September 2019
    Accepted Date: 24 September 2019
    Available Online: 29 September 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (91026000, 21473206, 91226105) and CAS Hundred Talents Program (Y2291810S3)the National Natural Science Foundation of China 21473206the National Natural Science Foundation of China 91026000CAS Hundred Talents Program Y2291810S3the National Natural Science Foundation of China 91226105

  • The radioactivity and toxicity of actinides impede experimental investigation into their chemical properties in the condensed phase. The rapid development of computational methods and computational facilities allows for alternative experimental methods, including the use of a molecular force field, to gain insight into the coordination chemistry and dynamics of actinides. The key to this method is the force fieild parameters. In the present work, we report the development and validation of the AMBER (Assisted Model Building with Energy Refinement) force field parameters for Np4+, Am3+, and Cm3+ based on the experimentally determined ion-oxygen distance (IOD). The parameter set, together with that reported for Th4+, U4+, and Pu4+, was then applied to investigate the coordination chemistry and dynamics of these six actinide ions in the aqueous phase, in the absence and presence of counterions Cl-, NO3-, and CO32-. The simulations showed a shorter An-Ow coordination length for An4+ than for An3+, and for higher atomic numbers of ions in the same valence state. Th4+ preferentially existed in a 10-coordinated state, adopting a BCASP (bicapped square antiprism) conformation, while the other ions tended to be 9-coordinated with a CASP (capped square antiprism) conformation. The only exception was Cm3+, which adopted a TCTP (tricapped trigonal prism) conformation. The results also showed that the water molecules around An4+ were more ordered than those around An3+, as indicated by the smaller angles between the An-Ow vector and the dipole direction of the water ligand. This highly ordered structure of coordinated water affected their translation and rotation, i.e., the diffusion coefficient and rotational relaxation time of the water molecules around An4+ were smaller than those in the case of An3+ due to the stronger electrostatic interaction between An4+ and ligating water. The hydration free energies of the targeted actinide ions were also calculated by the FEP (free energy perturbation) method. An4+ underwent a greater degree of stabilization than did An3+ upon hydration; among the ions in the same oxidation states, those with a higher atomic number were better stabilized. In summary, the results of the simulations were consistent with the literature data in terms of the hydration structure, coordination of counterions, and hydration free energy of the actinide ions. The ability of the parameter set to describe the dynamics of water in the vicinity of actinides remains to be verified due to the lack of reference data. We tentatively propose that it may be used to investigate the coordination chemistry of actinides both in conformational analysis and binding strength, while special care should be taken when studying the kinetics of the solvated system. This work is expected to enrich our understanding of the solution behavior of An3+/An4+ at the force field level.
  • 加载中
    1. [1]

      Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. S.; Cheatham Iii, T. E.; DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P. Comput. Phys. Commun. 1995, 91 (1–3), 1. doi: 10.1016/0010-4655(95)00041-D  doi: 10.1016/0010-4655(95)00041-D

    2. [2]

      Schmid, N.; Christ, C. D.; Christen, M.; Eichenberger, A. P.; van Gunsteren, W. F. Comput. Phys. Commun. 2012, 183 (4), 890. doi: 10.1016/j.cpc.2011.12.014  doi: 10.1016/j.cpc.2011.12.014

    3. [3]

      Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I. J. Comput. Chem. 2010, 31 (4), 671. doi: 10.1002/jcc.21367  doi: 10.1002/jcc.21367

    4. [4]

      Buehl, M.; Wipff, G. Chem. Phys. Chem. 2011, 12 (17), 3095. doi: 10.1002/cphc.201100458  doi: 10.1002/cphc.201100458

    5. [5]

      Xia, M. R.; Liu, Z. Y.; Chai, Z. F.; Wang, D. Q. J. Nucl. Radiochem. 2019, 41 (1), 91. doi: 10.7538/hhx.2019.41.01.0091  doi: 10.7538/hhx.2019.41.01.0091

