Citation: Yuqi Wang, Miaocheng Zhang, Wei Xu, Xinyi Shen, Fei Gao, Jiale Zhu, Xiang Wan, Xiaojuan Lian, Jianguang Xu, Yi Tong. Chemical Preparation of New Ti3C2 MXene and the Performance and Mechanism of Memristor Based on MXene[J]. Acta Physico-Chimica Sinica, ;2022, 38(3): 190707. doi: 10.3866/PKU.WHXB201907076 shu

Chemical Preparation of New Ti3C2 MXene and the Performance and Mechanism of Memristor Based on MXene

  • Corresponding author: Jianguang Xu, jgxu@163.com Yi Tong, tongyi@njupt.edu.cn
  • Received Date: 25 July 2019
    Revised Date: 21 August 2019
    Accepted Date: 9 September 2019
    Available Online: 17 September 2019

    Fund Project: the National Natural Science Foundation of China 61704088the National Natural Science Foundation of China 61874059the National Natural Science Foundation of China 21671167the China Postdoctoral Science Foundation 2018M642290the Graduate Research and Innovation Projects of Jiangsu Province, China SJCX19_0256the Jiangsu Provincial Key Talent Project, China SZDG2018007the Jiangsu Provincial Key Talent Project, China TJ218001

  • Resistive switching devices have the advantage that the resistance can be repeatedly regulated between two or more resistance states. As a new resistive switching device, a memristor has abundant resistance states that can be continuously tuned. In recent years, memristors have been extensively studied for emerging nonvolatile memories and in the construction of neuromorphic systems owing to their simple two-terminal structure, high integration, and low operating voltage compared with those of traditional metal-oxide-semiconductor field-effect transistors. However, their application is limited owing to their relatively poor reliability. Recently, several studies have shown that two-dimensional materials such as graphene oxide can optimize the memristor performance. A new two-dimensional material, MXene, also exhibits special mechanical and electrical properties that show promise for use in memristors owing to its two-dimensional layered structure similar to that of graphene. MXene is a two-dimensional transition metal carbide/nitride of the form Mn+1Xn, where M is an early transition metal and X is carbon or nitrogen. Its other characteristics such as hydrophilic surfaces and ultrahigh metal conductivity (6000–8000 S·cm-1) have been studied, and it has been applied to energy storage devices and electronic devices such as supercapacitors and secondary batteries. However, the application of MXene in resistive devices has been rarely investigated, especially for memristors. In this study, we prepared Ti3C2 powder by etching layered compounds of Ti3AlC2 with a mixture of HCl and HF. Next, Ti3C2 film was introduced into the memristor structure by spin-coating. The physical characteristics of Ti3C2 were investigated and analyzed by X-ray diffraction and scanning electron microscopy, and a memristor with Cu/Ti3C2/SiO2/W structure was fabricated. In this structure, Ti3C2 and SiO2 were introduced as resistive layers, and related electrical properties were investigated. Under dual DC voltage sweeping, the typical switching characteristic curves of the memristor were measured. Moreover, the repeatability and stability of high- and low-resistance states were investigated and analyzed, respectively. The experimental results show that the device can maintain stable high- and low-resistance states for > 104 s during 100 dual-voltage sweeping cycles. In addition, the device can be regulated by a pulse voltage and realize typical paired-pulse facilitation that is similar to biological synapses. This work proved that the Cu/Ti3C2/SiO2/W memristor has huge potential for application in the construction of emerging memory devices and artificial neuromorphic systems.
  • 加载中
    1. [1]

      Akinaga, H.; Shima, H. Proc. IEEE 2010, 98 (12), 2237. doi: 10.1109/JPROC.2010.2070830  doi: 10.1109/JPROC.2010.2070830

    2. [2]

      Slesazeck, S.; Mikolajick, T. Nanotechnology 2019, 30, 352003. doi: 10.1088/1361-6528/ab2084  doi: 10.1088/1361-6528/ab2084

