Citation: Li Jian, Lin Cong, Lin Jianhua, Sun Junliang. Application of Combining X-ray Diffraction and Electron Crystallography for Determination of Complex Inorganic Crystal Structure[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190705. doi: 10.3866/PKU.WHXB201907052 shu

Application of Combining X-ray Diffraction and Electron Crystallography for Determination of Complex Inorganic Crystal Structure

  • Corresponding author: Sun Junliang, junliang.sun@pku.edu.cn
  • Received Date: 18 July 2019
    Revised Date: 16 September 2019
    Accepted Date: 17 September 2019
    Available Online: 24 January 2019

    Fund Project: the National Natural Science Foundation of China 21527803The project was supported by the National Natural Science Foundation of China (21527803, 21471009, 21621061)the National Natural Science Foundation of China 21471009the National Natural Science Foundation of China 21621061

  • Inorganic, organic, and biological materials have specific natural properties which mostly depend on their atomic structures. The properties of novel materials can be predicted based solely on knowing the structure fully. Thus, structure determination plays a very important role in chemistry, physics, and materials science. X-ray crystallography, including single-crystal X-ray diffraction (SCXRD) and powder X-ray diffraction (PXRD), remains an important technique for studying structures. However, SCXRD can only be applied to high-quality large single crystals without disorders/defects, whereas PXRD provides only one-dimensional information and reflections with the similar d-values will overlap, which makes it difficult to determine the unit-cell parameters, space groups, and accurate intensities. Another important technique for structural determination is electron crystallography (EC). As the electron is the probe, EC alone can be used for those crystals which are too small to be studied by SCXRD or too complex to be studied by PXRD. Electrons interact much more strongly with matter than X-rays; therefore, both electron diffractions (ED) patterns and high-resolution transmission electron microscopy (HRTEM) images can be obtained from nano-sized crystals. Although electron crystallography started later than X-ray crystallography, it has become a very important technique for structural analysis after several decades of development. Especially, three dimensional (3D) ED techniques have been developed, automated electron diffraction tomography (ADT) and rotation electron diffraction (RED), which allow for automated data collection without requiring considerable expertise on the operation of electron microscopes. In addition, the intensities of 3D ED data can be extracted and used for structure determination using specialized software developed for SCXRD. However, the strong interactions between electrons and materials also result in dynamic effects and beam damage. Although the dynamic effects in 3D electron diffraction techniques (ADT and RED) can be significantly reduced, some structures still pose problems for obtaining an initial model due to beam damage. Therefore, EC and X-ray crystallography have significant limitations. For many complicated crystals, a single technique is insufficient to solve the crystal structure and different techniques that supply complementary structural information must be used to obtain a complete structural determination. Herein, the application of X-ray crystallography combined with EC for the analysis of complex inorganic crystal structures will be introduced, covering issues associated with peak overlap, impurities, pseudo-symmetry and twinning, disordered frameworks, location guests, and aperiodic structures.
  • 加载中
    1. [1]

      Chen, X. M.; Cai, J. W. Principle and Practice of Single Crystal Structure Analysis; Science Press: Beijing, 2007; p. 15.

    2. [2]

      Zou, X. D.; Hovmoller, S.; Oleynikov, P. Electron Crystallography Electron Microscopy and Electron Diffraction; Oxford University Press: UK, 2011; p. 86.

    3. [3]

      Patterson, A. L. Phys. Rev. 1934, 46, 372. doi: 10.1103/PhysRev.46.372  doi: 10.1103/PhysRev.46.372

    4. [4]

      Sheldrick, G. M. Acta Crystallogr. A 1990, 46, 467. doi: 10.1107/S0108767390000277  doi: 10.1107/S0108767390000277

    5. [5]

      Oszlányi, G.; Sütő, A. Acta Crystallogr. A 2004, 60, 134. doi: 10.1107/S0108767303027569  doi: 10.1107/S0108767303027569

    6. [6]

      De Vries, R. Y.; Briels, W. J.; Feil, D. Acta Crystallogr. A 1994, 50, 383. doi: 10.1107/S0108767393012802  doi: 10.1107/S0108767393012802

    7. [7]

      Mitchell, M. An Introduction to Genetic Algorithms; MIT Press Cambridge: MA, USA, 1998.

