Citation: Qin Yanyan, She Pengfei, Guo Song, Huang Xiaomeng, Liu Shujuan, Zhao Qiang, Huang Wei. Structural Manipulation and Triboluminescence of Tetrahalomanganese(Ⅱ) Complexes[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190707. doi: 10.3866/PKU.WHXB201907078 shu

Structural Manipulation and Triboluminescence of Tetrahalomanganese(Ⅱ) Complexes

  • Corresponding author: Zhao Qiang, iamqzhao@njupt.edu.cn Huang Wei, provost@nwpu.edu.cn
  • Received Date: 25 July 2019
    Revised Date: 2 September 2019
    Accepted Date: 3 September 2019
    Available Online: 10 January 2019

    Fund Project: the China Postdoctoral Science Foundation 2018M642282The project was supported by the National Funds for Distinguished Young Scientists, China (61825503), the China Postdoctoral Science Foundation (2018M642282), the Natural Science Foundation of Jiangsu Province, China (BK20180760) and the Jiangsu Planned Projects for Postdoctoral Research Funds, China (2018K155C)the Natural Science Foundation of Jiangsu Province, China BK20180760the National Funds for Distinguished Young Scientists, China 61825503the Jiangsu Planned Projects for Postdoctoral Research Funds, China 2018K155C

  • Triboluminescence is a fascinating luminescence phenomenon induced by mechanical stimuli. Triboluminescent materials have potential applications in lighting, displays, and sensing, owing to their distinctive modes of light generation. However, organic triboluminescent materials are severely limited, and their luminescence mechanism remains unclear. Herein, we found that the luminescent manganese(Ⅱ) complex [BPP]2[MnBr4] displayed interesting triboluminescence performance. A series of green emissive tetrahalomanganese(Ⅱ) complexes was rationally designed and synthesized. The associated single crystal structures revealed that all complexes consisted of one [MnX4]2− (X = Br or Cl) ion and two organic cationic ligands per unit cell, with a tetrahedral geometrical symmetry around the Mn(Ⅱ) ion. In addition, the photophysical properties of tetrahalomanganese(Ⅱ) complexes were easily tuned by varying the organic ligands or halogen ions, which is beneficial for these organic-inorganic hybrid structures. Under UV light irradiation, all tetrahalomanganese(Ⅱ) complexes in the solid state exhibited bright green luminescence and a broad featureless emission band at 450–650 nm. The time-resolved photoluminescent decay curves demonstrated that the emission lifetimes of the prepared tetrahalomanganese(Ⅱ) complexes ranged from 260.5 μs to 1.95 ms, which was attributed to phosphorescence. The long-lived emission was mainly due to the spin-forbidden nature of the metal center dd (4T1(G)→ 6A1) radiative transition. Thermogravimetric analysis was performed to examine the thermodynamic stabilities of the tetrahalomanganese(Ⅱ) complexes. The thermal stabilities of manganese(Ⅱ) complexes with P-based ligands were higher than those of the complexes containing N-based ligands. Upon applying a force to the crystals, the tetrahalomanganese(Ⅱ) complexes all exhibited prominent triboluminescence that could be observed by the naked eye in the dark. Systematic analysis of the crystals showed that the TL activities of the manganese(Ⅱ) complexes were related to the intra- and inter-molecular C-H···X (X = Br or Cl) interactions. The intra- and inter-molecular C-H···X interactions significantly reduced the possible energy loss caused by molecular vibrations and rotations in the [MnX4]2− unit under mechanical stress, improving TL emission. Moreover, a comparison of photoluminescence and triboluminescence indicated that different excitation sources yielded two distinct luminescence processes: transition of excitons excited by illumination and recombination of electrons and holes on the surface driven by polarization charges. Overall, the results presented herein new opportunities for fundamental research based on the developed class of triboluminescent materials.
  • 加载中
    1. [1]

      Sage, I.; Bourhill, G. J. Mater. Chem. 2001, 11, 231. doi: 10.1039/b007029g  doi: 10.1039/b007029g

    2. [2]

      Olawale, D. O.; Dickens, T.; Sullivan, W. G.; Okoli, O. I.; Sobanjo, J. O.; Wang, B. J. Lumin. 2011, 131, 1407. doi: 10.1016/j.jlumin.2011.03.015  doi: 10.1016/j.jlumin.2011.03.015

