Citation: Junjie Shi, Ziqi Hu, Yihao Yang, Yuxiang Bu, Zujin Shi. Stability and Formation Mechanism of Endohedral Metal Carbonitride Clusterfullerenes[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 190707. doi: 10.3866/PKU.WHXB201907077 shu

Stability and Formation Mechanism of Endohedral Metal Carbonitride Clusterfullerenes

  • Corresponding author: Yuxiang Bu, byx@sdu.edu.cn Zujin Shi, zjshi@pku.edu.cn
  • Received Date: 25 July 2019
    Revised Date: 9 August 2019
    Accepted Date: 9 August 2019
    Available Online: 14 August 2019

    Fund Project: the National Natural Science Foundation of China 21875002the National Natural Science Foundation of China 21873056National Basic Research Program of China 2017YFA024901

  • Fullerene molecules have nano-scale cavities in which various metal or metal clusters of different sizes can be embedded to form metallofullerenes with unique core-shell structures. The physical and chemical properties of metallofullerenes can be modified through the interaction between the encapsulated metals and the fullerene cages. As such, the investigation of metallofullerenes with novel structures has been a principal research focus in the field of fullerenes. In this study, we investigated the size matching effect between encapsulated clusters and fullerene cages for the endohedral metal carbonitride clusterfullerenes in order to discover new metallofullerenes. The stability and electronic structure of the metallofullerenes formed by encapsulating M3NC clusters (M = Y, La, Gd) into D2(186)-C96 and D2(35)-C88 fullerenes were studied using quantum chemical calculations. It was found that the fullerene cages formed stable structures by accepting six electrons transferred from the encapsulated clusters. The change in configuration of the encapsulated clusters was clarified by a comparison with the corresponding M3N@C2n metal nitride clusterfullerenes; the size matching effect between M3NC cluster and fullerene cage was elucidated on the basis of the calculated results and previous studies on Sc3NC@Ih(7)-C80. For the D2(186)-C96 fullerene, the Gd3NC cluster was found to have smaller changes in the configuration as compared with the La3NC cluster, proving that Gd3NC is more suitable than La3NC for encapsulation in the D2(186)-C96 fullerene cage. In addition, it was determined that the La3NC cluster requires a large structural change to maintain its planar configuration. For the D2(35)-C88 fullerene cage, the Y3NC cluster is more suitable than Gd3NC for encapsulation owing to the smaller size of the Y3NC cluster. The spatial distribution of the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of Gd3NC@D2(186)-C96 were found to be similar to those of Gd3N@D2(186)-C96. However, a unique endohedral cluster-based occupied molecular orbital was found for Gd3NC@D2(186)-C96. This orbital is derived from the interaction between the NC unit and the Gd atoms. The spatial distribution of the HOMO of Y3NC@D2(35)-C88 is similar to that of Y3N@D2(35)-C88, while the LUMO of Y3NC@D2(35)-C88 has a much larger contribution from the endohedral cluster as compared to Y3N@D2(35)-C88. Thus, the addition of a carbon atom in the cluster has a remarkable impact on the electronic structure of the metallofullerenes. With respect to structural characteristics, we found that the three fullerene cages, D2(186)-C96, D2(35)-C88, and Ih(7)-C80, have a uniform distribution of five-membered carbon atom rings; these fullerenes can be greatly stabilized in the form of C2n6- anions. However, the formation mechanism of fullerenes and metallofullerenes, at present, is poorly understood. Based on the structural analysis, we propose a direct mechanism for the formation of fullerenes without the Stone-Wales isomerization, i.e., the rearrangement of five-membered rings through the addition of carbon atoms and the transformation into larger carbon cages while maintaining stable structural units.
  • 加载中
    1. [1]

      Chai, Y.; Guo, T.; Jin, C. M.; Haufler, R. E.; Chibante, L. P. F.; Fure, J.; Wang, L. H.; Alford, J. M.; Smalley, R. E. J. Phys. Chem. 1991, 95, 7564. doi: 10.1021/j100173a002  doi: 10.1021/j100173a002

    2. [2]

      Zhang, Y.; Shi, Z. J.; Hao, C.; Xu, J. X.; He, X. R.; Gu, Z. N. Acta Phys. -Chim. Sin. 2004, 20, 573.  doi: 10.3866/PKU.WHXB20040604