    8. [8]

      Deem, M. W.; Newsam, J. M. J. Am. Chem. Soc. 1992, 114, 7189. doi: 10.1021/ja00044a035  doi: 10.1021/ja00044a035

    9. [9]

      Tang, L. Q.; Shi, L.; Bonneau, C.; Sun, J. L.; Yue, H. J.; Ojuva, A.; Lee, B. L.; Kritikos, M.; Bell, R. G.; Bacsik, Z.; et al. Nat. Mater. 2008, 7, 381. doi: 10.1038/nmat2169  doi: 10.1038/nmat2169

    10. [10]

      Su, J.; Wang, Y. X.; Wang, Z. M.; Lin, J. H. J. Am. Chem. Soc. 2009, 131, 6080. doi: 10.1021/ja901330u  doi: 10.1021/ja901330u

    11. [11]

      Baerlocher, Ch.; Gramm, F.; Massguer, L.; McCusker, L. B.; He, Z.; Hovmoller, S.; Zou, X. Science 2007, 315, 1113. doi: 10.1126/science.1137920  doi: 10.1126/science.1137920

    12. [12]

      Lorgouilloux, Y.; Dodin, M.; Paillaud, J. L.; Caullet, P.; Michelin, L.; Josien, L.; Ersen, O.; Bats, N. J. Solid State Chem. 2009, 182, 622. doi: 10.1016/j.jssc.2008.12.002  doi: 10.1016/j.jssc.2008.12.002

    13. [13]

      Inge, A.; Huang, S. L.; Chen, H.; Moraga, F.; Sun, J. L.; Zou, X. D. Cryst. Growth Des. 2012, 12, 4853. doi: 10.1021/cg300647s  doi: 10.1021/cg300647s

    14. [14]

      Ju, J.; Lin, J. H.; Li, G. B.; Yang, T.; Li, H. M.; Liao, F. H.; Loong, C. K.; You, L. P. Angew. Chem. Int. Ed. 2003, 42, 5607. doi: 10.1002/anie.200352263  doi: 10.1002/anie.200352263

    15. [15]

      Yang, T.; Bartoszewicz, A.; Ju, J.; Sun, J. L.; Liu, Z.; Zou, X. D.; Wang, Y. X.; Li, G. B.; Liao, F. H.; Martín, M. B.; et al. Angew. Chem. Int. Ed. 2011, 50, 12555. doi: 10.1002/anie.201106310  doi: 10.1002/anie.201106310

    16. [16]

      Estermann, M. A.; McCusker, L. B.; Baerlocher, C. J. Appl. Cryst. 1992, 25, 539. doi: 10.1107/S0021889892004862  doi: 10.1107/S0021889892004862

    17. [17]

      Baerlocher, Ch.; McCusker, L. B.; Palatinus, L. Z. Kristallogr. 2007, 222, 47. doi: 10.1524/zkri.2007.222.2.47  doi: 10.1524/zkri.2007.222.2.47

    18. [18]

      Kolb, U.; Mugnaioli, E.; Gorelik, T. E. Cryst. Res. Technol. 2011, 46, 542. doi: 10.1002/crat.201100036  doi: 10.1002/crat.201100036

    19. [19]

      Zhang, D.; Oleynikov, P.; Hovmoller, S.; Zou, X. D. Z. Kristallogr. 2010, 225, 94. doi: 10.1524/zkri.2010.1202  doi: 10.1524/zkri.2010.1202

    20. [20]

      Xu, L.; Zhang L.; Li, J.; Koki, M.; Peng, F.; Xu, H.; Lin, C.; Gao, L.; Jiang, J. G; Watcharop, C.; et al. Chem. Eur. J. 2018, 24, 9247. doi: 10.1002/chem.201802087  doi: 10.1002/chem.201802087

    21. [21]

      Hua, W.; Chen, H.; Yu, Z. B.; Zou, X. D.; Lin, J. H.; Sun, J. L. Angew. Chem. Int. Ed. 2014, 53, 5868. doi: 10.1002/anie.201309766  doi: 10.1002/anie.201309766

    22. [22]

      Huang, S. L.; Su, J.; Kirsten, C.; Ken, I.; Liang, J.; Zou, X. D.; Sun, J. L. Inorg. Chem. Front. 2014, 1, 278. doi: 10.1039/C3QI00088E  doi: 10.1039/C3QI00088E

    23. [23]

      Zhang, Y. B.; Su, J.; Hiroyasu, F.; Yun, Y. F.; Felipe, G.; Adam, D.; Zou, X. D.; Omar, M. Y. J. Am. Chem. Soc. 2013, 135, 16336. doi: 10.1021/ja409033p  doi: 10.1021/ja409033p

