Adlayer Chemistry on Film-based Fluorescent Gas Sensors
- Corresponding author: Fang Yu, yfang@snnu.edu.cn
Citation: Liu Taihong, Miao Rong, Peng Haonan, Liu Jing, Ding Liping, Fang Yu. Adlayer Chemistry on Film-based Fluorescent Gas Sensors[J]. Acta Physico-Chimica Sinica, ;2020, 36(10): 190802. doi: 10.3866/PKU.WHXB201908025
Wolfbeis, O. S. Angew. Chem. Int. Ed. 2013, 52, 9864. doi: 10.1002/anie.201305915
doi: 10.1002/anie.201305915
Wang, X. D.; Wolfbeis, O. S. Chem. Soc. Rev. 2014, 43, 3666. doi: 10.1039/C4CS00039K
doi: 10.1039/C4CS00039K
Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T. M. Chem. Rev. 2019, 119, 599. doi: 10.1021/acs.chemrev.8b00340
doi: 10.1021/acs.chemrev.8b00340
Zhu, L.; Zeng, W. Sens. Actuators B 2017, 267, 242. doi: 10.1016/j.snb.2017.10.021
doi: 10.1016/j.snb.2017.10.021
Chatterjee, S. G.; Chatterjee, S.; Ray, A. K.; Chakraborty, A. K. Sens. Actuators B 2015, 221, 1170. doi: 10.1016/j.snb.2015.07.070
doi: 10.1016/j.snb.2015.07.070
Liu, T. H.; Liu, X. L.; Valencia, M. A.; Sui, B. L.; Zhang, Y. W.; Belfield, K. D. Eur. J. Org. Chem. 2017, 3957. doi: 10.1002/ejoc.201700649
doi: 10.1002/ejoc.201700649
Liu, T. H.; Yang, L. J.; Zhang, J.; Liu, K.; Ding, L. P.; Peng, H. N.; Belfield, K. D.; Fang, Y. Sens. Actuators B 2019, 292, 83. doi: 10.1016/j.snb.2019.04.138
doi: 10.1016/j.snb.2019.04.138
Liu, Q.; Mukherjee, S.; Huang, R. R.; Liu, K.; Liu, T. H.; Liu, K. Q.; Miao, R.; Peng, H. N.; Fang, Y. Chem. -Asian J. 2019, 14, 2751. doi: 10.1002/asia.201900622.
doi: 10.1002/asia.201900622
Wang, J.; Ma, Q. Q.; Wang, Y. Q.; Li, Z. H.; Li, Z. Z.; Yuan, Q. Chem. Soc. Rev. 2018, 47, 8766. doi: 10.1039/C8CS00658J
doi: 10.1039/C8CS00658J
Pejcic, B.; Eadington, P.; Ross, A. Environ. Sci. Technol. 2007, 41, 6333. doi: 10.1021/es0704535
doi: 10.1021/es0704535
Liu, T. H.; Liu, K.; Zhang, J. L.; Wang, Z. L. ChemistrySelect 2018, 3, 5559. doi: 10.1002/slct.201800841
doi: 10.1002/slct.201800841
Potyrailo, R. A. Chem. Rev. 2016, 116, 11877. dio: 10.1021/acs.chemrev.6b00187
doi: 10.1021/acs.chemrev.6b00187
Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M. Chem. Soc. Rev. 2007, 36, 993. doi: 10.1039/b609548h
doi: 10.1039/b609548h
Wu, D.; Sedgwick, A. C.; Gunnlaugsson, T.; Akkaya, E. U.; Yoon, J.; James, T. J. Chem. Soc. Rev. 2017, 46, 7105. doi: 10.1039/c7cs00240h
doi: 10.1039/c7cs00240h
Fan, J. M.; Ding, L. P.; Fang, Y. Langmuir 2019, 35, 326. doi: 10.1021/acs.langmuir.8b02111
doi: 10.1021/acs.langmuir.8b02111
Gao, M.; Tang, B. Z. ACS Sen. 2017, 2, 1382. doi: 10.1021/acssensors.7b00551
doi: 10.1021/acssensors.7b00551
Kim, H. N.; Guo, Z. Q.; Zhu, W. H.; Yoon, J.; Tian, H. Chem. Soc. Rev. 2011, 40, 79. doi: 10.1039/c0cs00058b
