Citation: Liu Taihong, Miao Rong, Peng Haonan, Liu Jing, Ding Liping, Fang Yu. Adlayer Chemistry on Film-based Fluorescent Gas Sensors[J]. Acta Physico-Chimica Sinica, ;2020, 36(10): 190802. doi: 10.3866/PKU.WHXB201908025 shu

Adlayer Chemistry on Film-based Fluorescent Gas Sensors

  • Corresponding author: Fang Yu, yfang@snnu.edu.cn
  • Received Date: 22 August 2019
    Revised Date: 4 October 2019
    Accepted Date: 8 October 2019
    Available Online: 11 October 2019

    Fund Project: the National Natural Science Foundation of China 21820102005the National Natural Science Foundation of China 21527802the Natural Science Basic Research Program of Shaanxi, China 2019JM-404The project was supported by the National Natural Science Foundation of China (21527802, 21673133, 21820102005), the 111 Project, China (B14041), the Program for Changjiang Scholars and Innovative Research Team in University, China (IRT-14R33), the Natural Science Basic Research Program of Shaanxi, China (2019JM-404), the Fundamental Research Funds for the Central Universities, China (GK201803024) and the Youth Innovation Team of Shaanxi Universities, Chinathe National Natural Science Foundation of China 21673133the Fundamental Research Funds for the Central Universities, China GK201803024the 111 Project, China B14041the Program for Changjiang Scholars and Innovative Research Team in University, China IRT-14R33

  • Adlayer chemistry has been a significant subject of interest in physical chemistry over the past decades. Considerable attention has been paid to the development of high-performance film-based gas sensors, and tremendous progress has been achieved. Among the different analytical techniques, fluorescence provides a highly sensitive and selective method for detecting a wide variety of analytes. Film-based fluorescent sensors have emerged as one of the most promising candidates for chemical sensing and are being further developed into portable devices. Theoretically, relative signal changes including static and dynamic characteristics are significantly used to determine the sensing process; these characteristics are associated with surface absorption, the interaction between the analytes and sensing adlayer, as well as desorption kinetics in the absence and presence of the targeted gaseous analytes. As revealed earlier, there are a number of factors that determine the sensing behavior of a film, and the most important factors have been identified. Firstly, the suitability of the employed sensing fluorophore, which is important as it ultimately determines the effectiveness of a sensing process. Secondly, the structure of the fluorescent adlayer of the film; this is another important factor as it significantly determines the efficiency of mass transfer, which is necessary for efficient and reversible sensing. Finally, the chemical nature and surface structure of the substrate as these could affect the sensing performance of the film via the screening or enriching of analyte molecules. However, in situ, online, fast, and sensitive detection and discrimination of toxic and hazardous species via vapor sampling is a challenge that will persist for many years. By using the simultaneous interaction of multiple analytes with different sensing materials, the sensor array-based approach can recognize the overall change in the composition of complex mixtures, rather than just identifying their specific elements. The data-rich outputs of array-based sensing methods have recently been widely adopted by the analytical community due to their improved capabilities with statistical and cheminformatic approaches during analysis. Moreover, the community has recognized that numerous complex sensing challenges cannot be solved with conventional analytical tools. In the past 20 years, our group has been committed to effectively research the formation of fluorescent sensitive films, optimization of sensing films, and fabrication of film-based fluorescent sensor arrays. A series of fluorescence sensitive thin-film materials have been developed, and high-performance fluorescence sensors have been successfully fabricated due to which a positive technological transformation has been achieved. Based on the recent progress in our group, this article briefly reviews the key points of the interactions between the gaseous analytes and adlayer. Moreover, their applications have also been addressed in the vapor phase detection of explosives, illicit drugs, and volatile organic contaminants based on the film-based fluorescent gas sensors. Further discrimination of the complex analytes was realized using a sensor array and pattern recognition strategy. It is strongly believed that our studies are the first to provide powerful fluorescent techniques for the efficient detection and discrimination of important or hazardous substances with remarkably different properties. Meanwhile, the large-scale production of our development demonstrates that interdisciplinary corporation and industry participation plays a vital role in converting laboratory techniques to a conceptual sensing system, which can manufacture commercial portable detectors. Furthermore, we offer insights on the future directions and challenges of film-based sensors in gas sensing.
  • 加载中
    1. [1]

