Citation: Wang Jiu, Wu Nanshi, Liu Tao, Cao Shaowen, Yu Jiaguo. MnCo Oxides Supported on Carbon Fibers for High-Performance Supercapacitors[J]. Acta Physico-Chimica Sinica, ;2020, 36(7): 190707. doi: 10.3866/PKU.WHXB201907072 shu

MnCo Oxides Supported on Carbon Fibers for High-Performance Supercapacitors

  • Corresponding author: Cao Shaowen, swcao@whut.edu.cn Yu Jiaguo, jiaguoyu@yahoo.com; yujiaguo93@whut.edu.cn
  • Received Date: 25 July 2019
    Revised Date: 9 September 2019
    Accepted Date: 11 September 2019
    Available Online: 24 September 2019

    Fund Project: the National Natural Science Foundation of China 51922081the National Natural Science Foundation of China U1705251the Natural Science Foundation of Hubei Province, China 2017CFA031the Fundamental Research Funds for the Central Universities, China WUT: 2019-Ⅲ-196the National Natural Science Foundation of China 21773179the National Natural Science Foundation of China 21433007The project was supported by the National Natural Science Foundation of China (51922081, 21773179, U1705251, 21433007), the Natural Science Foundation of Hubei Province, China (2017CFA031), and the Fundamental Research Funds for the Central Universities, China (WUT: 2019-Ⅲ-196)

  • The development of high-performance supercapacitor electrode materials is imperative to alleviate the ongoing energy crisis. Numerous transition metals (oxides) have been studied as electrode materials for supercapacitors owing to their low cost, environmental-friendliness, and excellent electrochemical performance. Among the developed binary transition metal oxides, manganese cobalt oxides typically show high theoretical capacitance and stable electrochemical performance, and are widely used in the electrode materials of supercapacitors. However, the poor conductivity and active material utilization of manganese cobalt oxide-based electrode materials limit their potential capacitance application. Cotton is mainly composed of organic carbon-containing materials, which can be transformed to carbon fibers after calcination. The resultant carbonaceous material exhibits a large specific surface area and good conductivity. Such advantages could potentially suppress the negative effects caused by the poor conductivity and small specific surface area of manganese cobalt oxides, thereby improving the electrochemical performance. Herein, we firstly deposited manganese cobalt oxides on cotton by a simple hydrothermal method, yielding a composite of manganese cobalt oxides and carbon fibers via subsequent calcination, to improve the electrochemical performance of the electrode material. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), and electrochemical characterizations were used to investigate the physical, chemical, and electrochemical properties of the prepared samples. The fabricated manganese cobalt oxides in the composite were uniformly dispersed on the carbon fiber surface, which increased the contact between the interface of the electrode material and electrolyte, and enhanced electrode material utilization. The electrode material was confirmed to have well contacted with the electrolyte during a contact angle test. Hence, a pseudo-capacitance reaction completely occurred on the manganese cobalt oxide material. Moreover, the addition of carbon fibers reduced the resistance of the material, resulting in excellent capacitive performance. The capacitance of the prepared composite was 854 F∙g-1 at a current density of 2 A∙g-1. The capacitance was maintained at 72.3% after 2000 cycles at a current density of 2 A∙g-1. These results indicate that the manganese cobalt oxide and carbon fiber composite is a promising electrode material for high-performance supercapacitors. The findings presented herein provide a strategy for coupling with carbon materials to enhance the performance of supercapacitor electrode materials based on manganese cobalt oxides. Thus, novel insights into the design of high-performance supercapacitors for energy management are provided.
  • 加载中
    1. [1]

      Miller, J. R.; Simon, P. Science 2008, 321, 651. doi: 10.1126/science.1158736  doi: 10.1126/science.1158736

    2. [2]

      Dong, X. C.; Xu, H.; Wang, X. W.; Huang, Y. X.; Chan-Park, M. B.; Zhang, H.; Wang, L. H.; Huang, W.; Chen, P. ACS Nano 2012, 6, 3206. doi: 10.1021/nn300097q  doi: 10.1021/nn300097q

    3. [3]

      Li, B.; Dai, F.; Xiao, Q. F.; Yang, L.; Shen, J. M.; Zhang, C. M.; Cai, M. Energy Environ. Sci. 2016, 9, 102. doi: 10.1039/C5EE03149D  doi: 10.1039/C5EE03149D