    3. [3]

      Yu, S. M.; Wu, Y; Jeyasingh, R.; Kuzum, D.; Wong, H. S. P. IEEE Trans. Electron Devices 2011, 58 (8), 2729. doi: 10.1109/TED.2011.2147791  doi: 10.1109/TED.2011.2147791

    4. [4]

      Kim, C. H.; Lim, S.; Woo, S. Y.; Kang, W. M.; Seo, Y. T.; Lee, S. T.; Lee, S.; Kwon, D.; Oh, S.; Noh, Y.; et al. Nanotechnology 2019, 30, 032001. doi: 10.1088/1361-6528/aae975  doi: 10.1088/1361-6528/aae975

    5. [5]

      Zhang, X. J.; Huang, A. P.; Hu, Q.; Xiao, Z. S.; Chu, P. K. Phys. Status Solidi A-Appl. Mat. 2018, 215 (13), 1700875. doi: 10.1002/pssa.201700875  doi: 10.1002/pssa.201700875

    6. [6]

      Santoro, G.; Turvani, G.; Graziano, M. Micromachines 2019, 10 (6), 368. doi: 10.3390/mi10060368  doi: 10.3390/mi10060368

    7. [7]

      Kim, K. H.; Gaba, S.; Wheeler, D.; Cruz-Albrecht, J. M.; Hussain, T.; Srinivasa, N.; Lu, W. Nano Lett. 2012, 12 (1), 389. doi: 10.1021/nl203687n  doi: 10.1021/nl203687n

    8. [8]

      Yin, X. Z.; Chen, X. M.; Niemier, M.; Hu, X. S. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27 (1), 159. doi: 10.1109/TVLSI.2018.2871119  doi: 10.1109/TVLSI.2018.2871119

    9. [9]

      Zhu, W. J.; Low, T.; Wang, H.; Ye, P. D.; Duan, X. F. 2D Mater. 2019, 6, 032004. doi: 10.1088/2053-1583/ab1ed9  doi: 10.1088/2053-1583/ab1ed9

    10. [10]

      Zhou, V. Y. Q.; Li, M.; Guo, Y.; Wang, W.; Yang, Y.; Jiang, Y.; Robertson, J. J. Appl. Phys. 2016, 120, 024504. doi: 10.1063/1.4955044  doi: 10.1063/1.4955044

    11. [11]

      Torrezan, A. C.; Strachan, J. P.; Medeiros-Ribeiro, G.; Williams, R. S. Nanotechnology 2011, 22, 485203. doi: 10.1088/0957-4484/22/48/485203  doi: 10.1088/0957-4484/22/48/485203

    12. [12]

      Mehonic, A.; Buckwell, M.; Montesi, L.; Garnett, L.; Hudziak, S.; Fearn, S.; Chater, R.; McPhail. D.; Kenyon, A. J. J. Appl. Phys. 2015, 117, 124505. doi: 10.1063/1.4916259  doi: 10.1063/1.4916259

    13. [13]

      Long, S. B.; Cagli, C.; Ielmini, D.; Liu, M.; Sune, J. J. Appl. Phys. 2012, 111, 074508. doi: 10.1063/1.3699369  doi: 10.1063/1.3699369

    14. [14]

      Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Mater. Sci. Eng. R-Rep. 2014, 83, 1. doi: 10.1016/j.mser.2014.06.002  doi: 10.1016/j.mser.2014.06.002

    15. [15]

      Chang, W. Y.; Cheng, K. J.; Tsai, J. M.; Chen, H. J.; Chen, F.; Tsai, M. J.; Wu, T. B. Appl. Phys. Lett. 2009, 95, 042104. doi: 10.1063/1.3193656  doi: 10.1063/1.3193656

    16. [16]