    6. [6]

      Guilbaud, P.; Wipff, G. J. Phys. Chem. 1993, 97 (21), 5685. doi: 10.1021/j100123a037  doi: 10.1021/j100123a037

    7. [7]

      Guilbaud, P.; Wipff, G. J. Mol. Struct. (Theochem) 1996, 366 (1–2), 55. doi: 10.1016/0166-1280(96)04496-X  doi: 10.1016/0166-1280(96)04496-X

    8. [8]

      Pomogaev, V.; Tiwari, S. P.; Rai, N.; Goff, G. S.; Runde, W.; Schneider, W. F.; Maginn, E. J. Phys. Chem. Chem. Phys. 2013, 15 (38), 15954. doi: 10.1039/c3cp52444b  doi: 10.1039/c3cp52444b

    9. [9]

      Li, P.; Roberts, B. P.; Chakravorty, D. K.; Merz, K. M., Jr. J. Chem. Theory Comput. 2013, 9 (6), 2733. doi: 10.1021/ct400146w  doi: 10.1021/ct400146w

    10. [10]

      Li, P.; Song, L. F.; Merz, K. M., Jr. J. Phy. Chem. B. 2014, 119 (3), 883. doi: 10.1021/jp505875v  doi: 10.1021/jp505875v

    11. [11]

      Hagberg, D.; Bednarz, E.; Edelstein, N. M.; Gagliardi, L. J. Am. Chem. Soc. 2007, 129 (46), 14136. doi: 10.1021/ja075489b  doi: 10.1021/ja075489b

    12. [12]

      Duvail, M.; Martelli, F.; Vitorge, P.; Spezia, R. J. Chem. Phys. 2011, 135 (4), 044503. doi: 10.1063/1.3613699  doi: 10.1063/1.3613699

    13. [13]

      Li, P.; Merz, K. M., Jr. Chem. Rev. 2017, 117 (3), 1564. doi: 10.1021/acs.chemrev.6b00440  doi: 10.1021/acs.chemrev.6b00440

    14. [14]

      Jones, J. E. Proc. Royal Soc. A 1924, 106 (738), 463. doi: 10.1098/rspa.1924.0082  doi: 10.1098/rspa.1924.0082

    15. [15]

      Stokes, R. H. J. Am. Chem. Soc. 1964, 86 (6), 979. doi: 10.1021/ja01060a002  doi: 10.1021/ja01060a002

    16. [16]

      Lemire, R. J. Chemical Thermodynamics of Neptunium and Plutonium; Elsevier: Amsterdam, The Netherlands, 2001; Vol. 4, pp. 85–293.

    17. [17]

      Aoyagi, H.; Kitatsuji, Y.; Yoshida, Z.; Kihara, S. Anal. Chim. Acta 2005, 538 (1–2), 283. doi: 10.1016/j.aca.2005.02.035  doi: 10.1016/j.aca.2005.02.035

    18. [18]

      Denning, R. G.; Norris, J. O. W.; Brown, D. Mol. Phys. 1982, 46 (2), 287. doi: 10.1080/00268978200101261  doi: 10.1080/00268978200101261

    19. [19]

      Skanthakumar, S.; Antonio, M. R.; Soderholm, L. Inorg. Chem. 2008, 47 (11), 4591. doi: 10.1021/ic702478w  doi: 10.1021/ic702478w

    20. [20]

      Allen, P. G.; Bucher, J. J.; Shuh, D. K.; Edelstein, N. M.; Reich, T. Inorg. Chem. 1997, 36 (21), 4576. doi: 10.1021/ic970502m  doi: 10.1021/ic970502m

    21. [21]

      Ikeda-Ohno, A.; Hennig, C.; Rossberg, A.; Funke, H.; Scheinost, A. C.; Bernhard, G.; Yaita, T. Inorg. Chem. 2008, 47 (18), 8294. doi: 10.1021/ic8009095  doi: 10.1021/ic8009095