    24. [24]

      Ding, H.; Li, J.; Xie, G. H.; Lin, G. Q.; Chen, R. F.; Peng, Z. K.; Yang, C. L.; Wang, B. S.; Sun, J. L.; Wang, C. Nat. Commun. 2018, 9, 5234. doi: 10.1038/s41467-018-07670-4.  doi: 10.1038/s41467-018-07670-4

    25. [25]

      Ma, T.; Li, J.; Niu, J.; Zhang, L.; Ahmed S, E.; Lin, C.; Shi, D.; Chen, P. H.; Li, L. H.; Du, X.; et al. J. Am. Chem. Soc. 2018, 40, 6763. doi: 10.1021/jacs.8b03169  doi: 10.1021/jacs.8b03169

    26. [26]

      Gramm, F.; Baerlocher, C.; McCusker, L. B.; Warrender, S. J.; Wright, P. A.; Han, B.; Hong, S. B.; Liu, Z.; Ohsuna, T.; Terasaki, O. Nature 2006, 444, 79. doi: 0.1038/nature05200  doi: 10.1038/nature05200

    27. [27]

      Willhammar, T.; Sun, J. L.; Wan, W.; Oleynikov, P.; Zhang, D. L.; Zou, X. D.; Moliner, M.; Gonzalez, J.; Martínez, C.; Rey, F.; et al. Nat. Chem. 2012, 3, 188. doi: 10.1038/nchem.1253  doi: 10.1038/nchem.1253

    28. [28]

      Han, Y.; Zhang, D.; Chng, L. L.; Sun, J.; Zhao, L.; Zou, X.; Ying, J. Y. Nat. Chem. 2009, 1, 123. doi: 10.1038/nchem.166  doi: 10.1038/nchem.166

    29. [29]

      Baerlocher, C.; Xie, D.; McCusker, L. B.; Hwang, S. J.; Chan, I. Y.; Ong, K.; Burton, A. W.; Zones, S. I. Nat. Mater. 2008, 7, 631. doi: 10.1038/nmat2228  doi: 10.1038/nmat2228

    30. [30]

      Xu, L.; Ji, X.; Jiang, J.; Han, L.; Che, S.; Wu, P. Chem. Mater. 2015, 27, 7852. doi: 10.1021/acs.chemmater.5b03658  doi: 10.1021/acs.chemmater.5b03658

    31. [31]

      Grosse-Kunstleve, R. W.; McCusker, L. B.; Baerlocher, C. J. Appl. Cryst. 1999, 32, 536. doi: 10.1107/S0021889899003453  doi: 10.1107/S0021889899003453

    32. [32]

      Sun, J. L.; Bonneau, C.; Cantin, A.; Corma, A.; Diaz-Cabanas, M. J.; Moliner, M.; Zhang, D. L.; Li, M. R.; Zou, X. D. Nature 2009, 458, 1154. doi: 10.1038/nature07957  doi: 10.1038/nature07957

    33. [33]

      Chen, H.; Ju, J.; Meng, Q.; Su, J.; Lin, C.; Zhou, Z. Y.; Li, G.; Wang, W.; Gao, W.; Zeng, C.; et al. J. Am. Chem. Soc. 2015, 137, 7047. doi: 10.1021/jacs.5b03685  doi: 10.1021/jacs.5b03685

    34. [34]

      Li, J.; Lin, C.; Min, Y. X.; Yuan, Y. Y.; Li, G. B.; Yang, S. H.; Pascal, M.; Lin, J. H.; Sun, J. L. J. Am. Chem. Soc. 2019, 141, 12, 4990. doi: 10.1021/jacs.9b00093  doi: 10.1021/jacs.9b00093

    35. [35]

      Yu, Z. B.; Han, Y.; Zhao, L.; Huang, S. L.; Zheng, Q. Y.; Lin, S. Z.; Córdova, A.; Zou, X. D.; Sun, J. L. Chem. Mater. 2012, 24, 3701. doi: 10.1021/cm301654d  doi: 10.1021/cm301654d

    36. [36]

      Nnewsam, J. M.; Treacy, M. M. J.; Koetsier, W. T.; de Gruyter, C. B. Proc. R. Soc. London Ser. A 1988, 420, 375. doi: 10.1098/rspa.1988.0131  doi: 10.1098/rspa.1988.0131

    37. [37]

      Conradsson, T.; Zou, X. D.; Dadachov, M. Inorg. Chem. 2000, 39, 1716. doi: 10.1021/ic9911217  doi: 10.1021/ic9911217