      Wang, C. H.; He, W.; Tong, Y.; Zhang, Y. S.; Huang, K. J.; Song, L.; Zhong, S.; Ganeshkumar, R.; Zhao, R. Small 2017, 13 (20), 1603435. doi: 10.1002/smll.201603435  doi: 10.1002/smll.201603435

    17. [17]

      Wang G. W.; Hou, C. J.; Long, H. T.; Yang, L. J.; Wang, Y. Acta Phys. -Chim. Sin. 2019, 35 (12), 1319.  doi: 10.3866/PKU.WHXB201903010

    18. [18]

      Liu, C. Y.; Zhan, Y. X.; Yang, C. P.; Lai, C. H.; Weng, M. H.; Ye, C. S.; Huang, C. K. Sens. Mater. 2018, 30 (3), 463. doi: 10.18494/SAM.2018.1752  doi: 10.18494/SAM.2018.1752

    19. [19]

      Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Adv. Mater. 2011, 23(37), 4248. doi: 10.1002/adma.201102306  doi: 10.1002/adma.201102306

    20. [20]

      Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. ACS Nano 2012, 6 (2), 1322. doi: 10.1021/nn204153h  doi: 10.1021/nn204153h

    21. [21]

      Ghidiu, M.; Naguib, M.; Shi, C.; Mashtalir, O.; Pan, L. M.; Zhang, B.; Yang, J.; Gogotsi, Y.; Billinge, S. J. L.; Barsoum, M. W. Chem. Commun. 2014, 50, 9517. doi: 10.1039/c4cc03366c  doi: 10.1039/c4cc03366c

    22. [22]

      Du, C. B.; Hu, X. L.; Zhang, G.; Cheng, Y. Acta Phys. -Chim. Sin. 2019, 35 (10), 1078.  doi: 10.3866/PKU.WHXB201812057

    23. [23]

      Lei, J. C.; Zhang, X.; Zhou, Z. Front. Phys. 2015, 10 (3), 276. doi: 10.1007/s11467-015-0493-x  doi: 10.1007/s11467-015-0493-x

    24. [24]

      Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. Science 2016, 353 (6298), aac9439. doi: 10.1126/science.aac9439  doi: 10.1126/science.aac9439

    25. [25]

      Wang, C.; Peng, Q. Q.; Fan, X. W.; Liang, W. Y.; Zhang, F.; Liu, J.; Zhang, H. Chin. Phys. B 2018, 27 (9), 094214. doi: 10.1088/1674-1056/27/9/094214  doi: 10.1088/1674-1056/27/9/094214

    26. [26]

      Kang, L. P.; Zhang, G. N.; Bai, Y. L.; Wang, H. J.; Lei, Z. B.; Liu, Z. H. Acta Phys. -Chim. Sin. 2020, 36 (2), 1905032.  doi: 10.3866/PKU.WHXB201905032

    27. [27]

      Yan, X. B.; Wang, K. Y.; Zhao, J. H.; Zhou, Z. Y.; Wang, H.; Wang, J. J.; Zhang, L.; Li, X. Y.; Xiao, Z. A.; Zhao, Q. L.; et al. Small 2019, 15 (25), 1900107. doi: 10.1002/smll.201900107  doi: 10.1002/smll.201900107

    28. [28]

      He, H. K.; Yang, R.; Zhou, W.; Huang, H. M.; Xiong, J.; Gan, L.; Zhai, T. Y.; Guo, X. Small 2018, 14 (15), 1800079. doi: 10.1002/smll.201800079  doi: 10.1002/smll.201800079

    29. [29]

      Wang, Z. W.; Yin, M. H.; Zhang, T; Cai, Y. M.; Wang, Y. Y.; Yang, Y. C.; Huang, R. Nanoscale 2016, 8 (29), 14015. doi: 10.1039/c6nr00476h  doi: 10.1039/c6nr00476h

    30. [30]

