Citation: Li Hui, Liu Shuangyu, Yuan Tianci, Wang Bo, Sheng Peng, Xu Li, Zhao Guangyao, Bai Huitao, Chen Xin, Chen Zhongxue, Cao Yuliang. Influence of NaOH Concentration on Sodium Storage Performance of Na0.44MnO2[J]. Acta Physico-Chimica Sinica, ;2021, 37(3): 190704. doi: 10.3866/PKU.WHXB201907049 shu

Influence of NaOH Concentration on Sodium Storage Performance of Na0.44MnO2

  • Corresponding author: Chen Zhongxue, zxchen_pmc@whu.edu.cn Cao Yuliang, ylcao@whu.edu.cn
  • Received Date: 16 July 2019
    Revised Date: 22 August 2019
    Accepted Date: 30 August 2019
    Available Online: 4 September 2019

    Fund Project: the National Key Basic Research Program of China 2016YFB0901500the National Natural Science Foundation of China 21673165the Science and Technology Project of State Grid, China SGRIDGKJ[2017]841The project was supported by the Science and Technology Project of State Grid, China (SGRIDGKJ[2017]841), the National Key Basic Research Program of China (2016YFB0901500) and the National Natural Science Foundation of China (21875171, 21673165)the National Natural Science Foundation of China 21875171

  • Aqueous sodium ion batteries (ASIBs) have attracted considerable attention for large-scale energy storage because of their prominent advantages of low cost, high safety, and environment-friendliness. Among the reported cathode materials for ASIBs, Na0.44MnO2 exhibits outstanding structural and hydrochemical stability, and hence is of much interest to research scholars. However, the reversible capacity of Na0.44MnO2 in most of the reported ASIBs was only 40 mAh·g-1 due to the restriction of stable working windows, although the in spite of theoretical capacity is121 mAh·g-1. Recently, we reported a Zn/Na0.44MnO2 dual-ion battery (AZMDIB) based on a Na0.44MnO2 positive electrode, Zn negative electrode, and 6 molL-1 NaOH electrolyte. The alkaline solution lowered the proton insertion potential and expanded the stable working window of the Na0.44MnO2 electrode, thus enhancing the reversible capacity to 80 mAh·g-1. Previous studies have demonstrated that the composition, concentration, and pH of the electrolytes have significant effects on the stable electrochemical window, rate performance, cycling performance, and other electrochemical properties of aqueous batteries. In addition, it has been reported that the co-intercalation of hydrogen ions can be inhibited by increasing the pH of the electrolyte in order to improve the cyclic stability of the electrode. Therefore, exploring the effect of electrolyte concentration and pH on the electrochemical performance of Na0.44MnO2 can provide insight into the design and optimization of high-performance Zn/Na0.44MnO2 aqueous batteries. Hence, in this work, rod-like Na0.44MnO2 was synthesized by ball milling and subsequent high-temperature calcination, and the influence of NaOH concentration on the electrochemical performance of the Na0.44MnO2 electrode was investigated by adopting five different concentrated electrolytes, 1, 3, 6, 8, and 10 mol·L-1 NaOH. The results showed that an increase in NaOH concentration is beneficial for preventing the insertion of protons and improving the cycling performance and the rate performance of the electrode; however, it also leads to premature triggering of the oxygen evolution reaction. Moreover, the rate performance would decrease at high NaOH concentration. The Na0.44MnO2 electrode showed optimal electrochemical performance in 8 mol·L-1 NaOH. At a current density of 0.5C (1C = 121 mA·g-1), a reversible specific capacity of 79.2 mAh·g-1 was obtained, and a capacity of 35.3 mAh·g-1 was maintained even at a high current density of 50C. In the potential window of 0.2–1.2 V (vs. NHE), the capacity retention after 500 weeks was 64.3%, which increased to 78.2% when the potential window was reduced to 0.25–1.15 V, because of the fewer side reactions. In addition, Na0.44MnO2 showed an exceptional ability to sustain overcharging up to 30% in a concentrated alkaline electrolyte (based on the reversible capacity of 79.2 mAh·g-1), and the discharge capacity within 80 cycles was almost steady. The above mentioned results form the basis for possible technical directions toward the development of low-cost cathode materials to be used in ASIBs.
  • 加载中
    1. [1]

