Citation: Zhang Chao, Li Sihan, Wu Chenliang, Li Xiaoqing, Yan Xinhuan. Preparation and Characterization of Pt@Au/Al2O3 Core-Shell Nanoparticles for Toluene Oxidation Reaction[J]. Acta Physico-Chimica Sinica, ;2020, 36(8): 190705. doi: 10.3866/PKU.WHXB201907057 shu

Preparation and Characterization of Pt@Au/Al2O3 Core-Shell Nanoparticles for Toluene Oxidation Reaction

  • Corresponding author: Yan Xinhuan, xhyan@zjut.edu.cn
  • Received Date: 19 July 2019
    Revised Date: 27 August 2019
    Accepted Date: 9 September 2019
    Available Online: 9 September 2019

    Fund Project: The project was supported by the National Key R&D Program (2017YFC0210900) and Zhejiang Science and Technology Plan Project, China (2016C31104)the National Key R&D Program 2017YFC0210900Zhejiang Science and Technology Plan Project, China 2016C31104

  • Customizing core-shell nanostructures is considered to be an efficient approach to improve the catalytic activity of metal nanoparticles. Various physiochemical and green methods have been developed for the synthesis of core-shell structures. In this study, a novel liquid-phase hydrogen reduction method was employed to form core-shell Pt@Au nanoparticles with intimate contact between the Pt and Au particles, without the use of any protective or structure-directing agents. The Pt@Au core-shell nanoparticles were prepared by depositing Au metal onto the Pt core; AuCl4− was reduced to Au(0) by H2 in the presence of Pt nanoparticles. The obtained Pt@Au core-shell structured nanoparticles were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), high-resolution TEM, fast Fourier transform, powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and H2-temperature programmed reduction (H2-TPR) analyses. The EDX mapping results for the nanoparticles, as obtained from their scanning transmission electron microscopy images in the high-angle annular dark-field mode, revealed a Pt core with Au particles grown on its surface. Fourier transform measurements were carried out on the high-resolution structure to characterize the Pt@Au nanoparticles. The lattice plane at the center of the nanoparticles corresponded to Pt, while the edge of the particles corresponded to Au. With an increase in the Au content, the intensity of the peak corresponding to Pt in the FTIR spectrum decreased slowly, indicating that the Pt nanoparticles were surrounded by Au nanoparticles, and thus confirming the core-shell structure of the nanoparticles. The XRD results showed that the peak corresponding to Pt shifted gradually toward the Au peak with an increase in the Au content, indicating that the Au particles grew on the Pt seeds; this trend was consistent with the FTIR results. Hence, it can be stated that the Pt@Au core-shell structure was successfully prepared using the liquid-phase hydrogen reduction method. The catalytic activity of the nanoparticles for the oxidation of toluene was evaluated using a fixed-bed reactor under atmospheric pressure. The XPS and H2-TPR results showed that the Pt1@Au1/Al2O3 catalyst had the best toluene oxidation activity owing to its lowest reduction temperature, lowest Au 4d & 4f and Pt 4d & 4f binding energies, and highest Au0/Auδ+ and Pt0/Pt2+ proportions. The Pt1@Au2Al2O3 catalyst showed high stability under dry and humid conditions. The good catalytic performance and high selectivity of Pt@Au/Al2O3 for toluene oxidation could be attributed to the high concentration of adsorbed oxygen species, good low-temperature reducibility, and strong interaction.
  • 加载中
    1. [1]

      Zhang, Q.; Lee, I.; Joo, J. B.; Zaera, F.; Yin, Y. Acc. Chem. Res. 2012, 46, 1816. doi: 10.1021/ar300230s  doi: 10.1021/ar300230s

    2. [2]

      Sun, Q.; Zhang, X. Q.; Wang, Y.; Lu, A. H. Chin. J. Catal. 2015, 36, 683. doi: 10.1016/S1872-2067(14)60298-9  doi: 10.1016/S1872-2067(14)60298-9

    3. [3]

      Lee, J.; Yoo, J. K.; Kim, J.; Sohn, Y.; Rhee C. K. Electrochim. Acta 2018, 290, 244. doi: 10.1016/j.electacta.2018.09.078  doi: 10.1016/j.electacta.2018.09.078

    4. [4]

      Shim, K.; Lee, W. C.; Park, M. S.; Shahabuddin, M.; Yamauchi, Y.; Hossain, M. S. A.; Shim, Y. B.; Kim, J. H. Sens. Actuator B-Chem. 2019, 278, 88. doi: 10.1016/j.snb.2018.09.048  doi: 10.1016/j.snb.2018.09.048

