Parameterization and Validation of AMBER Force Field for Np4+, Am3+, and Cm3+
- Corresponding author: Wang Dongqi, dwang@ihep.ac.cn
Citation: Liu Ziyi, Xia Miaoren, Chai Zhifang, Wang Dongqi. Parameterization and Validation of AMBER Force Field for Np4+, Am3+, and Cm3+[J]. Acta Physico-Chimica Sinica, ;2020, 36(11): 190803. doi: 10.3866/PKU.WHXB201908035
Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. S.; Cheatham Iii, T. E.; DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P. Comput. Phys. Commun. 1995, 91 (1–3), 1. doi: 10.1016/0010-4655(95)00041-D
doi: 10.1016/0010-4655(95)00041-D
Schmid, N.; Christ, C. D.; Christen, M.; Eichenberger, A. P.; van Gunsteren, W. F. Comput. Phys. Commun. 2012, 183 (4), 890. doi: 10.1016/j.cpc.2011.12.014
doi: 10.1016/j.cpc.2011.12.014
Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I. J. Comput. Chem. 2010, 31 (4), 671. doi: 10.1002/jcc.21367
doi: 10.1002/jcc.21367
Buehl, M.; Wipff, G. Chem. Phys. Chem. 2011, 12 (17), 3095. doi: 10.1002/cphc.201100458
doi: 10.1002/cphc.201100458
Xia, M. R.; Liu, Z. Y.; Chai, Z. F.; Wang, D. Q. J. Nucl. Radiochem. 2019, 41 (1), 91. doi: 10.7538/hhx.2019.41.01.0091
doi: 10.7538/hhx.2019.41.01.0091
Guilbaud, P.; Wipff, G. J. Phys. Chem. 1993, 97 (21), 5685. doi: 10.1021/j100123a037
doi: 10.1021/j100123a037
Guilbaud, P.; Wipff, G. J. Mol. Struct. (Theochem) 1996, 366 (1–2), 55. doi: 10.1016/0166-1280(96)04496-X
doi: 10.1016/0166-1280(96)04496-X
Pomogaev, V.; Tiwari, S. P.; Rai, N.; Goff, G. S.; Runde, W.; Schneider, W. F.; Maginn, E. J. Phys. Chem. Chem. Phys. 2013, 15 (38), 15954. doi: 10.1039/c3cp52444b
doi: 10.1039/c3cp52444b
Li, P.; Roberts, B. P.; Chakravorty, D. K.; Merz, K. M., Jr. J. Chem. Theory Comput. 2013, 9 (6), 2733. doi: 10.1021/ct400146w
doi: 10.1021/ct400146w
Li, P.; Song, L. F.; Merz, K. M., Jr. J. Phy. Chem. B. 2014, 119 (3), 883. doi: 10.1021/jp505875v
doi: 10.1021/jp505875v
Hagberg, D.; Bednarz, E.; Edelstein, N. M.; Gagliardi, L. J. Am. Chem. Soc. 2007, 129 (46), 14136. doi: 10.1021/ja075489b
doi: 10.1021/ja075489b
Duvail, M.; Martelli, F.; Vitorge, P.; Spezia, R. J. Chem. Phys. 2011, 135 (4), 044503. doi: 10.1063/1.3613699
doi: 10.1063/1.3613699
Li, P.; Merz, K. M., Jr. Chem. Rev. 2017, 117 (3), 1564. doi: 10.1021/acs.chemrev.6b00440
doi: 10.1021/acs.chemrev.6b00440
Jones, J. E. Proc. Royal Soc. A 1924, 106 (738), 463. doi: 10.1098/rspa.1924.0082
doi: 10.1098/rspa.1924.0082
Stokes, R. H. J. Am. Chem. Soc. 1964, 86 (6), 979. doi: 10.1021/ja01060a002
doi: 10.1021/ja01060a002
Lemire, R. J. Chemical Thermodynamics of Neptunium and Plutonium; Elsevier: Amsterdam, The Netherlands, 2001; Vol. 4, pp. 85–293.