    22. [22]

      Hennig, C.; Ikeda-Ohno, A.; Tsushima, S.; Scheinost, A. C. Inorg. Chem. 2009,48 (12), 5350. doi: 10.1021/ic9003005  doi: 10.1021/ic9003005

    23. [23]

      Stumpf, T.; Hennig, C.; Bauer, A.; Denecke, M. A.; Fanghänel, T. Radiochim. Acta 2004, 92 (3), 133. doi: 10.1524/ract.92.3.133.30487  doi: 10.1524/ract.92.3.133.30487

    24. [24]

      Allen, P.; Bucher, J.; Shuh, D.; Edelstein, N.; Craig, I. Inorg. Chem. 2000, 39 (3), 595. doi: 10.1021/ic9905953  doi: 10.1021/ic9905953

    25. [25]

      Lindqvist-Reis, P.; Klenze, R.; Schubert, G.; Fanghänel, T. J. Phys. Chem. B 2005,109 (7), 3077. doi: 10.1021/jp045516+  doi: 10.1021/jp045516+

    26. [26]

      Skanthakumar, S.; Antonio, M. R.; Wilson, R. E.; Soderholm, L. Inorg. Chem. 2007, 46 (9), 3485. doi: 10.1021/ic061798b  doi: 10.1021/ic061798b

    27. [27]

      Salomon-Ferrer, R.; Case, D. A.; Walker, R. C. Comput. Mol. Sci. 2013, 3 (2), 198. doi: 10.1002/wcms.1121  doi: 10.1002/wcms.1121

    28. [28]

      Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91 (24), 6269. doi: 10.1021/j100308a038  doi: 10.1021/j100308a038

    29. [29]

      Li, P.; Song, L. F.; Merz, K. M., Jr. J. Chem. Theory Comput. 2015, 11 (4), 1645. doi: 10.1021/ct500918t  doi: 10.1021/ct500918t

    30. [30]

      Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. J. Am. Chem. Soc. 2001, 222, U403.

    31. [31]

      Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. J. Comput. Chem. 2000, 21 (2), 132. doi: 10.1002/(SICI)1096-987X(20000130)21:2 < 132::AID-JCC5 > 3.0.CO; 2-P  doi: 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P

    32. [32]

      Jakalian, A.; Jack, D. B.; Bayly, C. I. J. Comput. Chem. 2002, 23 (16), 1623. doi: 10.1002/jcc.10128  doi: 10.1002/jcc.10128

    33. [33]

      Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103 (19), 8577. doi: 10.1063/1.470117  doi: 10.1063/1.470117

    34. [34]

      Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comput. Chem. 1997, 18 (12), 1463. doi: 10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO; 2-H  doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

    35. [35]

      Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81 (8), 3684. doi: 10.1063/1.448118  doi: 10.1063/1.448118

    36. [36]

      Hahn, A. M.; Then, H. Phys. Rev. E 2009, 80 (3), 031111. doi: 10.1103/PhysRevE.80.031111  doi: 10.1103/PhysRevE.80.031111

    37. [37]

      Impey, R. W.; Madden, P. A.; McDonald, I. R. J. Phys. Chem. 1983, 87 (25), 5071. doi: 10.1021/j150643a008  doi: 10.1021/j150643a008

    38. [38]

      Eyring, H. J. Chem. Phys. 1935, 3 (2), 107. doi: 10.1063/1.1749604  doi: 10.1063/1.1749604

    39. [39]

      Yang, T.; Bursten, B. E. Inorg. Chem. 2006, 45 (14), 5291. doi: 10.1021/ic0513787  doi: 10.1021/ic0513787

    40. [40]

      Frick, R. J.; Pribil, A. B.; Hofer, T. S.; Randolf, B. R.; Bhattacharjee, A.; Rode, B. M. Inorg. Chem. 2009, 48 (9), 3993. doi: 10.1021/ic801554p  doi: 10.1021/ic801554p