doi: 10.1039/c0cs00058b
Rochat, S.; Swager, T. M. Angew. Chem. Int. Edit. 2014, 53, 9792. doi: 10.1002/anie.201404439
doi: 10.1002/anie.201404439
Anzenbacher, Jr. P.; Lubal, P.; Bucek, P.; Palacios, M. A.; Kozelkova, M. E. Chem. Soc. Rev. 2010, 39, 3954. doi: 10.1039/b926220m
doi: 10.1039/b926220m
Park, C. H.; Schroeder, V.; Kim, B. J.; Swager, T. M. ACS Sen. 2018, 3, 2432. doi: 10.1021/acssensors.8b00987
doi: 10.1021/acssensors.8b00987
Ma, X. M.; He, S.; Qiu, B.; Luo, F.; Guo, L. H.; Lin, Z. Y. ACS Sen. 2019, 4, 782. doi: 10.1021/acssensors.9b00438
doi: 10.1021/acssensors.9b00438
Lee, J.; Chang, H. T.; An, H.; Ahn, S.; Shim, J.; Kim, J. M. Nat. Commun. 2013, 4, 2461. doi: 10.1038/ncomms3461
doi: 10.1038/ncomms3461
Guo, L. J.; Yang, Z.; Dou, X. C. Adv. Mater. 2017, 29, 1604528. doi: 10.1002/adma.201604528
doi: 10.1002/adma.201604528
Thomas, S. W., Ⅲ; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339. doi: 10.1021/cr0501339
Li, Z.; Askim, J. R.; Suslick, K. S. Chem. Rev. 2019, 119, 231. doi: 10.1021/acs.chemrev.8b00226
doi: 10.1021/acs.chemrev.8b00226
Rankin, J. M.; Zhang, Q. F.; LaGasse, M. K.; Zhang, Y N.; Askima, J. R.; Suslick, S. K. Analyst 2015, 140, 2613. doi: 10.1039/C4AN02253J
doi: 10.1039/C4AN02253J
Hakim, M.; Broza, Y. Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Chem. Rev. 2012, 112, 5949. doi: 10.1021/cr300174a
doi: 10.1021/cr300174a
Segev-Bar, M.; Haick, H. ACS Nano 2013, 7, 8366. doi: 10.1021/nn402728g
doi: 10.1021/nn402728g
Che, Y. K.; Yang, X. M.; Loser, S.; Zang, L. Nano Lett. 2008, 8, 2219. doi: 10.1021/nl080761g
doi: 10.1021/nl080761g
Chen, S.; Slattum, P.; Wang, C. Y.; Zang, L. Chem. Rev. 2015, 115, 11967. doi: 10.1021/acs.chemrev.5b00312
doi: 10.1021/acs.chemrev.5b00312
Zhou, H.; Wang, X. B.; Lin, T. T.; Tang, B. Z.; Xu, J. W. Polym. Chem. 2016, 7, 6309. doi: 10.1039/C6PY01358A
doi: 10.1039/C6PY01358A
Fan, T. C.; Xu, W.; Yao, J. J.; Jiao, Z. N.; Fu, Y. Y.; Zhu, D. F.; He, Q. G.; Cao, H. M.; Cheng, J. G. ACS Sen. 2016, 1, 312. doi: 10.1021/acssensors.5b00293
doi: 10.1021/acssensors.5b00293
Fu, Y. Y.; Yu, J. P.; Wang, K. X.; Liu, H.; Yu, Y. G.; Liu, A.; Peng, X.; He, Q. G.; Cao, H. M.; Cheng, J. G. ACS Sen. 2018, 3, 1445. doi: 10.1021/acssensors.8b00313
doi: 10.1021/acssensors.8b00313
Fu, Y. Y.; Yao, J. J.; Xu, W.; Fan, T. C.; Jiao, Z. N.; He, Q. G.; Zhu, D. F.; Cao, H. M.; Cheng, J. G. Anal. Chem. 2016, 88, 5507. doi: 10.1021/acs.analchem.6b01057
doi: 10.1021/acs.analchem.6b01057
Yao, J. J.; Fu, Y. Y.; Xu, W.; Fan, T. C.; Gao, Y. X.; He, Q. G.; Zhu, D. F.; Cao, H. M.; Cheng, J. G. Anal. Chem. 2016, 88, 2497. doi: 10.1021/acs.analchem.5b04777