      Wolfbeis, O. S. Angew. Chem. Int. Ed. 2013, 52, 9864. doi: 10.1002/anie.201305915  doi: 10.1002/anie.201305915

    2. [2]

      Wang, X. D.; Wolfbeis, O. S. Chem. Soc. Rev. 2014, 43, 3666. doi: 10.1039/C4CS00039K  doi: 10.1039/C4CS00039K

    3. [3]

      Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T. M. Chem. Rev. 2019, 119, 599. doi: 10.1021/acs.chemrev.8b00340  doi: 10.1021/acs.chemrev.8b00340

    4. [4]

      Zhu, L.; Zeng, W. Sens. Actuators B 2017, 267, 242. doi: 10.1016/j.snb.2017.10.021  doi: 10.1016/j.snb.2017.10.021

    5. [5]

      Chatterjee, S. G.; Chatterjee, S.; Ray, A. K.; Chakraborty, A. K. Sens. Actuators B 2015, 221, 1170. doi: 10.1016/j.snb.2015.07.070  doi: 10.1016/j.snb.2015.07.070

    6. [6]

      Liu, T. H.; Liu, X. L.; Valencia, M. A.; Sui, B. L.; Zhang, Y. W.; Belfield, K. D. Eur. J. Org. Chem. 2017, 3957. doi: 10.1002/ejoc.201700649  doi: 10.1002/ejoc.201700649

    7. [7]

      Liu, T. H.; Yang, L. J.; Zhang, J.; Liu, K.; Ding, L. P.; Peng, H. N.; Belfield, K. D.; Fang, Y. Sens. Actuators B 2019, 292, 83. doi: 10.1016/j.snb.2019.04.138  doi: 10.1016/j.snb.2019.04.138

    8. [8]

      Liu, Q.; Mukherjee, S.; Huang, R. R.; Liu, K.; Liu, T. H.; Liu, K. Q.; Miao, R.; Peng, H. N.; Fang, Y. Chem. -Asian J. 2019, 14, 2751. doi: 10.1002/asia.201900622.  doi: 10.1002/asia.201900622

    9. [9]

      Wang, J.; Ma, Q. Q.; Wang, Y. Q.; Li, Z. H.; Li, Z. Z.; Yuan, Q. Chem. Soc. Rev. 2018, 47, 8766. doi: 10.1039/C8CS00658J  doi: 10.1039/C8CS00658J

    10. [10]

      Pejcic, B.; Eadington, P.; Ross, A. Environ. Sci. Technol. 2007, 41, 6333. doi: 10.1021/es0704535  doi: 10.1021/es0704535

    11. [11]

      Liu, T. H.; Liu, K.; Zhang, J. L.; Wang, Z. L. ChemistrySelect 2018, 3, 5559. doi: 10.1002/slct.201800841  doi: 10.1002/slct.201800841

    12. [12]

      Potyrailo, R. A. Chem. Rev. 2016, 116, 11877. dio: 10.1021/acs.chemrev.6b00187  doi: 10.1021/acs.chemrev.6b00187

    13. [13]

      Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M. Chem. Soc. Rev. 2007, 36, 993. doi: 10.1039/b609548h  doi: 10.1039/b609548h

    14. [14]

      Wu, D.; Sedgwick, A. C.; Gunnlaugsson, T.; Akkaya, E. U.; Yoon, J.; James, T. J. Chem. Soc. Rev. 2017, 46, 7105. doi: 10.1039/c7cs00240h  doi: 10.1039/c7cs00240h

    15. [15]