    5. [5]

      Zhou, S.; McIlwrath, K.; Jackson, G.; Eichhorn, B. J. Am. Chem. Soc. 2006, 128, 1780. doi: 10.1021/ja056924  doi: 10.1021/ja056924

    6. [6]

      Jiang, R.; Tung, S. O.; Tang, Z.; Li, L.; Ding, L.; Xi, X.; Liu, Y.; Zhang, L.; Zhang, J. Energy Storage Mater. 2018, 12, 260. doi: 10.1016/j.ensm.2017.11.005  doi: 10.1016/j.ensm.2017.11.005

    7. [7]

      Jiang, L.; Yuan, X.; Liang, J.; Zhang, J.; Wang, H.; Zeng, G. J. Power Sources 2016, 331, 408. doi: 10.1016/j.jpowsour.2016.09.054  doi: 10.1016/j.jpowsour.2016.09.054

    8. [8]

      Campani, V.; Giarra, S.; De Rosa, G. OpenNano 2018, 3, 5. doi: 10.1016/j.onano.2017.12.001  doi: 10.1016/j.onano.2017.12.001

    9. [9]

      Chen, G.; Wang, Y.; Xie, R.; Gong, S. Adv. Drug Delivery Rev. 2018, 130, 58. doi: 10.1016/j.addr.2018.07.008  doi: 10.1016/j.addr.2018.07.008

    10. [10]

      Zhang, N.; Liu, S.; Xu, Y. Nanoscale 2012, 4, 2227. doi: 10.1039/c2nr00009a  doi: 10.1039/c2nr00009a

    11. [11]

      Tada, H.; Suzuki, F.; Ito, S.; Akita, T.; Tanaka, K.; Kawahara, T.; Kobayashi, H. J. Phys. Chem. B 2002, 106, 8714. doi: 10.1021/jp0202690  doi: 10.1021/jp0202690

    12. [12]

      Yoon, J.; Baik, H.; Lee, S.; Kwon, S. J.; Lee, K. Nanoscale 2014, 6, 6434. doi: 10.1039/c4nr00551a  doi: 10.1039/c4nr00551a

    13. [13]

      Yang, C.; Zhang, F.; Lei, N.; Yang, M.; Liu, F.; Miao, Z.; Sun, Y.; Zhao, X.; Wang, A. Chin. J. Catal. 2018, 39, 1366. doi: 10.1016/s1872-2067(18)63103-1  doi: 10.1016/s1872-2067(18)63103-1

    14. [14]

      Zhang, Y.; Liu, Y.; Xie, S.; Huang, H.; Guo, G.; Dai, H.; Deng, J. Environ. Int. 2019, 128, 335. doi: 10.1016/j.envint.2019.04.062  doi: 10.1016/j.envint.2019.04.062

    15. [15]

      Qi, Y.; Shen, L.; Zhang, J.; Yao, J.; Lu, R.; Miyakoshi, T. Environ. Pollut. 2019, 245, 810. doi: 10.1016/j.envpol.2018.11.057  doi: 10.1016/j.envpol.2018.11.057

    16. [16]

      Morin, J.; Gandolfo, A.; Temime-Roussel, B.; Strekowski, R.; Brochard, G.; Bergé. V.; Gligorovski, S.; Wortham, H. Build. Environ. 2019, 156, 225. doi: 10.1016/j.buildenv.2019.04.031  doi: 10.1016/j.buildenv.2019.04.031

    17. [17]

      Song, M.; Liu, X.; Zhang, Y.; Shao, M.; Lu, K.; Tan, Q.; Feng, M.; Qu, Y. Atmos. Environ. 2019, 201, 28. doi: 10.1016/j.atmosenv.2018.12.019  doi: 10.1016/j.atmosenv.2018.12.019

    18. [18]

      Kim, K.; Boo, S.; Ahn, H. J. Ind. Eng. Chem. 2009, 15, 92. doi: 10.1016/j.jiec.2008.09.005  doi: 10.1016/j.jiec.2008.09.005

    19. [19]

      Zhu, A.; Zhou, Y.; Wang, Y.; Zhu, Q.; Liu, H.; Zhang, Z.; Lu, H. J. Rare Earths 2018, 36, 1272. doi: 10.1016/j.jre.2018.03.032  doi: 10.1016/j.jre.2018.03.032

    20. [20]