doi: 10.1021/acs.analchem.5b04777
Xu, W.; Fu, Y. Y.; Yao, J. J.; Fan, T. C.; Gao, Y. X.; He, Q. G.; Zhu, D. F.; Cao, H. M.; Cheng, J. G. ACS Sen. 2016, 1, 1054. doi: 10.1021/acssensors.6b00366
doi: 10.1021/acssensors.6b00366
Zhang, X. T.; Zhu, D. F.; Fu, Y. Y.; He, Q. G.; Cao, H. M.; Li, W.; Cheng, J. G. J. Mater. Chem. C 2017, 5, 2114. doi: 10.1039/c6tc05642c
doi: 10.1039/c6tc05642c
Wang, M.; Guo, L.; Cao, D. P. Anal. Chem. 2018, 90, 3608. doi: 10.1021/acs.analchem.8b00146
doi: 10.1021/acs.analchem.8b00146
Huang, H. N.; Zhou, Y.; Wang, M.; Zhang, J. Y.; Cao, X. H.; Wang, S. T.; Cao, D. P.; Cui, C. M. Angew. Chem. Int. Ed. 2019, 58, 10132. doi: 10.1002/anie.201903418
doi: 10.1002/anie.201903418
Guan, W. J.; Zhou, W. J.; Lu, J.; Lu, C. Chem. Soc. Rev. 2015, 44, 6981. doi: 10.1039/C5CS00246J
doi: 10.1039/C5CS00246J
Guan, W. J.; Wang, S.; Lu, C.; Tang, B. Z. Nat. Commun. 2016, 7, 11811. doi: 10.1038/ncomms11811
doi: 10.1038/ncomms11811
Guan, W. J.; Zhou, W. J.; Lu, C.; Tang, B. Z. Angew. Chem. Int. Ed. 2015, 54, 15160. doi: 10.1002/anie.201507236
doi: 10.1002/anie.201507236
Zhong, J. P.; Cui, X. Y.; Guan, W. J.; Lu, C. J. Mater. Chem. C 2018, 6, 13218. doi: 10.1039/c8tc04837a
doi: 10.1039/c8tc04837a
Feng, Z. M.; Zhong, J. P.; Guan, W. J.; Tian, R.; Lu, C.; Ding, C. F. Analyst 2018, 143, 2090. doi: 10.1039/c8an00016f
doi: 10.1039/c8an00016f
Sun, Y.; Lu, F. N.; Yang, H. W.; Ding, C. F.; Yuan, Z. Q.; Lu, C. Nanoscale 2019, 11, 12889. doi: 10.1039/c9nr03643a
doi: 10.1039/c9nr03643a
Xue, P. C.; Ding, J. P.; Wang, p. P.; Lu, R. J. Mater. Chem. C 2016, 4, 6688. doi: 10.1039/c6tc01503d
doi: 10.1039/c6tc01503d
Xue, P. C.; Yao, B. Q.; Wang, P. P.; Gong, P.; Zhang, Z. Q.; Lu, R. Chem. Eur. J. 2015, 21, 17508. doi: 10.1002/chem.201502401
doi: 10.1002/chem.201502401
Zhai, L.; Liu, M. Y.; Xue, P. C.; Sun, J. B.; Gong, P.; Zhang, Z. P.; Sun, J. B.; Lu, R. J. Mater. Chem. C 2016, 4, 7939. doi: 10.1039/c6tc01790h
doi: 10.1039/c6tc01790h
Xue, P. C.; Ding, J. P.; Shen, Y. B.; Gao, H. Q.; Zhu, J. Y.; Sun, J. B.; Lu, R. J. Mater. Chem. C 2017, 5, 11532. doi: 10.1039/c7tc03192k
doi: 10.1039/c7tc03192k
Sun, J. B.; Qian, C.; Xu, S. Z.; Jia, X. Y.; Zhao, L. Zhao, J. Y.; Lu, R. Org. Biomol. Chem. 2018, 16, 7438. doi: 10.1039/c8ob01596a
doi: 10.1039/c8ob01596a
Zhang, K.; Zhou, H. B.; Mei, Q. S.; Wang, S. H.; Guan, G. J.; Liu, R. Y.; Zhang, J.; Zhang, Z. P. J. Am. Chem. Soc. 2011, 133, 8424. doi: 10.1021/ja2015873
doi: 10.1021/ja2015873
Liu, C.; Ning, D. H.; Zhang, C.; Liu, Z. J.; Zhang, R. L.; Zhao, J.; Zhao, T. T.; Liu, B. H.; Zhang, Z. P. ACS Appl. Mater. Interfaces 2017, 9, 18897. doi: 10.1021/acsami.7b05827.