      Fan, J. M.; Ding, L. P.; Fang, Y. Langmuir 2019, 35, 326. doi: 10.1021/acs.langmuir.8b02111  doi: 10.1021/acs.langmuir.8b02111

    16. [16]

      Gao, M.; Tang, B. Z. ACS Sen. 2017, 2, 1382. doi: 10.1021/acssensors.7b00551  doi: 10.1021/acssensors.7b00551

    17. [17]

      Kim, H. N.; Guo, Z. Q.; Zhu, W. H.; Yoon, J.; Tian, H. Chem. Soc. Rev. 2011, 40, 79. doi: 10.1039/c0cs00058b  doi: 10.1039/c0cs00058b

    18. [18]

      Rochat, S.; Swager, T. M. Angew. Chem. Int. Edit. 2014, 53, 9792. doi: 10.1002/anie.201404439  doi: 10.1002/anie.201404439

    19. [19]

      Anzenbacher, Jr. P.; Lubal, P.; Bucek, P.; Palacios, M. A.; Kozelkova, M. E. Chem. Soc. Rev. 2010, 39, 3954. doi: 10.1039/b926220m  doi: 10.1039/b926220m

    20. [20]

      Park, C. H.; Schroeder, V.; Kim, B. J.; Swager, T. M. ACS Sen. 2018, 3, 2432. doi: 10.1021/acssensors.8b00987  doi: 10.1021/acssensors.8b00987

    21. [21]

      Ma, X. M.; He, S.; Qiu, B.; Luo, F.; Guo, L. H.; Lin, Z. Y. ACS Sen. 2019, 4, 782. doi: 10.1021/acssensors.9b00438  doi: 10.1021/acssensors.9b00438

    22. [22]

      Lee, J.; Chang, H. T.; An, H.; Ahn, S.; Shim, J.; Kim, J. M. Nat. Commun. 2013, 4, 2461. doi: 10.1038/ncomms3461  doi: 10.1038/ncomms3461

    23. [23]

      Guo, L. J.; Yang, Z.; Dou, X. C. Adv. Mater. 2017, 29, 1604528. doi: 10.1002/adma.201604528  doi: 10.1002/adma.201604528

    24. [24]

      Thomas, S. W., Ⅲ; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339. doi: 10.1021/cr0501339

    25. [25]

      Li, Z.; Askim, J. R.; Suslick, K. S. Chem. Rev. 2019, 119, 231. doi: 10.1021/acs.chemrev.8b00226  doi: 10.1021/acs.chemrev.8b00226

    26. [26]

      Rankin, J. M.; Zhang, Q. F.; LaGasse, M. K.; Zhang, Y N.; Askima, J. R.; Suslick, S. K. Analyst 2015, 140, 2613. doi: 10.1039/C4AN02253J  doi: 10.1039/C4AN02253J

    27. [27]

      Hakim, M.; Broza, Y. Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Chem. Rev. 2012, 112, 5949. doi: 10.1021/cr300174a  doi: 10.1021/cr300174a

    28. [28]

      Segev-Bar, M.; Haick, H. ACS Nano 2013, 7, 8366. doi: 10.1021/nn402728g  doi: 10.1021/nn402728g

    29. [29]

      Che, Y. K.; Yang, X. M.; Loser, S.; Zang, L. Nano Lett. 2008, 8, 2219. doi: 10.1021/nl080761g  doi: 10.1021/nl080761g

    30. [30]

      Chen, S.; Slattum, P.; Wang, C. Y.; Zang, L. Chem. Rev. 2015, 115, 11967. doi: 10.1021/acs.chemrev.5b00312  doi: 10.1021/acs.chemrev.5b00312

    31. [31]

      Zhou, H.; Wang, X. B.; Lin, T. T.; Tang, B. Z.; Xu, J. W. Polym. Chem. 2016, 7, 6309. doi: 10.1039/C6PY01358A  doi: 10.1039/C6PY01358A

    32. [32]