      Citri, A.; Malenka, R. C. Neuropsychopharmacology 2008, 33, 18. doi: 10.1038/sj.npp.1301559  doi: 10.1038/sj.npp.1301559

    31. [31]

      Colino, A.; Muñoz-Cuevas, J.; Vara, H. Rev. Neurologia 2002, 34 (6), 593. doi: 10.33588/rn.3406.2002165  doi: 10.33588/rn.3406.2002165

    32. [32]

      Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. Nature 2008, 453, 80. doi: 10.1038/nature06932  doi: 10.1038/nature06932

    33. [33]

      Wang, C. H.; He, W.; Tong, Y.; Zhao, R. Sci. Rep. 2016, 6, 22970. doi: 10.1038/srep22970  doi: 10.1038/srep22970

    34. [34]

      Yang, Y. C.; Gao, P.; Gaba, S.; Chang, T.; Pan, X. Q.; Lu, W. Nat. Commun. 2012, 3, 732. doi: 10.1038/ncomms1737  doi: 10.1038/ncomms1737

    35. [35]

      Yang, Y. C.; Gao, P.; Li, L. Z.; Pan, X. Q.; Tappertzhofen, S.; Choi, S.; Waser, R.; Valov, I.; Lu, W. D. Nat. Commun. 2014, 5, 4232. doi: 10.1038/ncomms5232  doi: 10.1038/ncomms5232

    36. [36]

      Kumar, A.; Pawar, S.; Sharma, S.; Kaur, D. Appl. Phys. Lett. 2018, 112 (26), 262106. doi: 10.1063/1.5037139  doi: 10.1063/1.5037139

    37. [37]

      Liu, D. Q.; Cheng, H. F.; Zhu, X.; Wang, N. N.; Zhang, C. Y. Acta Phys. Sin. 2014, 63 (18), 187301.  doi: 10.7498/aps.63.187301

    38. [38]

      Liu, Q.; Zhang, X. M.; Luo, Q.; Zhao, X. L.; Lv, H. B.; Long, S. B.; Liu, M. Sci. China-Phys. Mech. Astron. 2018, 61, 088711. doi: 10.1007/s11433-017-9172-8  doi: 10.1007/s11433-017-9172-8

    39. [39]

      Lim, E. W.; Ismail, R. Electronics 2015, 4 (3), 586. doi: 10.3390/electronics4030586  doi: 10.3390/electronics4030586

    40. [40]

      Indiveri, G.; Liu, S. C. Proc. IEEE 2015, 103 (8), 1379. doi: 10.1109/JPROC.2015.2444094  doi: 10.1109/JPROC.2015.2444094

    41. [41]

      Chang, T.; Jo, S. H.; Lu, W. ACS Nano 2011, 5 (9), 7669. doi: 10.1021/nn202983n  doi: 10.1021/nn202983n

    42. [42]

      Feldman, D. E. Neuron 2012, 75 (4), 556. doi: 10.1016/j.neuron.2012.08.001  doi: 10.1016/j.neuron.2012.08.001

    43. [43]

      Lange-Asschenfeldt, C.; Schipke, C. G.; Riepe, M. W. Neurosci. Lett. 2007, 416 (1), 101. doi: 10.1016/j.neulet.2007.01.055  doi: 10.1016/j.neulet.2007.01.055

  • 加载中
    1. [1]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    2. [2]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    3. [3]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    4. [4]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    5. [5]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    6. [6]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    7. [7]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    8. [8]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    9. [9]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    10. [10]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    11. [11]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    12. [12]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    15. [15]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    16. [16]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    17. [17]

      Lili Wang Chunxia Chen Lina Jia Li Guo Jingjing Cao . Exploration and Practice in Innovative and Interesting Scientific Research Skills Training for Wood Magnetization. University Chemistry, 2024, 39(6): 246-252. doi: 10.3866/PKU.DXHX202310088

    18. [18]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    19. [19]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(46)
  • Abstract views(696)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return