      Feng, Z.; Ma, Y.; Natarajan, V.; Zhao, Q.; Ma, X.; Zhan, J. Sens. Actuator B-Chem. 2018, 255, 884. doi: 10.1016/j.snb.2017.08.138  doi: 10.1016/j.snb.2017.08.138

    21. [21]

      Gaálová, J.; Topka, P.; Kaluža, L.; Soukup, K.; Barbier, J. Catal. Today. 2019, 333, 190. doi: 10.1016/j.cattod.2018.04.005  doi: 10.1016/j.cattod.2018.04.005

    22. [22]

      Vallejos, S.; Gràcia, I.; Bravo, J.; Figueras, E.; Hubálek, J.; Cané, C. Talanta 2015, 139, 27. doi: 10.1016/j.talanta.2015.02.034  doi: 10.1016/j.talanta.2015.02.034

    23. [23]

      Usón, L.; Colmenares, M. G.; Hueso, J. L.; Sebastián, V.; Balas, F.; Arruebo, M.; Santamaría, J. Catal. Today 2014, 227, 179. doi: 10.1016/j.cattod.2013.08.014  doi: 10.1016/j.cattod.2013.08.014

    24. [24]

      Mori, M.; Nishimura, H.; Itagaki, Y.; Sadaoka, Y.; Traversa, E. Sens. Actuator B-Chem. 2009, 143, 56. doi: 10.1016/j.snb.2009.09.001  doi: 10.1016/j.snb.2009.09.001

    25. [25]

      Li, J. H.; Ao, P.; Li, X. Q.; Xu, X. S.; Xu, X. X.; Gao, X.; Yan, X. H. Acta Phys. -Chim. Sin. 2015, 31, 173.  doi: 10.3866/PKU.WHXB201411131

    26. [26]

      Sun, S.; Wang, Y.; Wang, L. N.; Guo, T.; Yuan, X.; Zhang, D.; Xue, Z.; Zhou, X.; Lu, X. J. Alloy. Compd. 2019, 793, 635. doi: 10.1016/j.jallcom.2019.04.212  doi: 10.1016/j.jallcom.2019.04.212

    27. [27]

      Peng, C.; Pan, N.; Qian, Z.; Wei, X.; Shao, G. Talanta 2017, 175, 114. doi: 10.1016/j.talanta.2017.06.005  doi: 10.1016/j.talanta.2017.06.005

    28. [28]

      Takahashi, S.; Todoroki, N.; Myochi, R.; Nagao, T.; Taguchi, N.; Ioroi, T.; Feiten, F. E.; Wakisaka, Y.; Asakura, K.; Sekizawa, O.; et al. J. Electroanal. Chem. 2019, 842, 1. doi: 10.1016/j.jelechem.2019.04.053  doi: 10.1016/j.jelechem.2019.04.053

    29. [29]

      Lewis, L. N.; Krafft, T. A.; Huffman, J. C. Inorg. Chem. 1992, 31, 3555. doi: 10.1021/ic00043a014  doi: 10.1021/ic00043a014

    30. [30]

      Kristian, N.; Wang, X. Electrochem. Commun. 2008, 10, 12. doi: 10.1016/j.elecom.2007.10.011  doi: 10.1016/j.elecom.2007.10.011

    31. [31]

      Grzelczak, M.; Pérez-Juste, J.; Rodríguez-González, B.; Liz-Marzán, L. M. J. Mater. Chem. 2006, 16, 3946. doi: 10.1039/b606887a  doi: 10.1039/b606887a

    32. [32]

      Liao, M.; Li, W.; Xi, X.; Luo, C.; Gui, S.; Jiang, C.; Mai, Z.; Chen, B. H. J. Electroanal. Chem. 2017, 791, 124. doi: 10.1016/j.jelechem.2017.03.024  doi: 10.1016/j.jelechem.2017.03.024

    33. [33]

      Cao, R.; Xia, T.; Zhu, R.; Liu, Z.; Guo, J.; Chang, G.; Zhang, Z.; Liu, X.; He, Y. Appl. Surf. Sci. 2018, 433, 840. doi: 10.1016/j.apsusc.2017.10.104  doi: 10.1016/j.apsusc.2017.10.104

    34. [34]

      Nishita, M.; Park, S. Y.; Nishio, T.; Kamizaki, K.; Wang, Z.; Tamada, K.; Takumi, T.; Hashimoto, R.; Otani, H.; Pazour, G. J.; et al. Sci. Rep. 2017, 7, 1306. doi: 10.1038/s41598-016-0028-x  doi: 10.1038/s41598-016-0028-x