doi: 10.1021/acsami.7b05827
Yu, X. T.; Gong, Y. J.; Xiong, W.; Li, M.; Zhao, J. C.; Che, Y. K. Anal. Chem. 2019, 91, 6967. doi: 10.1021/acs.analchem.9b01255
doi: 10.1021/acs.analchem.9b01255
Qiu, C. K.; Liu, X. L.; Cheng, C. Q.; Gong, Y. J.; Xiong, W.; Guo, Y. X.; Wang, C.; Zhao, J. C.; Che, Y. K. Anal. Chem. 2019, 91, 6408. doi: 10.1021/acs.analchem.9b00709
doi: 10.1021/acs.analchem.9b00709
Ding, L. P.; Fang, Y. Chem. Soc. Rev. 2010, 39, 4258. doi: 10.1039/c003028g
doi: 10.1039/c003028g
Gao, L. N.; Lv, F. T.; Hu, J.; Fang, Y. Acta Phys. -Chim. Sin. 2007, 23, 274.
doi: 10.3866/PKU.WHXB20070226
Liu, T. H.; Ding, L. P.; Zhao, K. R.; Wang, W. L.; Fang, Y. J. Mater. Chem. 2012, 22, 1069. doi: 10.1039/C1JM14022A
doi: 10.1039/C1JM14022A
Liu, T. H.; Ding, L. P.; He, G.; Yang, Y.; Wang, W. L.; Fang, Y. ACS Appl. Mater. Interfaces 2011, 3, 1245. doi: 10.1021/am2000592
doi: 10.1021/am2000592
Cui, H.; He, G.; Wang, H. Y.; Sun, X. H.; Liu, T. H.; Ding, L. P.; Fang, Y. ACS Appl. Mater. Interfaces 2012, 4, 6935. doi: 10.1021/am302069p
doi: 10.1021/am302069p
He, G.; Yan, N.; Kong, H. Y.; Yin, S. W.; Ding, L. P.; Qu, S. X.; Fang, Y. Macromolecules 2011, 44, 703. doi: 10.1021/ma102769b
doi: 10.1021/ma102769b
Miao, R.; Fang, Y. Chin. Sci. Bull. 2017, 62, 532.
doi: 10.1360/N972016-00434
Miao, R.; Peng, J. X.; Fang, Y. Mol. Syst. Des. Eng. 2016, 1, 242. doi: 10.1039/C6ME00039H
doi: 10.1039/C6ME00039H
Liu, T. H.; Fang, Y. Chin. J. Appl. Chem. 2018, 35, 1133.
doi: 10.11944/j.issn.1000-0518.2018.09.180171
Kaushik, A.; Kumar, R.; Arya, S. K., Nair, M.; Malhotra, B. D.; Bhansali, S. Chem. Rev. 2015, 115, 4571. doi: 10.1021/cr400659h
Lee, E.; Yoon, Y. S.; Kim, D. J. ACS Sens. 2018, 3, 2045. doi: 10.1021/acssensors.8b01077
doi: 10.1021/acssensors.8b01077
Ibanez, J. G.; Rincón, M. E.; Gutierrez-Granados, S.; Chahma, M.; Jaramillo-Quintero, O. A.; Frontana-Uribe, B. A. Chem. Rev. 2018, 118, 4731. doi: 10.1021/acs.chemrev.7b00482
doi: 10.1021/acs.chemrev.7b00482
Wang, H.; Lustig, W. P.; Li, J. Chem. Soc. Rev. 2018, 47, 4729. doi: 10.1039/C7CS00885J
