Citation: Lu Zeying, Xu Shengwei, Wang Hao, Liu Juntao, Gao Fei, Song Yilin, Xie Jingyu, Xiao Guihua, Zhang Yu, Dai Yuchuan, Wang Yun, Qu Lina, Cai Xinxia. Detection of Neuronal Activity in the Hippocampus of Sleep Deprived Rats Using Microelectrode Arrays[J]. Acta Physico-Chimica Sinica, ;2020, 36(12): 190703. doi: 10.3866/PKU.WHXB201907033 shu

Detection of Neuronal Activity in the Hippocampus of Sleep Deprived Rats Using Microelectrode Arrays

  • Corresponding author: Qu Lina, linaqu@263.net Cai Xinxia, xxcai@mail.ie.ac.cn
  • Received Date: 10 July 2019
    Revised Date: 31 August 2019
    Accepted Date: 11 September 2019
    Available Online: 16 September 2019

    Fund Project: the National Natural Science Foundation of China 61527815the National Natural Science Foundation of China 61775216the National Natural Science Foundation of China 61771452The project was supported by the National Key Research and Development Program of China (2017YFA0205902), the National Natural Science Foundation of China (61527815, 61771452, 61775216) and the Key Research Programs of Frontier Sciences, CAS (QYZDJ-SSW-SYS015)the Key Research Programs of Frontier Sciences, CAS QYZDJ-SSW-SYS015the National Key Research and Development Program of China 2017YFA0205902

  • Sleep deprivation (SD) is the partial or complete loss of sleep and has long been used as a tool in sleep research to interfere with normal sleep cycles in rodents and humans. The progressively-accumulating sleep pressure induced by sleep deprivation can lead to a variety of physiological changes and even death. Compared to traditional detection methods, in vivo detection of neuronal activity using micro-electromechanical system (MEMS) technology following sleep deprivation can help fully elucidate the effects of sleep deprivation at the cellular level. Herein, a computer-controlled rotary roller was used to completely deprive rats of sleep for 14 days and 16-channel microelectrode arrays (MEAs) were fabricated and implanted into the rat hippocampus to measure neural spikes and local field potentials (LFPs) in real-time. The hippocampus is involved in learning and memory and has been the focus of intensive research aimed at understanding the function of sleep. This study was performed to measure the changes in neuronal activity in the rat hippocampus induced by sleep deprivation as well as their overall impact on the brain. After sleep deprivation, both the pyramidal- and inter-neurons showed a higher amplitude and more intense firing patterns. The fast-firing pattern of the neurons after sleep deprivation indicated elevated excitability in the prolonged awake state. In addition, the LFP of the sleep deprived rats fluctuated more frequently. The power of the LFPs in the low-frequency band (0–50 Hz) was calculated, showing increased power of the delta, theta, alpha, and beta bands after sleep deprivation, especially for the delta band (0.1–4 Hz). Generally, LFPs are generated by all types of neural activity in the neural circuit, and the changes in the low frequency band power suggested decreased arousal and increased sleep pressure induced by sleep deprivation, which could further impair brain function. This study was mainly aimed at measuring electrophysiological changes induced by sleep deprivation in the rat brain. Typically, neuronal activity changes were accompanied by the alternation of specific neurotransmitters in the brain. In the future, it will be essential to focus on measuring the concurrent change of electrophysiological and neurochemical signals to better examine the impact of sleep deprivation on brain function.
  • 加载中
    1. [1]

      Zielinski, M. R.; McKenna, J. T.; McCarley, R. W. AIMS Neurosci. 2016, 3, 67. doi: 10.3934/Neuroscience.2016.1.67  doi: 10.3934/Neuroscience.2016.1.67

    2. [2]

      Marks, G. A.; Shaffery, J. P.; Oksenberg, A.; Speciale, S. G.; Roffwarg, H. P. Behav. Brain Res. 1995, 69, 1. doi: 10.1016/0166-4328(95)00018-O  doi: 10.1016/0166-4328(95)00018-O

    3. [3]