    41. [41]

      Moll, H.; Denecke, M.; Jalilehvand, F.; Sandström, M.; Grenthe, I. Inorg. Chem. 1999, 38 (8), 1795. doi: 10.1021/ic981362z  doi: 10.1021/ic981362z

    42. [42]

      Odoh, S. O.; Bylaska, E. J.; De Jong, W. A. J. Phy. Chem. A 2013, 117 (47), 12256. doi: 10.1021/jp4096248  doi: 10.1021/jp4096248

    43. [43]

      Ankudinov, A.; Conradson, S.; de Leon, J. M.; Rehr, J. Phys. Rev. B 1998, 57 (13), 7518. doi: doi.org/10.1103/PhysRevB.57.7518  doi: 10.1103/PhysRevB.57.7518

    44. [44]

      Amador, D. H. T.; Sambrano, J. R.; Gargano, R.; de Macedo, L. G. M. J. Mol. Model. 2017, 23 (3), 69. doi: 10.1007/s00894-017-3252-9  doi: 10.1007/s00894-017-3252-9

    45. [45]

      Wilson, R. E.; Skanthakumar, S.; Burns, P. C.; Soderholm, L. Angew. Chem. Int. Ed. 2007, 46 (42), 8043. doi: 10.1002/anie.200702872  doi: 10.1002/anie.200702872

    46. [46]

      Yang, T.; Tsushima, S.; Suzuki, A. J. Phys. Chem. A 2001, 105 (45), 10439. doi: 10.1021/jp012387d  doi: 10.1021/jp012387d

    47. [47]

      Atta-Fynn, R.; Bylaska, E. J.; Schenter, G. K.; De Jong, W. A. J. Phy. Chem. A 2011, 115 (18), 4665. doi: 10.1021/jp201043f  doi: 10.1021/jp201043f

    48. [48]

      Torapava, N.; Persson, I.; Eriksson, L.; Lundberg, D. Inorg. Chem. 2009, 48 (24), 11712. doi: 10.1021/ic901763s  doi: 10.1021/ic901763s

    49. [49]

      Smirnov, P. R.; Trostin, V. N. Russ. J. Gen. Chem. 2012, 82 (7), 1204. doi: 10.1134/S1070363212070031  doi: 10.1134/S1070363212070031

    50. [50]

      Spezia, R.; Jeanvoine, Y.; Vuilleumier, R. J. Mol. Model. 2014, 20 (8), doi: 10.1007/s00894-014-2398-y  doi: 10.1007/s00894-014-2398-y

    51. [51]

      Fourest, B.; Duplessis, J.; David, F. J. Less Common. Met. 1983, 92 (1), 17. doi: 10.1016/0022-5088(83)90220-5  doi: 10.1016/0022-5088(83)90220-5

    52. [52]

      Farkas, I.; Grenthe, I.; Bányai, I. J. Phys. Chem. A 2000, 104 (6), 1201. doi: 10.1021/jp992934j  doi: 10.1021/jp992934j

    53. [53]

      Ruiz-Martínez, A.; Casanova, D.; Alvarez, S. Chem. Eur. J. 2008, 14 (4), 1291. doi: 10.1002/chem.200701137  doi: 10.1002/chem.200701137

    54. [54]

      Neu, M. P.; Sonnenberg, J. L.; Bursten, B. E. Actinide Research Quarterly 2004, 1, (available online: https://www.lanl.gov/orgs/nmt/nmtdo/AQarchive/04spring/classic.html).

    55. [55]

      Abbasi, A. Structural and Spectroscopic Studies of Solvated Metal Ions. Ph. D. Dissertation, Stockholm University, Stockholm, Sweden, 2005; pp. 54–68.