      Fan, T. C.; Xu, W.; Yao, J. J.; Jiao, Z. N.; Fu, Y. Y.; Zhu, D. F.; He, Q. G.; Cao, H. M.; Cheng, J. G. ACS Sen. 2016, 1, 312. doi: 10.1021/acssensors.5b00293  doi: 10.1021/acssensors.5b00293

    33. [33]

      Fu, Y. Y.; Yu, J. P.; Wang, K. X.; Liu, H.; Yu, Y. G.; Liu, A.; Peng, X.; He, Q. G.; Cao, H. M.; Cheng, J. G. ACS Sen. 2018, 3, 1445. doi: 10.1021/acssensors.8b00313  doi: 10.1021/acssensors.8b00313

    34. [34]

      Fu, Y. Y.; Yao, J. J.; Xu, W.; Fan, T. C.; Jiao, Z. N.; He, Q. G.; Zhu, D. F.; Cao, H. M.; Cheng, J. G. Anal. Chem. 2016, 88, 5507. doi: 10.1021/acs.analchem.6b01057  doi: 10.1021/acs.analchem.6b01057

    35. [35]

      Yao, J. J.; Fu, Y. Y.; Xu, W.; Fan, T. C.; Gao, Y. X.; He, Q. G.; Zhu, D. F.; Cao, H. M.; Cheng, J. G. Anal. Chem. 2016, 88, 2497. doi: 10.1021/acs.analchem.5b04777  doi: 10.1021/acs.analchem.5b04777

    36. [36]

      Xu, W.; Fu, Y. Y.; Yao, J. J.; Fan, T. C.; Gao, Y. X.; He, Q. G.; Zhu, D. F.; Cao, H. M.; Cheng, J. G. ACS Sen. 2016, 1, 1054. doi: 10.1021/acssensors.6b00366  doi: 10.1021/acssensors.6b00366

    37. [37]

      Zhang, X. T.; Zhu, D. F.; Fu, Y. Y.; He, Q. G.; Cao, H. M.; Li, W.; Cheng, J. G. J. Mater. Chem. C 2017, 5, 2114. doi: 10.1039/c6tc05642c  doi: 10.1039/c6tc05642c

    38. [38]

      Wang, M.; Guo, L.; Cao, D. P. Anal. Chem. 2018, 90, 3608. doi: 10.1021/acs.analchem.8b00146  doi: 10.1021/acs.analchem.8b00146

    39. [39]

      Huang, H. N.; Zhou, Y.; Wang, M.; Zhang, J. Y.; Cao, X. H.; Wang, S. T.; Cao, D. P.; Cui, C. M. Angew. Chem. Int. Ed. 2019, 58, 10132. doi: 10.1002/anie.201903418  doi: 10.1002/anie.201903418

    40. [40]

      Guan, W. J.; Zhou, W. J.; Lu, J.; Lu, C. Chem. Soc. Rev. 2015, 44, 6981. doi: 10.1039/C5CS00246J  doi: 10.1039/C5CS00246J

    41. [41]

      Guan, W. J.; Wang, S.; Lu, C.; Tang, B. Z. Nat. Commun. 2016, 7, 11811. doi: 10.1038/ncomms11811  doi: 10.1038/ncomms11811

    42. [42]

      Guan, W. J.; Zhou, W. J.; Lu, C.; Tang, B. Z. Angew. Chem. Int. Ed. 2015, 54, 15160. doi: 10.1002/anie.201507236  doi: 10.1002/anie.201507236

    43. [43]

      Zhong, J. P.; Cui, X. Y.; Guan, W. J.; Lu, C. J. Mater. Chem. C 2018, 6, 13218. doi: 10.1039/c8tc04837a  doi: 10.1039/c8tc04837a

    44. [44]

      Feng, Z. M.; Zhong, J. P.; Guan, W. J.; Tian, R.; Lu, C.; Ding, C. F. Analyst 2018, 143, 2090. doi: 10.1039/c8an00016f  doi: 10.1039/c8an00016f

    45. [45]