    3. [3]

      Eddingsaas, N. C.; Suslick, K. S. J. Am. Chem. Soc. 2007, 129, 6718. doi: 10.1021/ja0716498  doi: 10.1021/ja0716498

    4. [4]

      Wang, X. D.; Zhang, H. L.; Yu, R. M.; Dong, L.; Peng, D. F.; Zhang, A. H.; Zhang, Y.; Liu, H.; Pan, C. F.; Wang, Z. L. Adv. Mater. 2015, 27, 2324. doi: 10.1002/adma.201405826  doi: 10.1002/adma.201405826

    5. [5]

      Li, W. L.; Huang, Q. Y.; Mao, Z.; Li, Q.; Jiang, L.; Xie, Z. L.; Xu, R.; Yang, Z. Y.; Zhao, J.; Yu, T.; et al. Angew. Chem. Int. Ed. 2018, 57, 12727. doi: 10.1002/anie.201806861  doi: 10.1002/anie.201806861

    6. [6]

      Yang, J.; Ren, Z. C.; Xie, Z. L.; Liu, Y. J.; Wang, C.; Xie, Y. J.; Peng, Q.; Xu, B.; Tian, W. J.; Zhang, F.; et al. Angew. Chem. Int. Ed. 2017, 56, 880. doi: 10.1002/anie.201610453  doi: 10.1002/anie.201610453

    7. [7]

      Wong, H. Y.; Lo, W. S.; Chan, W. T. K.; Law G. L. Inorg. Chem. 2017, 56, 5135. doi: 10.1021/acs.inorgchem.7b00273  doi: 10.1021/acs.inorgchem.7b00273

    8. [8]

      Hirai, Y.; Nakanishi, T.; Kitagawa, Y.; Fushimi, K.; Seki, T.; Ito, H.; Hasegawa, Y. Angew. Chem. Int. Ed. 2017, 56, 7171. doi: 10.1002/anie.201703638  doi: 10.1002/anie.201703638

    9. [9]

      Hirai, Y.; da Rosa, P. P. F.; Nakanishi, T.; Kitagawa, Y.; Fushimi, K.; Seki, T.; Ito, H.; Hasegawa, Y. Inorg. Chem. 2018, 57, 14653. doi: 10.1021/acs.inorgchem.8b02367  doi: 10.1021/acs.inorgchem.8b02367

    10. [10]

      Xie, Z. L.; Yu, T.; Chen, J. R.; Ubba, E.; Wang, L. Y.; Mao, Z.; Su, T. T.; Zhang, Y.; Aldred, M. P.; Chi, Z. G. Chem. Sci. 2018, 9, 5787. doi: 10.1039/c8sc01703d  doi: 10.1039/c8sc01703d

    11. [11]

      Wang, J. Q.; Wang, C.; Gong, Y. B.; Liao, Q. Y.; Han, M. M.; Jiang, T. J.; Dang, Q. X.; Li, Y. Q.; Li, Q. Q.; Li, Z. Angew. Chem. Int. Ed. 2018, 57, 16821. doi: 10.1002/anie.201811660  doi: 10.1002/anie.201811660

    12. [12]

      Yang, J.; Gao, X. M.; Xie, Z. L.; Gong, Y. B.; Fang, M. M.; Peng, Q.; Chi, Z. G.; Li, Z. Angew. Chem. Int. Ed. 2017, 56, 15299. doi: 10.1002/anie.201708119  doi: 10.1002/anie.201708119

    13. [13]

      Yang, J.; Qin, J. W.; Geng, P. Y.; Wang, J. Q.; Fang, M. M.; Li, Z. Angew. Chem. Int. Ed. 2018, 57, 14174. doi: 10.1002/anie.201809463  doi: 10.1002/anie.201809463

    14. [14]

      Marchetti, F.; Nicola, D. C.; Pettinari, R.; Timokhin, I.; Pettinari, C. J. Chem. Educ. 2012, 89, 652. doi: 10.1021/ed2001494  doi: 10.1021/ed2001494

    15. [15]

      Wrighton, M.; Ginley, D. Chem. Phys. 1974, 4, 295. doi: 10.1016/0301-0104(74)80097-2  doi: 10.1016/0301-0104(74)80097-2