    4. [4]

      Liu, X. Y.; Gao, Y. Q.; Yang, G. W. Nanoscale 2016, 8, 4227. doi: 10.1039/C5NR09145D  doi: 10.1039/C5NR09145D

    5. [5]

      Qu, G. X.; Cheng, J. L.; Li, X. D.; Yuan, D. M.; Chen, P. N.; Chen, X. L.; Wang, B.; Peng, H. S. Adv. Mater. 2016, 28, 3646. doi: 10.1002/adma.201600689  doi: 10.1002/adma.201600689

    6. [6]

      Liu, T.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Adv. Energy Mater. 2019, 9, 1803900. doi: 10.1002/aenm.201803900  doi: 10.1002/aenm.201803900

    7. [7]

      Yang, H. C.; Bo, Z.; Shuai, X. R.; Yan, J. H.; Cen, K. F. Acta Phys. -Chim. Sin. 2019, 35, 200.  doi: 10.3866/PKU.WHXB201803083

    8. [8]

      Wang, H. Y.; Shi, G. Q. Acta Phys. -Chim. Sin. 2017, 34, 22.  doi: 10.3866/PKU.WHXB201706302

    9. [9]

      Naoi, K.; Kisu, K.; Iwama, E.; Nakashima, S.; Sakai, Y.; Orikasa, Y.; Leone, P.; Dupré, N.; Brousse, T.; Rozier, P. Energy Environ. Sci. 2016, 9, 2143. doi: 10.1039/C6EE00829A  doi: 10.1039/C6EE00829A

    10. [10]

      Godillot, G.; Taberna, P. L.; Daffos, B.; Simon, P.; Delmas, C.; Guerlou-Demourgues, L. J. Power Sources 2016, 331, 277. doi: 10.1016/j.jpowsour.2016.09.035  doi: 10.1016/j.jpowsour.2016.09.035

    11. [11]

      Chen, Y. Y.; Liu, T.; Zhang, L. Y.; Yu, J. G. ACS Sustain. Chem. Eng. 2019, 7, 11157. doi: 10.1021/acssuschemeng.9b00284  doi: 10.1021/acssuschemeng.9b00284

    12. [12]

      Chen, Y. Y.; Liu, T.; Zhang, L. Y.; Yu, J. G. Appl. Surf. Sci. 2019, 484, 135. doi: 10.1016/j.apsusc.2019.04.074  doi: 10.1016/j.apsusc.2019.04.074

    13. [13]

      Yang, K.; Shuai, X. R.; Yang, H. C.; Yan, J. H.; Cen, K. F. Acta Phys. -Chim. Sin. 2019, 35, 755.  doi: 10.3866/PKU.WHXB201810009

    14. [14]

      Kang, Y. J.; Chun, S. J.; Lee, S. S.; Kim, B. Y.; Kim, J. H.; Chung, H.; Lee, S. Y.; Kim, W. ACS Nano 2012, 6, 6400. doi: 10.1021/nn301971r  doi: 10.1021/nn301971r

    15. [15]

      Liu, T.; Jiang, C. J.; Cheng, B.; You, W.; Yu, J. G. J. Power Sources 2017, 359, 371. doi: 10.1016/j.jpowsour.2017.05.100  doi: 10.1016/j.jpowsour.2017.05.100

    16. [16]

      Shen, X. Y.; He, J. N.; Wang, N.; Huang, C. S. Acta Phys.-Chim. Sin. 2018, 34, 1029.  doi: 10.3866/PKU.WHXB201801122

    17. [17]

      Zhang, L. Y.; Shi, D. W.; Liu, T.; Jaroniec, M.; Yu, J. G. Mater. Today 2018, 25, 35. doi: 10.1016/j.mattod.2018.11.002  doi: 10.1016/j.mattod.2018.11.002

    18. [18]

      Wang, G. P.; Zhang, L.; Zhang, J. J. Chem. Soc. Rev. 2012, 41, 797. doi: 10.1039/C1CS15060J  doi: 10.1039/C1CS15060J

    19. [19]

      Kaewsongpol, T.; Sawangphruk, M.; Chiochan, P.; Suksomboon, M.; Suktha, P.; Srimuk, P.; Krittayavathananon, A.; Luanwuthi, S.; Iamprasertkun, P.; Wutthiprom, J. Mater. Today Commun. 2015, 4, 176. doi: 10.1016/j.mtcomm.2015.08.005  doi: 10.1016/j.mtcomm.2015.08.005