    38. [38]

      Corma, A.; Moliner, M.; Cantín, Á.; Díaz-Cabañas, M.; Jordá, J.; Zhang, D.; Sun, J. L.; Jansson, K.; Hovmöller, S.; Zou, X. D. Chem. Mater. 2008, 20, 3218. doi: 10.1021/cm8002244  doi: 10.1021/cm8002244

    39. [39]

      Willhammar, T.; Zou, X. D. Z. Kristallogr. 2013, 228, 11. doi: 10.1524/zkri.2012.1564  doi: 10.1524/zkri.2012.1564

    40. [40]

      Liu, L. F.; Yu, Z. B.; Chen, H.; Deng, Y.; Lee, B.; Sun, J. L. Cryst. Growth Des. 2013, 13, 4168. doi: 10.1021/cg400880a  doi: 10.1021/cg400880a

    41. [41]

      Wadlinger, R. L.; Kerr, G. T.; Rosinski, E. J. Catalytic Composition of a Crystalline Zeolite. US Patent 3308069, 1967.

    42. [42]

      Xu, Y.; Liu, L. F.; Daniel, M.; Sun, J. L.; Zhang, P.; Yu, J. H. Inorg. Chem. 2013, 52, 10238. doi: 10.1021/ic302705f  doi: 10.1021/ic302705f

    43. [43]

      Yang, S. H.; Sun, J. L.; Ramirez-Cuesta, A.; Callear, S.; David, W.; Anderson, D.; Newby, R.; Blake, A.; Parker, J.; Tang, C.; et al. Nat. Chem. 2012, 4, 887. doi: 10.1038/nchem.1457  doi: 10.1038/nchem.1457

    44. [44]

      Lo, B.; Ye, L.; Qu, J.; Sun, J. L.; Zheng, J.; Kong, D.; Murray, C.; Tang, C.; Tsang, S. Angew. Chem. Int. Ed. 2016, 55, 1. doi: 10.1002/anie.201600487  doi: 10.1002/anie.201600487

    45. [45]

      Liang, J.; Su, J.; Wang, Y.; Chen, Y.; Zou, X.; Liao, F.; Lin, J.; Sun, J. L. Chem. Eur. J. 2014, 20, 16097. doi: 10.1002/chem.201405449  doi: 10.1002/chem.201405449

    46. [46]

      Inge, A. K.; Fahlquist, H.; Willhammar, T.; Huang, Y.; McCusker, L. B.; Zou, X. J. Appl. Crystallogr. 2013, 46, 1094. doi: 10.1107/S0021889813013101  doi: 10.1107/S0021889813013101

    47. [47]

      Yamamoto, A. Acta Crystallogr. A 1993, 49, 831. doi: 10.1107/S0108767393004404  doi: 10.1107/S0108767393004404

    48. [48]

      Li, M.; Sun, J. L.; Peter, O.; Sven, H.; Zou, X. D.; Benjamin, G. Acta Crystallogr. B 2010, 66, 17. doi: 10.1107/S0108768109053804  doi: 10.1107/S0108768109053804

    49. [49]

      Li, J.; Sun, J. L. Acc. Chem. Res. 2017, 50, 2737. doi: 10.1021/acs.accounts.7b00366  doi: 10.1021/acs.accounts.7b00366

    50. [50]

      Sun, J. L.; Lee, S.; Lin, J. H. Chem. Asian J. 2007, 2, 1204. doi: 10.1002/asia.200700088  doi: 10.1002/asia.200700088

    51. [51]

      Sun, J. L.; Li, G. B.; Li, Z. F.; You, L. P.; Lin, J. H. Inorg. Chem. 2006, 45, 8394. doi: 10.1021/ic060862m  doi: 10.1021/ic060862m

    52. [52]

      Zhou, Z.; Xu, X.; Fei, R.; Mao, J.; Sun, J. L. Acta Crystallogr. B 2016, 72, 194. doi: 10.1107/S2052520615019733  doi: 10.1107/S2052520615019733

    53. [53]

      Schmidt, J.; Lee, S.; Fredrickson, D.; Conrad, M.; Sun, J. L.; Harbrecht, B. Chem. Eur. J. 2007, 13, 1394. doi: 10.1002/chem.200600135  doi: 10.1002/chem.200600135

    54. [54]