      Sun, Y.; Lu, F. N.; Yang, H. W.; Ding, C. F.; Yuan, Z. Q.; Lu, C. Nanoscale 2019, 11, 12889. doi: 10.1039/c9nr03643a  doi: 10.1039/c9nr03643a

    46. [46]

      Xue, P. C.; Ding, J. P.; Wang, p. P.; Lu, R. J. Mater. Chem. C 2016, 4, 6688. doi: 10.1039/c6tc01503d  doi: 10.1039/c6tc01503d

    47. [47]

      Xue, P. C.; Yao, B. Q.; Wang, P. P.; Gong, P.; Zhang, Z. Q.; Lu, R. Chem. Eur. J. 2015, 21, 17508. doi: 10.1002/chem.201502401  doi: 10.1002/chem.201502401

    48. [48]

      Zhai, L.; Liu, M. Y.; Xue, P. C.; Sun, J. B.; Gong, P.; Zhang, Z. P.; Sun, J. B.; Lu, R. J. Mater. Chem. C 2016, 4, 7939. doi: 10.1039/c6tc01790h  doi: 10.1039/c6tc01790h

    49. [49]

      Xue, P. C.; Ding, J. P.; Shen, Y. B.; Gao, H. Q.; Zhu, J. Y.; Sun, J. B.; Lu, R. J. Mater. Chem. C 2017, 5, 11532. doi: 10.1039/c7tc03192k  doi: 10.1039/c7tc03192k

    50. [50]

      Sun, J. B.; Qian, C.; Xu, S. Z.; Jia, X. Y.; Zhao, L. Zhao, J. Y.; Lu, R. Org. Biomol. Chem. 2018, 16, 7438. doi: 10.1039/c8ob01596a  doi: 10.1039/c8ob01596a

    51. [51]

      Zhang, K.; Zhou, H. B.; Mei, Q. S.; Wang, S. H.; Guan, G. J.; Liu, R. Y.; Zhang, J.; Zhang, Z. P. J. Am. Chem. Soc. 2011, 133, 8424. doi: 10.1021/ja2015873  doi: 10.1021/ja2015873

    52. [52]

      Liu, C.; Ning, D. H.; Zhang, C.; Liu, Z. J.; Zhang, R. L.; Zhao, J.; Zhao, T. T.; Liu, B. H.; Zhang, Z. P. ACS Appl. Mater. Interfaces 2017, 9, 18897. doi: 10.1021/acsami.7b05827.  doi: 10.1021/acsami.7b05827

    53. [53]

      Yu, X. T.; Gong, Y. J.; Xiong, W.; Li, M.; Zhao, J. C.; Che, Y. K. Anal. Chem. 2019, 91, 6967. doi: 10.1021/acs.analchem.9b01255  doi: 10.1021/acs.analchem.9b01255

    54. [54]

      Qiu, C. K.; Liu, X. L.; Cheng, C. Q.; Gong, Y. J.; Xiong, W.; Guo, Y. X.; Wang, C.; Zhao, J. C.; Che, Y. K. Anal. Chem. 2019, 91, 6408. doi: 10.1021/acs.analchem.9b00709  doi: 10.1021/acs.analchem.9b00709

    55. [55]

      Ding, L. P.; Fang, Y. Chem. Soc. Rev. 2010, 39, 4258. doi: 10.1039/c003028g  doi: 10.1039/c003028g

    56. [56]

      Gao, L. N.; Lv, F. T.; Hu, J.; Fang, Y. Acta Phys. -Chim. Sin. 2007, 23, 274.  doi: 10.3866/PKU.WHXB20070226

    57. [57]

      Liu, T. H.; Ding, L. P.; Zhao, K. R.; Wang, W. L.; Fang, Y. J. Mater. Chem. 2012, 22, 1069. doi: 10.1039/C1JM14022A  doi: 10.1039/C1JM14022A

    58. [58]