    20. [20]

      Sawangphruk, M.; Suksomboon, M.; Kongsupornsak, K.; Khuntilo, J.; Srimuk, P.; Sanguansak, Y.; Klunbud, P.; Suktha, P.; Chiochan, P. J. Mater. Chem. A 2013, 1, 9630. doi: 10.1039/C3TA12194A  doi: 10.1039/C3TA12194A

    21. [21]

      Sawangphruk, M.; Srimuk, P.; Chiochan, P.; Krittayavathananon, A.; Luanwuthi, S.; Limtrakul, J. Carbon 2013, 60, 109. doi: 10.1016/j.carbon.2013.03.062  doi: 10.1016/j.carbon.2013.03.062

    22. [22]

      Sawangphruk, M.; Pinitsoontorn, S.; Limtrakul, J. J. Solid State Electrochem. 2012, 16, 2623. doi: 10.1007/s10008-012-1691-x  doi: 10.1007/s10008-012-1691-x

    23. [23]

      Li, W. Y.; Xu, K. B.; Song, G. S.; Zhou, X. Y.; Zou, R. J.; Yang, J. M.; Chen, Z. G.; Hu, J. Q. CrystEngComm 2014, 16, 2335. doi: 10.1039/C3CE42581A  doi: 10.1039/C3CE42581A

    24. [24]

      Xu, Y. N.; Wang, X. F.; An, C. H.; Wang, Y. J.; Jiao, L. F.; Yuan, H. T. J. Mater. Chem. A 2014, 2, 16480. doi: 10.1039/C4TA03123G  doi: 10.1039/C4TA03123G

    25. [25]

      Chen, S.; Chen, H. C.; Li, C.; Fan, M. Q.; Lv, C. J.; Tian, G. L.; Shu, K. Y. J. Mater. Sci. 2017, 52, 6687. doi: 10.1007/s10853-017-0903-2  doi: 10.1007/s10853-017-0903-2

    26. [26]

      Padmanathan, N.; Selladurai, S. Ionics 2014, 20, 479. doi: 10.1007/s11581-013-1009-8  doi: 10.1007/s11581-013-1009-8

    27. [27]

      Hao, P.; Zhao, Z. H.; Li, L. Y.; Tuan, C. C.; Li, H. D.; Sang, Y. H.; Jiang, H. D.; Wong, C. P.; Liu, H. Nanoscale 2015, 7, 14401. doi: 10.1039/C5NR04421A  doi: 10.1039/C5NR04421A

    28. [28]

      Zhao, Y.; Hu, L. F.; Zhao, S. Y.; Wu, L. M. Adv. Funct. Mater. 2016, 26, 4085. doi: 10.1002/adfm.201600494  doi: 10.1002/adfm.201600494

    29. [29]

      Liu, T.; Zhang, L. Y.; Cheng, B.; You, W.; Yu, J. G. Chem. Commun. 2018, 54, 3731. doi: 10.1039/C8CC00991K  doi: 10.1039/C8CC00991K

    30. [30]

      Ouyang, J. Y. Acta Phys. -Chim. Sin. 2018, 34, 1211.  doi: 10.3866/PKU.WHXB201804095

    31. [31]

      Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C. C. Adv. Mater. 2010, 22, 347. doi: 10.1002/adma.200902175  doi: 10.1002/adma.200902175

    32. [32]

      Liu, T.; Li, L. M.; Zhang, L. Y.; Cheng, B.; Yu, J. G. J. Power Sources 2019, 426, 266. doi: 10.1016/j.jpowsour.2019.04.053  doi: 10.1016/j.jpowsour.2019.04.053

    33. [33]

      Xu, L. Q. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Carbon 2019, 152, 652. doi: 10.1016/j.carbon.2019.06.062  doi: 10.1016/j.carbon.2019.06.062

    34. [34]

      Lu, Q.; Chen, Y. P.; Li, W. F.; Chen, J. G. G.; Xiao, J. Q.; Jiao, F. J. Mater. Chem. A 2013, 1, 2331. doi: 10.1039/C2TA00921H  doi: 10.1039/C2TA00921H

    35. [35]