    3. [3]

      Liu, X. S.; Lei, D.; Gan, L. H. Acta Phys. -Chim. Sin. 2016, 32, 929.  doi: 10.3866/PKU.WHXB201601221

    4. [4]

      Popov, A. A.; Yang, S.; Dunsch, L. Chem. Rev. 2013, 113, 5989. doi: 10.1021/cr300297r  doi: 10.1021/cr300297r

    5. [5]

      Lu, X.; Akasaka, T.; Nagase, S. Chem. Commun. 2011, 47, 5942. doi: 10.1039/c1cc10123d  doi: 10.1039/c1cc10123d

    6. [6]

      Ross, R. B.; Cardona, C. M.; Guldi, D. M.; Sankaranarayanan, S. G.; Reese, M. O.; Kopidakis, N.; Peet, J.; Walker, B.; Bazan, G. C.; Van Keuren, E.; et al. Nat. Mater. 2009, 8, 208. doi: 10.1038/NMAT2379  doi: 10.1038/NMAT2379

    7. [7]

      Bolskar, R. D. Nanomedicine 2008, 3, 201. doi: 10.2217/17435889.3.2.201  doi: 10.2217/17435889.3.2.201

    8. [8]

      Feng, L.; Radhakrishnan, S. G.; Mizorogi, N.; Slanina, Z.; Nikawa, H.; Tsuchiya, T.; Akasaka, T.; Nagase, S.; Martin, N.; Guldi, D. M. J. Am. Chem. Soc. 2011, 133, 7608. doi: 10.1021/ja202331r  doi: 10.1021/ja202331r

    9. [9]

      Jiang, Y. H.; Wang, D. S.; Xu, D.; Zhang, J. Y.; Wang, Z. Y. ChemPhysChem 2018, 19, 2995. doi: 10.1002/cphc.201800797  doi: 10.1002/cphc.201800797

    10. [10]

      Liu, F.; Krylov, D. S.; Spree, L.; Avdoshenko, S. M.; Samoylova, N. A.; Rosenkranz, M.; Kostanyan, A.; Greber, T.; Wolter, A. U. B.; Buchner, B.; et al. Nat. Commun. 2017, 8, 16098. doi: 10.1038/ncomms16098  doi: 10.1038/ncomms16098

    11. [11]

      Wang, T. S.; Wang, C. R. Acc. Chem. Res. 2014, 47, 450. doi: 10.1021/ar400156z  doi: 10.1021/ar400156z

    12. [12]

      Hu, Z. Q.; Dong, B. W.; Liu, Z.; Liu, J. J.; Su, J.; Yu, C.; Xiong, J.; Shi, D. E.; Wang, Y. Y.; Wang, B. W.; et al. J. Am. Chem. Soc. 2018, 140, 1123. doi: 10.1021/jacs.7b12170  doi: 10.1021/jacs.7b12170

    13. [13]

      Stevenson, S.; Rice, G.; Glass, T.; Harich, K.; Cromer, F.; Jordan, M.; Craft, J.; Hadju, E.; Bible, R.; Olmstead, M. Nature 1999, 401, 55. doi: 10.1038/43415  doi: 10.1038/43415

    14. [14]

      Dunsch, L.; Yang, S. Small 2007, 3, 1298. doi: 10.1002/smll.200700036  doi: 10.1002/smll.200700036

    15. [15]

      Zhang, J. Y.; Stevenson, S.; Dorn, H. C. Acc. Chem. Res. 2013, 46, 1548. doi: 10.1021/ar300301v  doi: 10.1021/ar300301v

    16. [16]

      Campanera, J. M.; Bo, C.; Olmstead, M. M.; Balch, A. L.; Poblet, J. M. J. Phys. Chem. A 2002, 106, 12356. doi: 10.1021/jp021882m  doi: 10.1021/jp021882m

    17. [17]

      Iiduka, Y.; Wakahara, T.; Nakahodo, T.; Tsuchiya, T.; Sakuraba, A.; Maeda, Y.; Akasaka, T.; Yoza, K.; Horn, E.; Kato, T. J. Am. Chem. Soc. 2005, 127, 12500. doi: 10.1021/ja054209u  doi: 10.1021/ja054209u

    18. [18]