      Liu, T. H.; Ding, L. P.; He, G.; Yang, Y.; Wang, W. L.; Fang, Y. ACS Appl. Mater. Interfaces 2011, 3, 1245. doi: 10.1021/am2000592  doi: 10.1021/am2000592

    59. [59]

      Cui, H.; He, G.; Wang, H. Y.; Sun, X. H.; Liu, T. H.; Ding, L. P.; Fang, Y. ACS Appl. Mater. Interfaces 2012, 4, 6935. doi: 10.1021/am302069p  doi: 10.1021/am302069p

    60. [60]

      He, G.; Yan, N.; Kong, H. Y.; Yin, S. W.; Ding, L. P.; Qu, S. X.; Fang, Y. Macromolecules 2011, 44, 703. doi: 10.1021/ma102769b  doi: 10.1021/ma102769b

    61. [61]

      Miao, R.; Fang, Y. Chin. Sci. Bull. 2017, 62, 532.  doi: 10.1360/N972016-00434

    62. [62]

      Miao, R.; Peng, J. X.; Fang, Y. Mol. Syst. Des. Eng. 2016, 1, 242. doi: 10.1039/C6ME00039H  doi: 10.1039/C6ME00039H

    63. [63]

      Liu, T. H.; Fang, Y. Chin. J. Appl. Chem. 2018, 35, 1133.  doi: 10.11944/j.issn.1000-0518.2018.09.180171

    64. [64]

      Kaushik, A.; Kumar, R.; Arya, S. K., Nair, M.; Malhotra, B. D.; Bhansali, S. Chem. Rev. 2015, 115, 4571. doi: 10.1021/cr400659h

    65. [65]

      Lee, E.; Yoon, Y. S.; Kim, D. J. ACS Sens. 2018, 3, 2045. doi: 10.1021/acssensors.8b01077  doi: 10.1021/acssensors.8b01077

    66. [66]

      Ibanez, J. G.; Rincón, M. E.; Gutierrez-Granados, S.; Chahma, M.; Jaramillo-Quintero, O. A.; Frontana-Uribe, B. A. Chem. Rev. 2018, 118, 4731. doi: 10.1021/acs.chemrev.7b00482  doi: 10.1021/acs.chemrev.7b00482

    67. [67]

      Wang, H.; Lustig, W. P.; Li, J. Chem. Soc. Rev. 2018, 47, 4729. doi: 10.1039/C7CS00885J  doi: 10.1039/C7CS00885J

    68. [68]

      Chen, D. Y.; Liu, C.; Tang, J. T.; Luo, L. F.; Yu, G. P. Polym. Chem. 2019, 10, 1168. doi: 10.1039/C8PY01620H  doi: 10.1039/C8PY01620H

    69. [69]

      Fan, J. Y.; Chang, X. M.; He, M. X.; Shang, C. D.; Wang, G.; Yin, S. W.; Peng, H. N.; Fang, Y. ACS Appl. Mater. Interfaces 2016, 8, 18584. doi: 10.1021/acsami.6b04915  doi: 10.1021/acsami.6b04915

    70. [70]

      Shang, C. D.; Wang, G.; He, M. X.; Chang, X. M.; Fan, J. Y.; Liu, K. Q.; Peng, H. N.; Fang, Y. Sens. Actuators B 2017, 241, 1316. doi: 10.1016/j.snb.2016.09.187  doi: 10.1016/j.snb.2016.09.187

    71. [71]

      Sun, Q. Q.; Lv, Y. C.; Liu, L. L.; Liu, K. Q.; Miao, R.; Fang, Y. ACS Appl. Mater. Interfaces 2016, 8, 29128. doi: 10.1021/acsami.6b08642  doi: 10.1021/acsami.6b08642

    72. [72]

      Zhang, J. L.; Liu, K.; Wang, G.; Shang, C. D.; Peng, H. N.; Liu, T. H.; Fang, Y. New J. Chem. 2018, 42, 12737. doi: 10.1039/c8nj02540a  doi: 10.1039/c8nj02540a