doi: 10.1039/C7CS00885J
Chen, D. Y.; Liu, C.; Tang, J. T.; Luo, L. F.; Yu, G. P. Polym. Chem. 2019, 10, 1168. doi: 10.1039/C8PY01620H
doi: 10.1039/C8PY01620H
Fan, J. Y.; Chang, X. M.; He, M. X.; Shang, C. D.; Wang, G.; Yin, S. W.; Peng, H. N.; Fang, Y. ACS Appl. Mater. Interfaces 2016, 8, 18584. doi: 10.1021/acsami.6b04915
doi: 10.1021/acsami.6b04915
Shang, C. D.; Wang, G.; He, M. X.; Chang, X. M.; Fan, J. Y.; Liu, K. Q.; Peng, H. N.; Fang, Y. Sens. Actuators B 2017, 241, 1316. doi: 10.1016/j.snb.2016.09.187
doi: 10.1016/j.snb.2016.09.187
Sun, Q. Q.; Lv, Y. C.; Liu, L. L.; Liu, K. Q.; Miao, R.; Fang, Y. ACS Appl. Mater. Interfaces 2016, 8, 29128. doi: 10.1021/acsami.6b08642
doi: 10.1021/acsami.6b08642
Zhang, J. L.; Liu, K.; Wang, G.; Shang, C. D.; Peng, H. N.; Liu, T. H.; Fang, Y. New J. Chem. 2018, 42, 12737. doi: 10.1039/c8nj02540a
doi: 10.1039/c8nj02540a
Chang, X. M.; Zhou, Z. X.; Shang, C. D.; Wang, G.; Wang, Z. L.; Qi, Y. Y.; Li, Z. Y.; Wang, H.; Cao, L. P.; Li, X. P.; et al. J. Am. Chem. Soc. 2019, 141, 1757. doi: 10.1021/jacs.8b12749
Huang, R. R.; Liu, K.; Liu, H. J.; Wang, G.; Liu, T. H.; Miao, R.; Peng, H. N.; Fang, Y. Anal. Chem. 2018, 90, 14088. doi: 10.1021/acs.analchem.8b04897
doi: 10.1021/acs.analchem.8b04897
Qi, Y. Y.; Xu, W. J.; Ding, N. N.; Chang, X. M.; Shang, C. D.; Peng, H. N.; Liu, T. H.; Fang, Y. Mater. Chem. Front. 2019, 3, 1218. doi: 10.1039/C9QM00095J
doi: 10.1039/C9QM00095J
Kida, T.; Fujiyama, S.; Suematsu, K.; Yuasa, M.; Shimanoe, K. J. Phys. Chem. C 2013, 117, 17574. doi: 10.1021/jp4045226
doi: 10.1021/jp4045226
Sakai, G.; Matsunaga, N.; Shimanoe, K.; Yamazoe, N. Sens. Actuators B 2001, 80, 125. doi: 10.1016/S0925-4005(01)00890-5
doi: 10.1016/S0925-4005(01)00890-5
Miao, J. S.; Chen, C.; Meng, L.; Lin, Y. S. ACS Sens. 2019, 4, 1279. doi: 10.1021/acssensors.9b00162
doi: 10.1021/acssensors.9b00162
Shaw, P. E.; Burn, P. L. Phys. Chem. Chem. Phys. 2017, 19, 29714. doi: 10.1039/c7cp04602b
doi: 10.1039/c7cp04602b
Xia, H. Y.; Geng, T.; Zhao, X.; Li, F. F.; Wang, F. Y.; Gao, L. N. Acta Phys. -Chim. Sin. 2019, 35, 337.