      Bin, D.; Wang, F.; Tamirat, A. G.; Suo, L.; Wang, Y.; Wang, C.; Xia, Y. Adv. Energy Mater. 2018, 8 (17), 1703008. doi: 10.1002/aenm.201703008  doi: 10.1002/aenm.201703008

    2. [2]

      Qian, J.; Wu, C.; Cao, Y.; Ma, Z.; Huang, Y.; Ai, X.; Yang, H. Adv. Energy Mater. 2018, 8 (17), 1870079. doi: 10.1002/aenm.201702619  doi: 10.1002/aenm.201702619

    3. [3]

      Pan, H.; Hu, Y. S.; Chen, L. Energy Environ. Sci. 2013, 6 (8), 2338. doi: 10.1039/c3ee40847g  doi: 10.1039/c3ee40847g

    4. [4]

      Zhang, B.; Liu, Y.; Wu, X.; Yang, Y.; Chang, Z.; Wen, Z.; Wu, Y. Chem. Commun. 2014, 50 (10), 1209. doi: 10.1039/c3cc48382g  doi: 10.1039/c3cc48382g

    5. [5]

      Hou, Z. G.; Li, X. N.; Liang, J. W.; Zhu, Y. C.; Qian, Y. T. J. Mater. Chem. A 2015, 3 (4), 1400. doi: 10.1039/c4ta06018k  doi: 10.1039/c4ta06018k

    6. [6]

      Liu, Y.; Qiao, Y.; Zhang, W. X.; Xu, H. H.; Li, Z.; Shen, Y.; Yuan, L. X.; Hu, X. L.; Dai, X.; Huang, Y. H. Nano Energy 2014, 5, 97. doi: 10.1016/j.nanoen.2014.02.010  doi: 10.1016/j.nanoen.2014.02.010

    7. [7]

      Dong, J.; Zhang, G. M.; Wang, X. G.; Zhang, S.; Deng, C. J. Mater. Chem. A 2017, 5 (35), 18725. doi: 10.1039/c7ta05361d  doi: 10.1039/c7ta05361d

    8. [8]

      Gao, H. C.; Goodenough, J. B. Angew. Chem. Int. Ed. 2016, 55 (41), 12768. doi: 10.1002/anie.201606508  doi: 10.1002/anie.201606508

    9. [9]

      Song, W. X.; Ji, X. B.; Zhu, Y. R.; Zhu, H. J.; Li, F. Q.; Chen, J.; Lu, F.; Yao, Y. P.; Banks, C. E. ChemElectroChem 2014, 1 (5), 871. doi: 10.1002/celc.201300248  doi: 10.1002/celc.201300248

    10. [10]

      Lee, J. H.; Ali, G.; Kim, D. H.; Chung, K. Y. Adv. Energy Mater. 2017, 7 (2), 10. doi: 10.1002/aenm.201601491  doi: 10.1002/aenm.201601491

    11. [11]

      Wu, X. Y.; Luo, Y.; Sun, M. Y.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Nano Energy 2015, 13, 117. doi: 10.1016/j.nanoen.2015.02.006  doi: 10.1016/j.nanoen.2015.02.006

    12. [12]

      Wu, X. Y.; Sun, M. Y.; Guo, S. M.; Qian, J. F.; Liu, Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. ChemNanoMat 2015, 1 (3), 188. doi: 10.1002/cnma.201500021  doi: 10.1002/cnma.201500021

    13. [13]

      Jiang, Y.; Yu, S.; Wang, B.; Li, Y.; Sun, W.; Lu, Y.; Yan, M.; Song, B.; Dou, S. Adv. Funct. Mater. 2016, 26 (29), 5315. doi: 10.1002/adfm.201600747  doi: 10.1002/adfm.201600747

    14. [14]

      Wang, B.; Liu, S.; Sun, W.; Tang, Y.; Pan, H.; Yan, M.; Jiang, Y. ChemSusChem 2019, 12(11), 2415. doi: 10.1002/cssc.201900582  doi: 10.1002/cssc.201900582

    15. [15]

      Cao, Y.; Xiao, L.; Wang, W.; Choi, D.; Nie, Z.; Yu, J.; Saraf, L. V.; Yang, Z.; Liu, J. Adv. Mater. 2011, 23 (28), 3155. doi: 10.1002/adma.201100904  doi: 10.1002/adma.201100904