      Wang, H. L.; Gao, Q. M.; Jiang, L. Small 2011, 7, 2454. doi: 10.1002/smll.201100534  doi: 10.1002/smll.201100534

    36. [36]

      Wu, N. S.; Low, J. X.; Liu, T.; Yu, J. G.; Cao, S. W. Appl. Surf. Sci. 2017, 413, 35. doi: 10.1016/j.apsusc.2017.03.297  doi: 10.1016/j.apsusc.2017.03.297

    37. [37]

      Li, J. F.; Xiong, S. L.; Liu, Y. R.; Ju, Z. C.; Qian, Y. T. ACS Appl. Mater. Interfaces 2013, 5, 981. doi: 10.1021/am3026294  doi: 10.1021/am3026294

    38. [38]

      Li, L.; Zhang, Y. Q.; Liu, X. Y.; Shi, S. J.; Zhao, X. Y.; Zhang, H.; Ge, X.; Cai, G. F.; Gu, C. D.; Wang, X. L. Electrochim. Acta 2014, 116, 467. doi: 10.1016/j.electacta.2013.11.081  doi: 10.1016/j.electacta.2013.11.081

    39. [39]

      Gomez, J.; Kalu, E. E. J. Power Sources 2013, 230, 218. doi: 10.1016/j.jpowsour.2012.12.069  doi: 10.1016/j.jpowsour.2012.12.069

    40. [40]

      Jagdale, P.; Koumoulos, E. P.; Cannavaro, I.; Khan, A.; Castellino, M.; Dragatogiannis. D. A.; Tagliaferro A.; Charitidis, C. A. Manufacturing Rev. 2017, 4, 10. doi: 10.1051/mfreview/2017008  doi: 10.1051/mfreview/2017008

    41. [41]

      Yan, J.; Fan, Z. J.; Wei, T.; Cheng, J.; Shao, B.; Wang, K.; Song, L. P.; Zhang, M. L. J. Power Sources 2009, 194, 1202. doi: 10.1016/j.jpowsour.2009.06.006  doi: 10.1016/j.jpowsour.2009.06.006

    42. [42]

      Lu, W. J.; Liu, M. X.; Miao, L.; Zhu, D. Z.; Wang, X.; Duan. H.; Wang, Z. W.; Li, L. C.; Xu Z. J.; Gan, L. H.; et al. Electrochim. Acta 2016, 205, 132. doi: 10.1016/j.electacta.2016.04.114  doi: 10.1016/j.electacta.2016.04.114

    43. [43]

      Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. Pure Appl. Chem. 2015, 87, 1051. doi: 10.1515/pac-2014-1117  doi: 10.1515/pac-2014-1117

    44. [44]

      Wu, S. S.; Chen, W. F.; Yan, L. F. J. Mater. Chem. A 2014, 2, 2765. doi: 10.1039/C3TA14387B  doi: 10.1039/C3TA14387B

    45. [45]

      Wang, X.; Liu, W. S.; Lu, X. H.; Lee, P. S. J. Mater. Chem. 2012, 22, 23114. doi: 10.1039/C2JM35307E  doi: 10.1039/C2JM35307E

    46. [46]

      Gao, H. C.; Xiao F.; Ching, C. B.; Duan H. W. ACS Appl. Mater. Inter. 2012, 4, 2801. doi: 10.1021/am300455d  doi: 10.1021/am300455d

    47. [47]

      Jing, M. J.; Hou, H. S.; Yang, Y. C.; Zhu, Y. R.; Wu, Z. B.; Ji, X. B. Electrochim. Acta 2015, 165, 198. doi: 10.1016/j.electacta.2015.03.032  doi: 10.1016/j.electacta.2015.03.032

    48. [48]

      Sun, L.; Zhang, Y. X.; Zhang, Y.; Si, H. C.; Qin, W. P.; Zhang, Y. H. Chem. Commun. 2018, 54, 10172. doi: 10.1039/C8CC05745A  doi: 10.1039/C8CC05745A

  • 加载中
    1. [1]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    2. [2]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    3. [3]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    4. [4]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    5. [5]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    6. [6]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    7. [7]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    8. [8]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    9. [9]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    10. [10]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    11. [11]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    12. [12]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    13. [13]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    14. [14]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    15. [15]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    16. [16]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    17. [17]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    18. [18]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    19. [19]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    20. [20]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

Metrics
  • PDF Downloads(11)
  • Abstract views(464)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return