doi: 10.3866/PKU.WHXB201803082
Xu, S. P.; Xu, Y.; Zhao, H. P.; Xu, R.; Lei, Y. ACS Appl. Mater. Interfaces 2018, 10, 29092. doi: 10.1021/acsami.8b08078
doi: 10.1021/acsami.8b08078
Ko, K. Y.; Song, J. G.; Kim, Y.; Choi, T.; Shin, S.; Lee, C. W.; Lee, K.; Koo, J.; Lee, H.; Kim, J.; et al. ACS Nano 2016, 10, 9287. doi: 10.1021/acsnano.6b03631
doi: 10.1021/acsnano.6b03631
Mahadeva, S. K.; Walus, K.; Stoeber, B. ACS Appl. Mater. Interfaces 2015, 7, 8345. doi: 10.1021/acsami.5b00373
doi: 10.1021/acsami.5b00373
Osborne, A. A.; Morishita, T.; Tawfik, S. A.; Yayama, T.; Spencer, M. J. S. Phys. Chem. Chem. Phys. 2019, 21, 17521. doi: 10.1039/c9cp01901d
doi: 10.1039/c9cp01901d
Ali, M. A.; Chen, S. S. Y. J.; Cavaye, H.; Smith, A. R. G.; Burn, P. L.; Gentle, I. R.; Meredith, P.; Shaw, P. E. Sens. Actuators B 2015, 210, 550. doi: 10.1016/j.snb.2014.12.084
doi: 10.1016/j.snb.2014.12.084
Li, M.; Liu, J. F.; Shang, C. D.; Liu, K.; Qi, Y. Y.; Miao, R.; Fang, Y. Adv. Mater. Technol. 2019, 201900109. doi: 10.1002/admt.201900109
doi: 10.1002/admt.201900109
Liu, K.; Shang, C. D.; Wang, Z. L.; Qi, Y. Y; Miao, R.; Liu, K. Q.; Liu, T. H.; Fang, Y. Nat. Commun. 2018, 9, 1695. doi: 10.1038/s41467-018-04119-6
Liu, K.; Wang, Z. L.; Shang, C. D.; Li, X.; Peng, H. N.; Miao, R.; Ding, L. P.; Liu, J.; Liu, T. H.; Fang, Y. Adv. Mater. Technol. 2019, 4, 1800644. doi: 0.1002/admt.201800644
doi: 10.1002/admt.201800644
An, Y. Q.; Xu, X. J.; Liu, K.; An, X.; Shang, C. D.; Wang, G.; Liu, T. H.; Li, H.; Peng, H. N.; Fang, Y. Chem. Commun. 2019, 55, 941. doi: 10.1039/C8CC08399A
doi: 10.1039/C8CC08399A
Gotor, R.; Bell, J.; Rurack, K. J. Mater. Chem. C 2019, 7, 2250. doi: 10.1039/c8tc04818e
doi: 10.1039/c8tc04818e
Yao, M. S.; Cao, L. A.; Tang, Y. X.; Wang, G. E.; Liu, R. H.; Kumar, P. N.; Wu, G. D.; Deng, W. H.; Hong, W. J.; Xu, G. J. Mater. Chem. A 2019, 7, 18397. doi: 10.1039/c9ta05226g
doi: 10.1039/c9ta05226g
Qi, Y. Y.; Xu, W. J.; Kang, R.; Ding, N. N.; Yang, Y. L.; He, G.; Fang, Y. Chem. Sci. 2018, 9, 1892. doi: 10.1039/C7SC05243J
doi: 10.1039/C7SC05243J
Ono, T.; Tsukiyama, Y.; Hatanaka, S.; Sakatsume, Y.; Ogoshi, T.; Hisaeda, Y. J. Mater. Chem. C 2019, 7, 9726. doi: 10.1039/c9tc03140e
doi: 10.1039/c9tc03140e
Dutta, G. K.; Kasthuri, S.; Marappan, G.; Jayaraman, S. V.; Sivalingam, Y.; Natale, C. D.; Nutalapati, V. J. Mater. Chem. C 2019, 7, 9954. doi: 10.1039/c9tc02226k
doi: 10.1039/c9tc02226k
Frankær, C. G., Sørensen, T. J. Analyst 2019, 144, 2208. doi: 10.1039/C9AN00268E
Wang, Z. L.; Liu, K.; Chang, X. M.; Qi, Y. Y.; Shang, C. D.; Liu, T. H.; Liu, J.; Ding, L. P.; Fang, Y. ACS Appl. Mater. Interfaces 2018, 10, 35647. doi: 10.1021/acsami.8b13747
doi: 10.1021/acsami.8b13747
Wang, Z. L.; Wang, G.; Chang, X. M.; Liu, K.; Qi, Y. Y.; Shang, C. D.; Huang, R. R.; Liu, T. H.; Fang, Y. Adv. Funct. Mater. 2019, 1905295. doi: 10.1002/adfm.201905295
doi: 10.1002/adfm.201905295
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
YanYuan Jia , Rong Rong , Jie Liu , Jing Guo , GuoYu Jiang , Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035
Qin Li , Kexin Yang , Qinglin Yang , Xiangjin Zhu , Xiaole Han , Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Shuwen SUN , Gaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
Xinyu Liu , Weiran Hu , Zhengkai Li , Wei Ji , Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
Zishuo Yi , Peng Liu , Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355