    16. [16]

      Xiao, Y.; Wang, P. F.; Yin, Y. X.; Zhu, Y. F.; Yang, X.; Zhang, X. D.; Wang, Y.; Guo, X. D.; Zhong, B. H.; Guo, Y. G. Adv. Energy Mater. 2018, 8 (22). doi: 10.1002/aenm.201800492  doi: 10.1002/aenm.201800492

    17. [17]

      Chen, Z.; Yuan, T.; Pu, X.; Yang, H.; Ai, X.; Xia, Y.; Cao, Y. ACS Appl. Mater. Inter. 2018, 10 (14), 11689. doi: 10.1021/acsami.8b00478  doi: 10.1021/acsami.8b00478

    18. [18]

      Ju, X.; Huang, H.; Zheng, H.; Deng, P.; Li, S.; Qu, B.; Wang, T. J. Power Sources 2018, 395, 395. doi: 10.1016/j.jpowsour.2018.05.086  doi: 10.1016/j.jpowsour.2018.05.086

    19. [19]

      Whitacre, J. F.; Tevar, A.; Sharma, S. Electrochem. Commun. 2010, 12 (3), 463. doi: 10.1016/j.elecom.2010.01.020  doi: 10.1016/j.elecom.2010.01.020

    20. [20]

      Kim, D. J.; Ponraj, R.; Kannan, A. G.; Lee, H. W.; Fathi, R.; Ruffo, R.; Mari, C. M.; Kim, D. K. J. Power Sources 2013, 244, 758. doi: 10.1016/j.jpowsour.2013.02.090  doi: 10.1016/j.jpowsour.2013.02.090

    21. [21]

      Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.; Xu, S.; Yu, X.; Gu, L.; Hu, Y. S.; Yang, W.; Kang, K.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Nat. Commun. 2015, 6, 6401. doi: 10.1038/ncomms7401  doi: 10.1038/ncomms7401

    22. [22]

      Li, Z.; Young, D.; Xiang, K.; Carter, W. C.; Chiang, Y. M. Adv. Energy Mater. 2013, 3 (3), 290. doi: 10.1002/aenm.201200598  doi: 10.1002/aenm.201200598

    23. [23]

      Yuan, T.; Zhang, J.; Pu, X.; Chen, Z.; Tang, C.; Zhang, X.; Ai, X.; Huang, Y.; Yang, H.; Cao, Y. ACS Appl. Mater. Inter. 2018, 10 (40), 34108. doi: 10.1021/acsami.8b08297  doi: 10.1021/acsami.8b08297

    24. [24]

      Nakamoto, K.; Kano, Y.; Kitajou, A.; Okada, S. J. Power Sources 2016, 327, 327. doi: 10.1016/j.jpowsour.2016.07.052  doi: 10.1016/j.jpowsour.2016.07.052

    25. [25]

      Kuehnel, R. S.; Reber, D.; Battaglia, C. ACS Energy Lett. 2017, 2 (9), 2005. doi: 10.1021/acsenergylett.7b00623  doi: 10.1021/acsenergylett.7b00623

    26. [26]

      Yamada, Y.; Usui, K.; Sodeyama, K.; Ko, S.; Tateyama, Y.; Yamada, A. Nat. Energy 2016, 1 (10), 16129. doi: 10.1038/nenergy.2016.129  doi: 10.1038/nenergy.2016.129

    27. [27]

      Choi, J.; Alvarez, E.; Arunkumar, T. A.; Manthiram, A. Electrochem. Solid St. 2006, 9 (5), A241. doi: 10.1149/1.2184495  doi: 10.1149/1.2184495

    28. [28]

      Manthiram, A.; Choi, J. J. Power Sources 2006, 159 (1), 249. doi: 10.1016/j.jpowsour.2006.04.028  doi: 10.1016/j.jpowsour.2006.04.028

    29. [29]

      Wang, Y. G.; Luo, J. Y.; Wang, C. X.; Xia, Y. Y. J. Electrochem. Soc. 2006, 153 (8), A1425. doi: 10.1149/1.2203772  doi: 10.1149/1.2203772

    30. [30]

      Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Nat. Chem. 2010, 2, 760. doi: 10.1038/nchem.763  doi: 10.1038/nchem.763