Aoyagi, H.; Kitatsuji, Y.; Yoshida, Z.; Kihara, S. Anal. Chim. Acta 2005, 538 (1–2), 283. doi: 10.1016/j.aca.2005.02.035
doi: 10.1016/j.aca.2005.02.035
Denning, R. G.; Norris, J. O. W.; Brown, D. Mol. Phys. 1982, 46 (2), 287. doi: 10.1080/00268978200101261
doi: 10.1080/00268978200101261
Skanthakumar, S.; Antonio, M. R.; Soderholm, L. Inorg. Chem. 2008, 47 (11), 4591. doi: 10.1021/ic702478w
doi: 10.1021/ic702478w
Allen, P. G.; Bucher, J. J.; Shuh, D. K.; Edelstein, N. M.; Reich, T. Inorg. Chem. 1997, 36 (21), 4576. doi: 10.1021/ic970502m
doi: 10.1021/ic970502m
Ikeda-Ohno, A.; Hennig, C.; Rossberg, A.; Funke, H.; Scheinost, A. C.; Bernhard, G.; Yaita, T. Inorg. Chem. 2008, 47 (18), 8294. doi: 10.1021/ic8009095
doi: 10.1021/ic8009095
Hennig, C.; Ikeda-Ohno, A.; Tsushima, S.; Scheinost, A. C. Inorg. Chem. 2009,48 (12), 5350. doi: 10.1021/ic9003005
doi: 10.1021/ic9003005
Stumpf, T.; Hennig, C.; Bauer, A.; Denecke, M. A.; Fanghänel, T. Radiochim. Acta 2004, 92 (3), 133. doi: 10.1524/ract.92.3.133.30487
doi: 10.1524/ract.92.3.133.30487
Allen, P.; Bucher, J.; Shuh, D.; Edelstein, N.; Craig, I. Inorg. Chem. 2000, 39 (3), 595. doi: 10.1021/ic9905953
doi: 10.1021/ic9905953
Lindqvist-Reis, P.; Klenze, R.; Schubert, G.; Fanghänel, T. J. Phys. Chem. B 2005,109 (7), 3077. doi: 10.1021/jp045516+
doi: 10.1021/jp045516+
Skanthakumar, S.; Antonio, M. R.; Wilson, R. E.; Soderholm, L. Inorg. Chem. 2007, 46 (9), 3485. doi: 10.1021/ic061798b
doi: 10.1021/ic061798b
Salomon-Ferrer, R.; Case, D. A.; Walker, R. C. Comput. Mol. Sci. 2013, 3 (2), 198. doi: 10.1002/wcms.1121
doi: 10.1002/wcms.1121
Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91 (24), 6269. doi: 10.1021/j100308a038
doi: 10.1021/j100308a038
Li, P.; Song, L. F.; Merz, K. M., Jr. J. Chem. Theory Comput. 2015, 11 (4), 1645. doi: 10.1021/ct500918t
doi: 10.1021/ct500918t
Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. J. Am. Chem. Soc. 2001, 222, U403.
Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. J. Comput. Chem. 2000, 21 (2), 132. doi: 10.1002/(SICI)1096-987X(20000130)21:2 < 132::AID-JCC5 > 3.0.CO; 2-P
doi: 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
Jakalian, A.; Jack, D. B.; Bayly, C. I. J. Comput. Chem. 2002, 23 (16), 1623. doi: 10.1002/jcc.10128
doi: 10.1002/jcc.10128
Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103 (19), 8577. doi: 10.1063/1.470117
doi: 10.1063/1.470117
Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comput. Chem. 1997, 18 (12), 1463. doi: 10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO; 2-H
doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81 (8), 3684. doi: 10.1063/1.448118
doi: 10.1063/1.448118
Hahn, A. M.; Then, H. Phys. Rev. E 2009, 80 (3), 031111. doi: 10.1103/PhysRevE.80.031111
doi: 10.1103/PhysRevE.80.031111
Impey, R. W.; Madden, P. A.; McDonald, I. R. J. Phys. Chem. 1983, 87 (25), 5071. doi: 10.1021/j150643a008
doi: 10.1021/j150643a008
Eyring, H. J. Chem. Phys. 1935, 3 (2), 107. doi: 10.1063/1.1749604
doi: 10.1063/1.1749604
Yang, T.; Bursten, B. E. Inorg. Chem. 2006, 45 (14), 5291. doi: 10.1021/ic0513787
doi: 10.1021/ic0513787
Frick, R. J.; Pribil, A. B.; Hofer, T. S.; Randolf, B. R.; Bhattacharjee, A.; Rode, B. M. Inorg. Chem. 2009, 48 (9), 3993. doi: 10.1021/ic801554p
doi: 10.1021/ic801554p
Moll, H.; Denecke, M.; Jalilehvand, F.; Sandström, M.; Grenthe, I. Inorg. Chem. 1999, 38 (8), 1795. doi: 10.1021/ic981362z
doi: 10.1021/ic981362z
Odoh, S. O.; Bylaska, E. J.; De Jong, W. A. J. Phy. Chem. A 2013, 117 (47), 12256. doi: 10.1021/jp4096248
doi: 10.1021/jp4096248
Ankudinov, A.; Conradson, S.; de Leon, J. M.; Rehr, J. Phys. Rev. B 1998, 57 (13), 7518. doi: doi.org/10.1103/PhysRevB.57.7518
doi: 10.1103/PhysRevB.57.7518
Amador, D. H. T.; Sambrano, J. R.; Gargano, R.; de Macedo, L. G. M. J. Mol. Model. 2017, 23 (3), 69. doi: 10.1007/s00894-017-3252-9
doi: 10.1007/s00894-017-3252-9
Wilson, R. E.; Skanthakumar, S.; Burns, P. C.; Soderholm, L. Angew. Chem. Int. Ed. 2007, 46 (42), 8043. doi: 10.1002/anie.200702872
doi: 10.1002/anie.200702872
Yang, T.; Tsushima, S.; Suzuki, A. J. Phys. Chem. A 2001, 105 (45), 10439. doi: 10.1021/jp012387d
doi: 10.1021/jp012387d
Atta-Fynn, R.; Bylaska, E. J.; Schenter, G. K.; De Jong, W. A. J. Phy. Chem. A 2011, 115 (18), 4665. doi: 10.1021/jp201043f
doi: 10.1021/jp201043f
Torapava, N.; Persson, I.; Eriksson, L.; Lundberg, D. Inorg. Chem. 2009, 48 (24), 11712. doi: 10.1021/ic901763s
doi: 10.1021/ic901763s
Smirnov, P. R.; Trostin, V. N. Russ. J. Gen. Chem. 2012, 82 (7), 1204. doi: 10.1134/S1070363212070031
doi: 10.1134/S1070363212070031
Spezia, R.; Jeanvoine, Y.; Vuilleumier, R. J. Mol. Model. 2014, 20 (8), doi: 10.1007/s00894-014-2398-y
doi: 10.1007/s00894-014-2398-y
Fourest, B.; Duplessis, J.; David, F. J. Less Common. Met. 1983, 92 (1), 17. doi: 10.1016/0022-5088(83)90220-5
doi: 10.1016/0022-5088(83)90220-5
Farkas, I.; Grenthe, I.; Bányai, I. J. Phys. Chem. A 2000, 104 (6), 1201. doi: 10.1021/jp992934j
doi: 10.1021/jp992934j
Ruiz-Martínez, A.; Casanova, D.; Alvarez, S. Chem. Eur. J. 2008, 14 (4), 1291. doi: 10.1002/chem.200701137
doi: 10.1002/chem.200701137
Neu, M. P.; Sonnenberg, J. L.; Bursten, B. E. Actinide Research Quarterly 2004, 1, (available online: https://www.lanl.gov/orgs/nmt/nmtdo/AQarchive/04spring/classic.html).