    56. [56]

      Goldman, S.; Morss, L. R. Can. J. Chem. 1975, 53 (18), 2695. doi: 10.1139/v75-382  doi: 10.1139/v75-382

    57. [57]

      David, F. H. Radiochim. Acta 2008, 96 (3), 135. doi: 10.1524/ract.2008.1470  doi: 10.1524/ract.2008.1470

    58. [58]

      David, F. H.; Vokhmin, V. New J. Chem. 2003, 27 (11), 1627. doi: 10.1039/B301272G  doi: 10.1039/B301272G

    59. [59]

      Marcus, Y. Chem. Soc. Faraday Trans. 1991, 87 (18), 2995. doi: 10.1039/FT9918702995  doi: 10.1039/FT9918702995

    60. [60]

      Kumar, N.; Seminario, J. M. J. Phys. Chem. A 2015, 119 (4), 689. doi: 10.1021/jp507613a  doi: 10.1021/jp507613a

    61. [61]

      Li, B.; Dai, S., Jiang, D. -E. ACS Appl. Energy Mater. 2019, 2122. doi: 10.1021/acsaem.8b02157  doi: 10.1021/acsaem.8b02157

    62. [62]

      Duvail, M.; Ruas, A.; Venault, L.; Moisy, P.; Guilbaud, P. Inorg. Chem. 2009, 49 (2), 519. doi: 10.1021/ic9017085  doi: 10.1021/ic9017085

    63. [63]

      Ali, S. M.; Pahan, S.; Bhattacharyya, A.; Mohapatra, P. K. Phys. Chem. Chem. Phys. 2016, 18 (14), 9816. doi: 10.1039/C6CP00825A  doi: 10.1039/C6CP00825A

    64. [64]

      Rammo, N. N.; Hamid, K. R.; Khaleel, B. A. J. Less Common Met. 1990, 162 (1), doi: 10.1016/0022-5088(90)90453-Q  doi: 10.1016/0022-5088(90)90453-Q

    65. [65]

      Takao, K.; Kazama, H.; Ikeda, Y.; Tsushima, S. Angew. Chem. 2019, 131 (1), 246. doi: 10.1002/ange.201811731  doi: 10.1002/ange.201811731

    66. [66]

      Grigor'ev, M. S.; Budantseva, N. A.; Fedoseev, A. M. Russ. J. Coord. Chem. 2013, 39 (1), 87. doi: 10.1134/S1070328412090023  doi: 10.1134/S1070328412090023

    67. [67]

      Felmy, A. R.; Rai, D.; Sterner, S. M.; Mason, M. J.; Hess, N. J.; Conradson, S. D. J. Solut. Chem. 1997, 26 (3), 233. doi: 10.1007/BF02767996  doi: 10.1007/BF02767996

    68. [68]

      Hennig, C.; Ikeda-Ohno, A.; Emmerling, F.; Kraus, W.; Bernhard, G. Dalton Trans. 2010, 39 (15), 3744. doi: 10.1039/B922624A  doi: 10.1039/B922624A

    69. [69]

      Clark, D. L.; Conradson, S. D.; Keogh, D. W.; Palmer, P. D.; Scott, B. L.; Tait, C. D. Inorg. Chem. 1998, 37 (12), 2893. doi: 10.1021/ic971190q  doi: 10.1021/ic971190q

    70. [70]

      Ekimoto, T.; Matubayasi, N.; Ikeguchi, M. J. Chem. Theory Comput. 2014, 11 (1), 215. doi: 10.1021/ct5008394  doi: 10.1021/ct5008394

  • 加载中
    1. [1]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    2. [2]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    3. [3]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    4. [4]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    5. [5]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    7. [7]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    8. [8]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    9. [9]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    10. [10]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    11. [11]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    12. [12]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    13. [13]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    14. [14]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    20. [20]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

Metrics
  • PDF Downloads(12)
  • Abstract views(1269)
  • HTML views(296)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return