      Lee, K. J. Neurosci. Biobehav. Rev. 1996, 20, 289. doi: 10.1016/0149-7634(95)00019-4  doi: 10.1016/0149-7634(95)00019-4

    4. [4]

      Hobson, J. A.; Pace-Schott, E. F. Nat. Rev. Neurosci. 2002, 3, 679. doi: 10.1038/nrn915  doi: 10.1038/nrn915

    5. [5]

      Peigneux, P.; Laureys, S.; Delbeuck, X.; Maquet, P. Neuroreport 2001, 12, 111. doi: 10.1097/00001756-200112210-00001  doi: 10.1097/00001756-200112210-00001

    6. [6]

      Mohammed, H. S.; Aboul Ezz, H. S.; Khadrawy, Y. A.; Noor, N. A. Behav. Brain Res. 2011, 225, 39. doi: 10.1016/j.bbr.2011.06.018  doi: 10.1016/j.bbr.2011.06.018

    7. [7]

      Rechtschaffen, A. Perspect. Biol. Med. 1998, 41, 359. doi: 10.1353/pbm.1998.0051  doi: 10.1353/pbm.1998.0051

    8. [8]

      Wilkinson, R. T.; Edwards, R. S.; Haines, E. Psychon. Sci. 1966, 5, 471. doi: 10.3758/BF03328474  doi: 10.3758/BF03328474

    9. [9]

      Pilcher, J. J.; Huffcutt, A. I. Sleep 1996, 19, 318. doi: 10.1016/0278-5846(96)00044-9  doi: 10.1016/0278-5846(96)00044-9

    10. [10]

      Manaceine, M. D. Arch. Ital. Biol. 1894, 21, 322.

    11. [11]

      Daddi, L. Riv. Patol. Nerv. Ment. 1898, 3, 1.

    12. [12]

      Lopez, J.; Roffwarg, H. P.; Dreher, A.; Bissette, G.; Karolewicz, B.; Shaffery, J. P. Neuroscience 2008, 153, 44. doi: 10.1016/j.neuroscience.2008.01.072  doi: 10.1016/j.neuroscience.2008.01.072

    13. [13]

      Colavito, V.; Fabene, P. F.; Grassi-Zucconi, G.; Pifferi, F.; Lamberty, Y.; Bentivoglio, M.; Bertini, G. Front. Syst. Neurosci. 2013, 7, 106. doi: 10.3389/fnsys.2013.00106  doi: 10.3389/fnsys.2013.00106

    14. [14]

      Giorgi, F. S.; Maestri, M.; Guida, M.; Di Coscio, E.; Carnicelli, L.; Perini, D.; Pizzanelli, C.; Iudice, A.; Bonanni, E. Epilepsy Res. Treat. 2013, 2013, 614685. doi: 10.1155/2013/614685  doi: 10.1155/2013/614685

    15. [15]

      Strijkstra, A. M.; Beersma, D. G. M.; Drayer, B.; Halbesma, N.; Daan, S. Neurosci. Lett. 2003, 340, 17. doi: 10.1016/S0304-3940(03)00033-8  doi: 10.1016/S0304-3940(03)00033-8

    16. [16]

      Ferreira, C.; Deslandes, A.; Moraes, H.; Cagy, M.; Pompeu, F.; Basile, L. F.; Piedade, R.; Ribeiro, P. Arq. Neuro-Psiquiatr. 2006, 64, 388. doi: 10.1590/S0004-282X2006000300007  doi: 10.1590/S0004-282X2006000300007

    17. [17]

      Ugalde, E.; Corsi-Cabrera, M.; Juarez, J.; Ramos, J.; Arce, C. Sleep 1994, 17, 226. doi: 10.1093/sleep/17.3.226  doi: 10.1093/sleep/17.3.226

    18. [18]

      Vyazovskiy, V. V. Nat. Sci. Sleep. 2015, 7, 171. doi: 10.2147/NSS.S54036  doi: 10.2147/NSS.S54036

    19. [19]

      Dijk, D. J. Behav. Brain Res. 1995, 69, 109. doi: 10.1016/0166-4328(95)00007-G  doi: 10.1016/0166-4328(95)00007-G