Abbasi, A. Structural and Spectroscopic Studies of Solvated Metal Ions. Ph. D. Dissertation, Stockholm University, Stockholm, Sweden, 2005; pp. 54–68.
Goldman, S.; Morss, L. R. Can. J. Chem. 1975, 53 (18), 2695. doi: 10.1139/v75-382
doi: 10.1139/v75-382
David, F. H. Radiochim. Acta 2008, 96 (3), 135. doi: 10.1524/ract.2008.1470
doi: 10.1524/ract.2008.1470
David, F. H.; Vokhmin, V. New J. Chem. 2003, 27 (11), 1627. doi: 10.1039/B301272G
doi: 10.1039/B301272G
Marcus, Y. Chem. Soc. Faraday Trans. 1991, 87 (18), 2995. doi: 10.1039/FT9918702995
doi: 10.1039/FT9918702995
Kumar, N.; Seminario, J. M. J. Phys. Chem. A 2015, 119 (4), 689. doi: 10.1021/jp507613a
doi: 10.1021/jp507613a
Li, B.; Dai, S., Jiang, D. -E. ACS Appl. Energy Mater. 2019, 2122. doi: 10.1021/acsaem.8b02157
doi: 10.1021/acsaem.8b02157
Duvail, M.; Ruas, A.; Venault, L.; Moisy, P.; Guilbaud, P. Inorg. Chem. 2009, 49 (2), 519. doi: 10.1021/ic9017085
doi: 10.1021/ic9017085
Ali, S. M.; Pahan, S.; Bhattacharyya, A.; Mohapatra, P. K. Phys. Chem. Chem. Phys. 2016, 18 (14), 9816. doi: 10.1039/C6CP00825A
doi: 10.1039/C6CP00825A
Rammo, N. N.; Hamid, K. R.; Khaleel, B. A. J. Less Common Met. 1990, 162 (1), doi: 10.1016/0022-5088(90)90453-Q
doi: 10.1016/0022-5088(90)90453-Q
Takao, K.; Kazama, H.; Ikeda, Y.; Tsushima, S. Angew. Chem. 2019, 131 (1), 246. doi: 10.1002/ange.201811731
doi: 10.1002/ange.201811731
Grigor'ev, M. S.; Budantseva, N. A.; Fedoseev, A. M. Russ. J. Coord. Chem. 2013, 39 (1), 87. doi: 10.1134/S1070328412090023
doi: 10.1134/S1070328412090023
Felmy, A. R.; Rai, D.; Sterner, S. M.; Mason, M. J.; Hess, N. J.; Conradson, S. D. J. Solut. Chem. 1997, 26 (3), 233. doi: 10.1007/BF02767996
doi: 10.1007/BF02767996
Hennig, C.; Ikeda-Ohno, A.; Emmerling, F.; Kraus, W.; Bernhard, G. Dalton Trans. 2010, 39 (15), 3744. doi: 10.1039/B922624A
doi: 10.1039/B922624A
Clark, D. L.; Conradson, S. D.; Keogh, D. W.; Palmer, P. D.; Scott, B. L.; Tait, C. D. Inorg. Chem. 1998, 37 (12), 2893. doi: 10.1021/ic971190q
doi: 10.1021/ic971190q
Ekimoto, T.; Matubayasi, N.; Ikeguchi, M. J. Chem. Theory Comput. 2014, 11 (1), 215. doi: 10.1021/ct5008394
doi: 10.1021/ct5008394
Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
Yan Cheng , Hua-Peng Ruan , Yan Peng , Longhe Li , Zhenqiang Xie , Lang Liu , Shiyong Zhang , Hengyun Ye , Zhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Mingjiao Lu , Zhixing Wang , Gui Luo , Huajun Guo , Xinhai Li , Guochun Yan , Qihou Li , Xianglin Li , Ding Wang , Jiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253