      Sun, Z. H.; Li, J.; Ji, C. M.; Sun, J. L.; Hong, M. C.; Luo, J. H. J. Am. Chem. Soc. 2017, 139, 44, 15900. doi: 10.1021/jacs.7b08950  doi: 10.1021/jacs.7b08950

    55. [55]

      Lin, K.; Zhou, Z.; Liu, L.; Ma, H.; Chen, J.; Deng, J.; Sun, J. L.; You, L.; Kasai, H.; Kato, K.; et al. J. Am. Chem. Soc. 2015, 137, 13468. doi: 10.1021/jacs.5b08230  doi: 10.1021/jacs.5b08230

    56. [56]

      Wang, Y.; Yang, T.; Xu, H.; Zou, X. D.; Wan, W. J. Appl. Cryst. 2018, 51, 1094. doi: 10.1107/S1600576718007604  doi: 10.1107/S1600576718007604

    57. [57]

      Wang, Y.; Takki, S.; Cheung, O.; Xu, H.; Wan, W.; Ohrstrom, L.; Inge, A. K. Chem. Commun. 2017, 53, 7018. doi: 10.1039/C7CC03180G  doi: 10.1039/C7CC03180G

    58. [58]

      Wang, B.; Timo R.; Inge, A. K.; Xu, H. Y.; Yang, T. M.; Huang, Z. H.; Norbert S.; Zou, X. D. Chem. Eur. J. 2018, 24, 17429. doi: 10.1002/chem.201804133  doi: 10.1002/chem.201804133

    59. [59]

      Xu, H.; Lebratte, H.; Yang, T.; Srinivas, V.; Hovmoller, S.; Hogbom, M.; Zou, X. Structure 2018, 26, 667. doi: 10.1016/j.str.2018.02.015  doi: 10.1016/j.str.2018.02.015

    60. [60]

      Nannenga, B. L.; Shi, D.; Hattne, J.; Reyes, F. E.; Gonen, T. eLife 2014, 3, e03600. doi: 10.7554/eLife.03600  doi: 10.7554/eLife.03600

    61. [61]

      de la Cruz, M. J.; Hattne, J.; Shi, D.; Seidler, P.; Rodriguez, J.; Reyes, F. E.; Sawaya, M. R.; Cascio, D.; Weiss, S. C.; Kim, S. K.; et al. Nat. Methods 2017, 14, 399. doi: 10.1038/nmeth.4178  doi: 10.1038/nmeth.4178

    62. [62]

      Rodriguez, J. A.; Ivanova, M. I.; Sawaya, M. R.; Cascio, D.; Reyes, F. E.; Shi, D.; Sangwan, S.; Guenther, E. L.; Johnson, L. M.; Zhang, M.; et al. Nature 2015, 525, 486. doi: 10.1038/nature15368  doi: 10.1038/nature15368

    63. [63]

      Christopher, G. J.; Michael, W. M.; Johan, H.; Tyler, J. F.; Brian, M. S.; Jose, A. R.; Hosea, M. N.; Gonen, T. ACS Cent. Sci. 2018, 4, 1587. doi: 10.1021/acscentsci.8b00760  doi: 10.1021/acscentsci.8b00760

    64. [64]

      Gruene, T.; Wennmacher, J.; Zaubitzer, C.; Holstein, J. J.; Heidler, J.; Fecteau-Lefebvre, A.; De Carlo, S.; Müller, E.; Goldie, K. N.; Regeni, I.; et al. Angew. Chem. Int. Ed. 2018, 57, 16313. doi: 10.1002/anie.201811318  doi: 10.1002/anie.201811318

    65. [65]

      Palatinus, L.; Brazda, P.; Boullay, P.; Perez, O.; Klementova, M.; Petit, S.; Eigner, V.; Zaarour, M.; Mintova, S. Science 2017, 335, 166. doi: 10.1126/science.aak9652  doi: 10.1126/science.aak9652

    66. [66]

      Xu, H. Y.; Zou, X. D. Science 2019, 364, 632. doi: 10.1126/science.aax5385  doi: 10.1126/science.aax5385

    67. [67]

      Brázda, P.; Palatinus, L.; Babor, M. Science 2019, 364, 667. doi: 10.1126/science.aaw2560  doi: 10.1126/science.aaw2560

  • 加载中
    1. [1]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    2. [2]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    3. [3]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    4. [4]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    5. [5]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    9. [9]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    10. [10]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    11. [11]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    12. [12]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    14. [14]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    17. [17]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    18. [18]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    19. [19]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    20. [20]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(3)
  • Abstract views(218)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return