    20. [20]

      Naylor, E.; Aillon, D. V.; Gabbert, S.; Harmon, H.; Johnson, D. A.; Wilson, G. S.; Petillo, P. A. J. Electroanal. Chem. 2011, 656, 106. doi: 10.1016/j.jelechem.2010.12.031  doi: 10.1016/j.jelechem.2010.12.031

    21. [21]

      Rapp, P. E.; Keyser, D. O.; Albano, A.; Hernandez, R.; Gibson, D. B.; Zambon, R. A.; Hairston, W. D.; Hughes, J. D.; Krystal, A.; Nichols, A. S. Front. Hum. Neurosci. 2015, 9, 11. doi: 10.3389/fnhum.2015.00011  doi: 10.3389/fnhum.2015.00011

    22. [22]

      Fan, X.; Song, Y.; Ma, Y.; Zhang, S.; Xiao, G.; Yang, L.; Xu, H.; Zhang, D.; Cai, X. Sensors 2017, 17, 61. doi: 10.3390/s17010061  doi: 10.3390/s17010061

    23. [23]

      Zhang, S.; Song, Y.; Wang, M.; Zhang, Z.; Fan, X.; Song, X.; Zhuang, P.; Yue, F.; Chan, P.; Cai, X. Biosens. Bioelectron. 2016, 85, 53. doi: 10.1016/j.bios.2016.04.087  doi: 10.1016/j.bios.2016.04.087

    24. [24]

      Li, Z.; Song, Y.; Xiao, G.; Gao, F.; Xu, S.; Wang, M.; Zhang, Y.; Guo, F.; Liu, J.; Xia, Y.; Cai, X. Anal. Biochem. 2018, 550, 123. doi: 10.1016/j.ab.2018.04.023  doi: 10.1016/j.ab.2018.04.023

    25. [25]

      Belitski, A.; Gretto, A.; Magri, C.; Murayama, Y. J. Neurosci. 2008, 28, 22. doi: 10.1523/JNEUROSCI.0009-08.2008  doi: 10.1523/JNEUROSCI.0009-08.2008

    26. [26]

      Wei, W.; Song, Y.; Wang, L.; Zhang, S.; Luo, J.; Xu, S.; Cai, X. Microsyst. Nanoeng. 2015, 1, 15002. doi: 10.1038/micronano.2015.2  doi: 10.1038/micronano.2015.2

    27. [27]

      Avery, T.; Szafran, M. J.; Bryan, B.; Mendelson, W. B. Anesthesiology 2002, 97, 906. doi: 10.1097/00000542-200210000-00024  doi: 10.1097/00000542-200210000-00024

    28. [28]

      Christie, M. A.; McKenna, J. T.; Connolly, N. P.; McCarley, R. W.; Strecker, R. E. J. Sleep Res. 2010, 17, 376. doi: 10.1111/j.1365-2869.2008.00698.x  doi: 10.1111/j.1365-2869.2008.00698.x

    29. [29]

      Gao, F.; Xiao, G.; Song, Y.; Wang, M.; Li, Z.; Zhang, Y.; Xu, S.; Xie, J.; Cai, X. IEEE Trans. Biomed. Eng. 2019, 1, 1. doi: 10.1109/TBME.2019.2900251  doi: 10.1109/TBME.2019.2900251

    30. [30]

      Zhang, S.; Song, Y.; Wang, M.; Xiao, G.; Gao, F.; Li, Z.; Tao, G.; Zhuang, P.; Yue, F.; Chan, P.; Cai, X. Microsyst. Nanoeng. 2018, 4, 17070. doi: 10.1038/micronano.2017.70  doi: 10.1038/micronano.2017.70

    31. [31]

      Xiao, G.; Xu, S.; Song, Y.; Zhang, Y.; Li, Z.; Gao, F.; Xie, J.; Sha, L.; Xu, Q.; Shen, Y.; Cai, X. Sens. Actuator B-Chem. 2019, 288, 601. doi: 10.1016/j.snb.2019.03.035  doi: 10.1016/j.snb.2019.03.035