    35. [35]

      Guo, S.; Li, J.; Dong, S.; Wang, E. J. Phys. Chem. C 2010, 114, 15337. doi: 10.1021/jp104942d  doi: 10.1021/jp104942d

    36. [36]

      Yang, H.; Deng, J.; Liu, Y.; Xie, S.; Wu, Z.; Dai, H. J. Mol. Catal. A-Chem. 2016, 414, 9. doi: 10.1016/j.molcata.2015.12.010  doi: 10.1016/j.molcata.2015.12.010

    37. [37]

      Pei, W.; Liu, Y.; Deng, J.; Zhang, K.; Hou, Z.; Zhao, X.; Dai, H. Appl. Catal. B-Environ. 2019, 256, 117814. doi: 10.1016/j.apcatb.2019.117814  doi: 10.1016/j.apcatb.2019.117814

    38. [38]

      He, G.; Song, Y.; Liu, K.; Walter, A.; Chen, S.; Chen, S. ACS Catal. 2013, 3, 831. doi: 10.1021/cs400114s  doi: 10.1021/cs400114s

    39. [39]

      Zhang, X.; Li, Z.; Zhao, J.; Cui, Y.; Tan, B.; Wang, J.; Zhang, C.; He, G. Korean J. Chem. Eng. 2017, 34, 1. doi: 10.1007/s11814-017-0092-3  doi: 10.1007/s11814-017-0092-3

    40. [40]

      Lefèvre, G.; Duc, M.; Lepeut, P.; Caplain, R.; Fédoroff, M. Langmuir 2002, 18, 7530. doi: 10.1021/la025651i  doi: 10.1021/la025651i

    41. [41]

      Meng, T.; Wang, L.; Jia, H.; Gong, T.; Feng, Y.; Li, R.; Wang, H.; Zhang, Y. J. Colloid Interface Sci. 2019, 536, 424. doi: 10.1016/j.jcis.2018.10.076  doi: 10.1016/j.jcis.2018.10.076

    42. [42]

      Cao, Z.; Bu, J.; Zhong, Z.; Sun, C.; Zhang, Q.; Wang, J.; Chen, S.; Xie, X. Appl. Catal. A-Gen. 2019, 578, 105. doi: 10.1016/j.apcata.2019.04.006  doi: 10.1016/j.apcata.2019.04.006

    43. [43]

      Chenakin, S.; Kruse, N. J. Catal. 2018, 358, 224. doi: 10.1016/j.jcat.2017.12.010  doi: 10.1016/j.jcat.2017.12.010

    44. [44]

      Figueiredo, N. M.; Carvalho, N. J. M.; Cavaleiro, A. Appl. Surf. Sci. 2011, 257, 5793. doi: 10.1016/j.apsusc.2011.01.104  doi: 10.1016/j.apsusc.2011.01.104

    45. [45]

      Nartova, A. V.; Gharachorlou, A.; Bukhtiyarov, A. V.; Kvon, R. I.; Bukhtiyarov, V. I. Appl. Surf. Sci. 2017, 401, 341. doi: 10.1016/j.apsusc.2016.12.179  doi: 10.1016/j.apsusc.2016.12.179

    46. [46]

      Smirnov, M. Y.; Kalinkin, A. V.; Vovk, E. I.; Simonov, P. A.; Gerasimov, E. Y.; Sorokin, A. M.; Bukhtiyarov, V. I. Appl. Surf. Sci. 2018, 428, 972. doi: 10.1016/j.apsusc.2017.09.205  doi: 10.1016/j.apsusc.2017.09.205

    47. [47]

      Ousmane, M.; Liotta, L. F.; Carlo, G. D.; Pantaleo, G.; Venezia, A. M.; Deganello, G.; Retailleau, L.; Boreave, A.; Giroir-Fendler, A. Appl. Catal. B-Environ. 2011, 101, 629. doi: 10.1016/j.apcatb.2010.11.004  doi: 10.1016/j.apcatb.2010.11.004

  • 加载中
    1. [1]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    2. [2]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    3. [3]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    4. [4]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    5. [5]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    6. [6]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    7. [7]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    8. [8]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    9. [9]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    10. [10]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

    11. [11]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    12. [12]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    13. [13]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    14. [14]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    15. [15]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    16. [16]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

    17. [17]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    18. [18]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    19. [19]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    20. [20]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

Metrics
  • PDF Downloads(25)
  • Abstract views(1609)
  • HTML views(462)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return