    73. [73]

      Chang, X. M.; Zhou, Z. X.; Shang, C. D.; Wang, G.; Wang, Z. L.; Qi, Y. Y.; Li, Z. Y.; Wang, H.; Cao, L. P.; Li, X. P.; et al. J. Am. Chem. Soc. 2019, 141, 1757. doi: 10.1021/jacs.8b12749

    74. [74]

      Huang, R. R.; Liu, K.; Liu, H. J.; Wang, G.; Liu, T. H.; Miao, R.; Peng, H. N.; Fang, Y. Anal. Chem. 2018, 90, 14088. doi: 10.1021/acs.analchem.8b04897  doi: 10.1021/acs.analchem.8b04897

    75. [75]

      Qi, Y. Y.; Xu, W. J.; Ding, N. N.; Chang, X. M.; Shang, C. D.; Peng, H. N.; Liu, T. H.; Fang, Y. Mater. Chem. Front. 2019, 3, 1218. doi: 10.1039/C9QM00095J  doi: 10.1039/C9QM00095J

    76. [76]

      Kida, T.; Fujiyama, S.; Suematsu, K.; Yuasa, M.; Shimanoe, K. J. Phys. Chem. C 2013, 117, 17574. doi: 10.1021/jp4045226  doi: 10.1021/jp4045226

    77. [77]

      Sakai, G.; Matsunaga, N.; Shimanoe, K.; Yamazoe, N. Sens. Actuators B 2001, 80, 125. doi: 10.1016/S0925-4005(01)00890-5  doi: 10.1016/S0925-4005(01)00890-5

    78. [78]

      Miao, J. S.; Chen, C.; Meng, L.; Lin, Y. S. ACS Sens. 2019, 4, 1279. doi: 10.1021/acssensors.9b00162  doi: 10.1021/acssensors.9b00162

    79. [79]

      Shaw, P. E.; Burn, P. L. Phys. Chem. Chem. Phys. 2017, 19, 29714. doi: 10.1039/c7cp04602b  doi: 10.1039/c7cp04602b

    80. [80]

      Xia, H. Y.; Geng, T.; Zhao, X.; Li, F. F.; Wang, F. Y.; Gao, L. N. Acta Phys. -Chim. Sin. 2019, 35, 337.  doi: 10.3866/PKU.WHXB201803082

    81. [81]

      Xu, S. P.; Xu, Y.; Zhao, H. P.; Xu, R.; Lei, Y. ACS Appl. Mater. Interfaces 2018, 10, 29092. doi: 10.1021/acsami.8b08078  doi: 10.1021/acsami.8b08078

    82. [82]

      Ko, K. Y.; Song, J. G.; Kim, Y.; Choi, T.; Shin, S.; Lee, C. W.; Lee, K.; Koo, J.; Lee, H.; Kim, J.; et al. ACS Nano 2016, 10, 9287. doi: 10.1021/acsnano.6b03631  doi: 10.1021/acsnano.6b03631

    83. [83]

      Mahadeva, S. K.; Walus, K.; Stoeber, B. ACS Appl. Mater. Interfaces 2015, 7, 8345. doi: 10.1021/acsami.5b00373  doi: 10.1021/acsami.5b00373

    84. [84]

      Osborne, A. A.; Morishita, T.; Tawfik, S. A.; Yayama, T.; Spencer, M. J. S. Phys. Chem. Chem. Phys. 2019, 21, 17521. doi: 10.1039/c9cp01901d  doi: 10.1039/c9cp01901d

    85. [85]

      Ali, M. A.; Chen, S. S. Y. J.; Cavaye, H.; Smith, A. R. G.; Burn, P. L.; Gentle, I. R.; Meredith, P.; Shaw, P. E. Sens. Actuators B 2015, 210, 550. doi: 10.1016/j.snb.2014.12.084  doi: 10.1016/j.snb.2014.12.084

    86. [86]