    16. [16]

      Cotton, F. A.; Goodgame, D. M. L.; Goodgame, M. J. Am. Chem. Soc. 1962, 84, 167. doi: 10.1021/ja00861a008  doi: 10.1021/ja00861a008

    17. [17]

      Hardy, G. E.; Zink, J. I. Inorg. Chem. 1976, 15, 3061. doi: 10.1021/ic50166a026  doi: 10.1021/ic50166a026

    18. [18]

      Pitula, S.; Mudring, A. V. Chem. Eur. J. 2010, 16, 3355. doi: 10.1002/chem.200802660  doi: 10.1002/chem.200802660

    19. [19]

      Zhang, Y.; Liao, W. Q.; Fu, D. W.; Ye, H. Y.; Liu, C. M.; Chen, Z. N.; Xiong, R. G. Adv. Mater. 2015, 27, 3942. doi: 10.1002/adma.201501026  doi: 10.1002/adma.201501026

    20. [20]

      Bortoluzzi, M.; Castro, J.; Enrichi, F.; Vomiero, A.; Busato, M.; Huang, W. Z. Inorg. Chem. Commun. 2018, 92, 145. doi: 10.1016/j.inoche.2018.04.023  doi: 10.1016/j.inoche.2018.04.023

    21. [21]

      Hausmann, D.; Kuzmanoski A.; Feldmann, C. Dalton Trans. 2016, 45, 6541. doi: 10.1039/c6dt00458j  doi: 10.1039/c6dt00458j

    22. [22]

      Berezin, A. S.; Samsonenko, D. G.; Brel, V. K.; Artem'ev, A. V. Dalton Trans. 2018, 47, 7306. doi: 10.1039/c8dt01041b  doi: 10.1039/c8dt01041b

    23. [23]

      Wu, Y.; Zhang, X.; Xu, L. J.; Yang, M.; Chen, Z. N. Inorg. Chem. 2018, 57, 9175. doi: 10.1021/acs.inorgchem.8b01205  doi: 10.1021/acs.inorgchem.8b01205

    24. [24]

      Xu, L. J.; Sun, C. Z.; Xiao, H.; Wu, Y.; Chen, Z. N. Adv. Mater. 2017, 29, 1605739. doi: 10.1002/adma.201605739  doi: 10.1002/adma.201605739

    25. [25]

      Qin, Y. Y.; Tao, P.; Gao, L.; She, P. F.; Liu, S. J.; Li, X. L.; Li, F. Y.; Wang, H.; Zhao, Q.; Miao, Y. Q.; et al. Adv. Optical Mater. 2019, 7, 1801160. doi: 10.1002/adom.201801160  doi: 10.1002/adom.201801160

    26. [26]

      Cotton, F. A.; Daniels, L. M.; Huang, P. L. Inorg. Chem. 2001, 40, 3576. doi: 10.1021/ic0101836  doi: 10.1021/ic0101836

    27. [27]

      Balsamy, S.; Natarajan, P.; Vedalakshmi, R.; Muralidharan, S. Inorg. Chem. 2014, 53, 6054. doi: 10.1021/ic500400y  doi: 10.1021/ic500400y

    28. [28]

      Chen, J.; Zhang, Q.; Zheng, F. K.; Liu, Z. F.; Wang, S. H.; Wu, A. Q.; Guo, G. C. Dalton Trans. 2015, 44, 3289. doi: 10.1039/c4dt03694h  doi: 10.1039/c4dt03694h

    29. [29]

      Jiang, D. M.; Bo, L.; Zhu, T.; Tao, J. B.; Yang. X. P. Acta Phys. -Chim. Sin. 2018, 34, 812.  doi: 10.3866/PKU.WHXB201801086

    30. [30]

      Xia, H. Y.; Geng, T.; Zhao, Xu.; Li, F. F.; Wang, F. Y.; Gao, L. N. Acta Phys. -Chim. Sin. 2019, 35, 337.  doi: 10.3866/PKU.WHXB201803082

  • 加载中
    1. [1]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    4. [4]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    7. [7]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    8. [8]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    9. [9]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    12. [12]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    13. [13]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    14. [14]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    17. [17]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    18. [18]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    19. [19]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(16)
  • Abstract views(196)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return