      Stevenson, S.; Mackey, M. A.; Stuart, M. A.; Phillips, J. P.; Easterling, M. L.; Chancellor, C. J.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 2008, 130, 11844. doi: 10.1021/ja803679u  doi: 10.1021/ja803679u

    19. [19]

      Mercado, B. Q.; Olmstead, M. M.; Beavers, C. M.; Easterling, M. L.; Stevenson, S.; Mackey, M. A.; Coumbe, C. E.; Phillips, J. D.; Phillips, J. P.; Poblet, J. M.; et al. Chem. Commun. 2010, 46, 279. doi: 10.1039/b918731f  doi: 10.1039/b918731f

    20. [20]

      Krause, M.; Ziegs, F.; Popov, A. A.; Dunsch, L. ChemPhysChem 2007, 8, 537. doi: 10.1002/cphc.200600363  doi: 10.1002/cphc.200600363

    21. [21]

      Wang, T. S.; Feng, L.; Wu, J. Y.; Xu, W.; Xiang, J. F.; Tan, K.; Ma, Y. H.; Zheng, J. P.; Jiang, L.; Lu, X.; et al. J. Am. Chem. Soc. 2010, 132, 16362. doi: 10.1021/ja107843b  doi: 10.1021/ja107843b

    22. [22]

      Frisch, M.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision A.1; Gaussian: Wallingford, CT, USA, 2009.

    23. [23]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913  doi: 10.1063/1.464913

    24. [24]

      Chaur, M. N.; Melin, F.; Ashby, J.; Elliott, B.; Kumbhar, A.; Rao, A. M.; Echegoyen, L. Chem. -Eur. J. 2008, 14, 8213. doi: 10.1002/chem.200800881  doi: 10.1002/chem.200800881

    25. [25]

      Xu, W.; Wang, T. S.; Wu, J. Y.; Ma, Y. H.; Zheng, J. P.; Li, H.; Wang, B.; Jiang, L.; Shu, C. Y.; Wang, C. R. J. Phys. Chem. C 2011, 115, 402. doi: 10.1021/jp1087459  doi: 10.1021/jp1087459

    26. [26]

      Jin. P; Zhou, Z.; Hao, C.; Gao, Z. X.; Tan, K.; Lu, X.; Chen, Z. F. Phys. Chem. Chem. Phys. 2010, 12, 12442. doi: 10.1039/b923106d  doi: 10.1039/b923106d

    27. [27]

      Zhang, J.; Bowles, F. L.; Bearden, D. W.; Ray, W. K.; Fuhrer, T.; Ye, Y.; Dixon, C.; Harich, K.; Helm, R. F.; Olmstead, M. M.; et al. Nat. Chem. 2013, 5, 880. doi: 10.1038/NCHEM.1748  doi: 10.1038/NCHEM.1748

    28. [28]

      Dunk, P. W.; Kaiser, N. K.; Hendrickson, C. L.; Quinn, J. P.; Ewels, C. P.; Nakanishi, Y.; Sasaki, Y.; Shinohara, H.; Marshall, A. G.; Kroto, H. W. Nat. Commun. 2012, 3, 855. doi: 10.1038/ncomms1853  doi: 10.1038/ncomms1853

    29. [29]

      Dang, J.; Wang, W.; Zheng, J.; Zhao, X.; Osawa, E.; Nagase, S. J. Phys. Chem. C 2012, 116, 16233. doi: 10.1021/jp302881u  doi: 10.1021/jp302881u

    30. [30]

      Wang, W.; Dang, J.; Zheng, J.; Zhao, X.; Nagase, S. J. Phys. Chem. C 2013, 117, 2349. doi: 10.1021/jp3100766  doi: 10.1021/jp3100766

    31. [31]

      Mulet-Gas, M.; Abella, L.; Ceron, M. R.; Castro, E.; Marshall, A. G.; Rodriguez-Fortea, A.; Echegoyen, L.; Poblet, J. M.; Dunk, P. W. Nat. Commun. 2017, 8, 1222. doi: 10.1038/s41467-017-01295-9  doi: 10.1038/s41467-017-01295-9

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    6. [6]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    11. [11]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    12. [12]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    15. [15]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

Metrics
  • PDF Downloads(8)
  • Abstract views(403)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return