      Li, M.; Liu, J. F.; Shang, C. D.; Liu, K.; Qi, Y. Y.; Miao, R.; Fang, Y. Adv. Mater. Technol. 2019, 201900109. doi: 10.1002/admt.201900109  doi: 10.1002/admt.201900109

    87. [87]

      Liu, K.; Shang, C. D.; Wang, Z. L.; Qi, Y. Y; Miao, R.; Liu, K. Q.; Liu, T. H.; Fang, Y. Nat. Commun. 2018, 9, 1695. doi: 10.1038/s41467-018-04119-6

    88. [88]

      Liu, K.; Wang, Z. L.; Shang, C. D.; Li, X.; Peng, H. N.; Miao, R.; Ding, L. P.; Liu, J.; Liu, T. H.; Fang, Y. Adv. Mater. Technol. 2019, 4, 1800644. doi: 0.1002/admt.201800644  doi: 10.1002/admt.201800644

    89. [89]

      An, Y. Q.; Xu, X. J.; Liu, K.; An, X.; Shang, C. D.; Wang, G.; Liu, T. H.; Li, H.; Peng, H. N.; Fang, Y. Chem. Commun. 2019, 55, 941. doi: 10.1039/C8CC08399A  doi: 10.1039/C8CC08399A

    90. [90]

      Gotor, R.; Bell, J.; Rurack, K. J. Mater. Chem. C 2019, 7, 2250. doi: 10.1039/c8tc04818e  doi: 10.1039/c8tc04818e

    91. [91]

      Yao, M. S.; Cao, L. A.; Tang, Y. X.; Wang, G. E.; Liu, R. H.; Kumar, P. N.; Wu, G. D.; Deng, W. H.; Hong, W. J.; Xu, G. J. Mater. Chem. A 2019, 7, 18397. doi: 10.1039/c9ta05226g  doi: 10.1039/c9ta05226g

    92. [92]

      Qi, Y. Y.; Xu, W. J.; Kang, R.; Ding, N. N.; Yang, Y. L.; He, G.; Fang, Y. Chem. Sci. 2018, 9, 1892. doi: 10.1039/C7SC05243J  doi: 10.1039/C7SC05243J

    93. [93]

      Ono, T.; Tsukiyama, Y.; Hatanaka, S.; Sakatsume, Y.; Ogoshi, T.; Hisaeda, Y. J. Mater. Chem. C 2019, 7, 9726. doi: 10.1039/c9tc03140e  doi: 10.1039/c9tc03140e

    94. [94]

      Dutta, G. K.; Kasthuri, S.; Marappan, G.; Jayaraman, S. V.; Sivalingam, Y.; Natale, C. D.; Nutalapati, V. J. Mater. Chem. C 2019, 7, 9954. doi: 10.1039/c9tc02226k  doi: 10.1039/c9tc02226k

    95. [95]

      Frankær, C. G., Sørensen, T. J. Analyst 2019, 144, 2208. doi: 10.1039/C9AN00268E

    96. [96]

      Wang, Z. L.; Liu, K.; Chang, X. M.; Qi, Y. Y.; Shang, C. D.; Liu, T. H.; Liu, J.; Ding, L. P.; Fang, Y. ACS Appl. Mater. Interfaces 2018, 10, 35647. doi: 10.1021/acsami.8b13747  doi: 10.1021/acsami.8b13747

    97. [97]

      Wang, Z. L.; Wang, G.; Chang, X. M.; Liu, K.; Qi, Y. Y.; Shang, C. D.; Huang, R. R.; Liu, T. H.; Fang, Y. Adv. Funct. Mater. 2019, 1905295. doi: 10.1002/adfm.201905295  doi: 10.1002/adfm.201905295

  • 加载中
    1. [1]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    4. [4]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    5. [5]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    6. [6]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    12. [12]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    13. [13]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    14. [14]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    15. [15]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    16. [16]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    17. [17]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    18. [18]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    19. [19]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(27)
  • Abstract views(1091)
  • HTML views(285)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return