    32. [32]

      Huber, R.; Deboer, T.; Tobler, I. Brain Res. 2000, 857, 8. doi: 10.1016/S0006-8993(99)02248-9  doi: 10.1016/S0006-8993(99)02248-9

    33. [33]

      Vanderwolf, C. H.; Robinson, T. E. Behav. Brain Sci. 1981, 4, 459. doi: 10.1017/S0140525X00009869  doi: 10.1017/S0140525X00009869

    34. [34]

      Silva, F. L. D. Electroencephalogr. Clin. Neurophysiol. 1991, 79, doi: 81.10.1016/0013-4694(91)90044-5  doi: 10.1016/0013-4694(91)90044-5

    35. [35]

      Hankins, T. C.; Wilson, G. F. Aviat. Space Environ. Med. 1998, 69, 360. doi: 10.1111/j.1445-5994.1998.tb02982.x  doi: 10.1111/j.1445-5994.1998.tb02982.x

    36. [36]

      Fisher, S. P.; Cui, N.; McKillop, L. E.; Gemignani, J.; Bannerman, D. M.; Oliver, P. L.; Peirson, S. N.; Vyazovskiy, V. V. Nat. Commun. 2016, 7, 13138. doi: 10.1038/ncomms13138  doi: 10.1038/ncomms13138

    37. [37]

      Suchecki, D.; Tiba, P. A.; Tufik, S. J. Neuroendocrinol. 2010, 14, 549. doi: 10.1046/j.1365-2826.2002.00812.x  doi: 10.1046/j.1365-2826.2002.00812.x

    38. [38]

      Post, R. M.; Kotin, J.; Goodwin, F. K. Arch. Gen. Psychiatry. 1976, 33, 627. doi: 10.1001/archpsyc.1976.01770050077012  doi: 10.1001/archpsyc.1976.01770050077012

    39. [39]

      Graves, L. A.; Heller, E. A.; Pack, A. I. Learn. Mem. 2003, 10, 168. doi: 10.1101/lm.48803  doi: 10.1101/lm.48803

    40. [40]

      Yang, R. H.; Hu, S. J.; Yuan, W.; Zhang, W. B.; Luo, W. J.; Chen, J. Y. Brain Res. 2008, 1230, 224. doi: 10.1016/j.brainres.2008.07.033  doi: 10.1016/j.brainres.2008.07.033

    41. [41]

      Kamal, S. M. J. Exp. Pharmacol. 2010, 2, 65. doi: 10.2147/jep.s11143  doi: 10.2147/jep.s11143

    42. [42]

      Bettendorff, L.; Sallanon-Moulin, M.; Touret, M.; Wins, P.; Margineanu, I.; Schoffeniels, E. Sleep 1996, 19, 65. doi: 10.1093/sleep/19.1.65  doi: 10.1093/sleep/19.1.65

  • 加载中
    1. [1]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    2. [2]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    3. [3]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    4. [4]

      Chunqing OuMeijia XiaoXinyue ZhengXianzhou HuangSuleixin YangYingying LengXiaowei LiuXiuqi LiangLinjiang SongYanjie YouShaohua YaoChangyang Gong . Programmable double-unlock nanocomplex self-supplies phenylalanine ammonia-lyase for precise phenylalanine deprivation of tumors. Chinese Chemical Letters, 2024, 35(8): 109275-. doi: 10.1016/j.cclet.2023.109275

    5. [5]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    6. [6]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    7. [7]

      Xuebing JiangSiyi WangLi ZhangXian JiangMaling Gou . Lidocaine hydrochloride loaded isomaltulose microneedles for efficient local anesthesia of the skin. Chinese Chemical Letters, 2024, 35(4): 108686-. doi: 10.1016/j.cclet.2023.108686

    8. [8]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    9. [9]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    10. [10]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    11. [11]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    12. [12]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    13. [13]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    14. [14]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    15. [15]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    16. [16]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    17. [17]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    18. [18]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    19. [19]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    20. [20]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

Metrics
  • PDF Downloads(9)
  • Abstract views(1018)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return