    31. [31]

      Mohamed, A. I.; Whitacre, J. F. Electrochim. Acta 2017, 235, 730. doi: 10.1016/j.electacta.2017.03.106  doi: 10.1016/j.electacta.2017.03.106

    32. [32]

      Sauvage, F.; Laffont, L.; Tarascon, J. M.; Baudrin, E. Inorg. Chem. 2007, 46 (8), 3289. doi: 10.1021/ic0700250  doi: 10.1021/ic0700250

    33. [33]

      Kim, H.; Kim, D. J.; Seo, D. H.; Yeom, M. S.; Kang, K.; Kim, D. K.; Jung, Y. Chem. Mater. 2012, 24 (6), 1205. doi: 10.1021/cm300065y  doi: 10.1021/cm300065y

    34. [34]

      Altin, S.; Oz, E.; Altin, E.; Demirel, S.; Bayri, A.; Avci, S. Dalton Trans. 2018, 47 (47), 17102. doi: 10.1039/c8dt03508c  doi: 10.1039/c8dt03508c

    35. [35]

      Li, H.; Liu, S. Y.; Yuan, T. C.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G. Y.; Bai, H. T.; Chen, X.; Chen, Z. X.; et al. Acta Phys. -Chim. Sin. 2020, 36 (5), 1905027.  doi: 10.3866/PKU.WHXB201905027

    36. [36]

      Li, W.; Zhang, F.; Xiang, X.; Zhang, X. ChemElectroChem 2017, 4 (11), 2870. doi: 10.1002/celc.201700776  doi: 10.1002/celc.201700776

    37. [37]

      Shao, M.; Deng, J.; Zhong, F.; Cao, Y.; Ai, X.; Qian, J.; Yang, H. Energy Storage Mater. 2019, 18, 92. doi: 10.1016/j.ensm.2018.09.029  doi: 10.1016/j.ensm.2018.09.029

    38. [38]

      Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. Science 2015, 350 (6263), 938. doi: 10.1126/science.aab1595  doi: 10.1126/science.aab1595

    39. [39]

      Pu, X.; Wang, H.; Zhao, D.; Yang, H.; Ai, X.; Cao, S.; Chen, Z.; Cao, Y. Small 2019, 15, 1805427. doi: 10.1002/smll.201805427  doi: 10.1002/smll.201805427

    40. [40]

      Yuan, T.; Wang, Y.; Zhang, J.; Pu, X.; Ai, X.; Chen, Z.; Yang, H.; Cao, Y. Nano Energy 2019, 56, 160. doi: 10.1016/j.nanoen.2018.11.011  doi: 10.1016/j.nanoen.2018.11.011

    41. [41]

      Yamada, Y.; Usui, K.; Sodeyama, K.; Ko, S.; Tateyama, Y.; Yamada, A. Nat. Energy 2016, 1 (10), 16129. doi: 10.1038/nenergy.2016.129  doi: 10.1038/nenergy.2016.129

    42. [42]

      Pu, X.; Wang, H.; Yuan, T.; Cao, S.; Liu, S.; Xu, L.; Yang, H.; Ai, X.; Chen, Z.; Cao, Y. Energy Storage Mater. 2019, 22, 330. doi: 10.1016/j.ensm.2019.02.017  doi: 10.1016/j.ensm.2019.02.017

    43. [43]

      Cha, C. S.; Yu, J. X.; Zhang, J. X. J. Power Sources 2004, 129 (2), 347. doi: 10.1016/j.jpowsour.2003.11.043  doi: 10.1016/j.jpowsour.2003.11.043

    44. [44]

      Martinet, S.; Durand, R.; Ozil, P.; Leblanc, P.; Blanchard, P. J. Power Sources 1999, 83 (1–2), 93. doi: 10.1016/s0378-7753(99)00272-4  doi: 10.1016/s0378-7753(99)00272-4

  • 加载中
    1. [1]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    2. [2]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    3. [3]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    4. [4]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    7. [7]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    8. [8]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    9. [9]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    10. [10]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    11. [11]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    12. [12]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    13. [13]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    14. [14]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    15. [15]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    16. [16]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    17. [17]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    18. [18]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    19. [19]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    20. [20]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

Metrics
  • PDF Downloads(6)
  • Abstract views(605)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return