Citation: Zhang Shuchen, Zhang Na, Zhang Jin. Controlled Synthesis of Carbon Nanotubes: Past, Present and Future[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190702. doi: 10.3866/PKU.WHXB201907021 shu

Controlled Synthesis of Carbon Nanotubes: Past, Present and Future

  • Corresponding author: Zhang Jin, jinzhang@pku.edu.cn
  • Received Date: 4 July 2019
    Revised Date: 1 August 2019
    Accepted Date: 1 August 2019
    Available Online: 29 January 2019

    Fund Project: the National Natural Science Foundation of China 51720105003the National Natural Science Foundation of China 1432002the National Natural Science Foundation of China 21790052The project was supported by the National Natural Science Foundation of China (1432002, 21790052, 51720105003)

  • high tensile strength, mobility, and thermal conductivity as well as clean surface. Hence, CNTs have been widely investigated for many potential applications, for example, as additives in composites and main components of integrated circuits. However, the former application widely used does not exploit their intrinsic properties, while the latter has only been demonstrated at the level of laboratory prototype devices. As the main factor determining future applications of CNTs is the ability to achieve their structure-controlled synthesis, this review first introduces a classification of CNT structures highlighting the potential difficulties associated with fine CNT structure control due to the similarities between different CNTs. Then, advances in the basic research and industrialization of CNTs in the past decades are summarized, including fine structure control, aggregation synthesis, and scale-up production. Catalysts are crucial for controlling the structure of CNTs, as their lifetime determines the CNT length and size (wall number and diameter), while their state and formation affects CNT chirality. Moreover, as the microscopic properties of individual CNTs often differ from their macroscale performance at industrial-scale production, their aggregation state should be carefully taken into consideration. Therefore, several methods were developed to realize different types of aggregates, such as lattice orientation for obtaining horizontally aligned CNT arrays, the use of catalysts with high density for the synthesis of vertical CNT arrays, direct deposition of CNT films, and even fabrication of very complex three-dimensional (3D) macrostructures. Furthermore, many efforts have been invested to promote CNT industrialization and develop various techniques to increase CNT production, including the fluidized bed method and floating method. Finally, the ideal synthesis of CNTs should combine structure control with scale-up preparation. To this aim, further theoretical understanding of the detailed CNT growth mechanism is still needed to clarify, for example, how CNT caps form at the atomic scale, which is the close matching relationship between CNTs and catalysts, and how the growth model affects the chirality preference of single-walled carbon nanotubes (SWNTs). Experimentally, different methods to grow SWNTs with a uniform structure should be further developed, focusing on catalyst design to increase temperature tolerance and achieve epitaxial growth of SWNT segments. On the other hand, the large-scale synthesis of SWNTs should also be reconsidered, for instance, by improving the growth equipment. In order to identify suitable applications for different CNT products, standards should be established and adopted. In addition to improving CNT synthesis, the driving force of the CNT industry in the future will be finding disruptive applications of CNTs, whose functions and contributions are irreplaceable. In conclusion, still much progress is needed to achieve the complete commercialization of CNTs in the future. Nevertheless, the rapid development and continuous attention given to this field may lead to growth opportunities in the CNT industry.
  • 加载中
    1. [1]

      Iijima, S. Nature 1991, 354, 56. doi: 10.1038/354056a0  doi: 10.1038/354056a0

    2. [2]

      Peng, B.; Locascio, M.; Zapol, P.; Li, S.; Mielke, S. L.; Schatz, G. C.; Espinosa, H. D. Nat. Nanotechnol. 2008, 3, 626. doi: 10.1038/nnano.2008.211  doi: 10.1038/nnano.2008.211

    3. [3]

      Jin, S. H.; Dunham, S. N.; Song, J.; Xie, X.; Kim, J. H.; Lu, C.; Islam, A.; Du, F.; Kim, J.; Felts, J.; et al. A. Nat. Nanotechnol. 2013, 8, 347. doi: 10.1038/nnano.2013.56  doi: 10.1038/nnano.2013.56

    4. [4]

      Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009, 323, 760. doi: 10.1126/science.1168049  doi: 10.1126/science.1168049

    5. [5]

      Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002, 297, 787. doi: 10.1126/science.1060928  doi: 10.1126/science.1060928

    6. [6]

      Chou, T. W.; Gao, L.; Thostenson, E. T.; Zhang, Z.; Byun, J. H. Compos. Sci. Technol. 2010, 70, 1. doi: 10.1016/j.compscitech.2009.10.004  doi: 10.1016/j.compscitech.2009.10.004

    7. [7]

      De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Science 2013, 339, 535. doi: 10.1126/science.1222453  doi: 10.1126/science.1222453

    8. [8]

      Qiu, C.; Zhang, Z.; Xiao, M.; Yang, Y.; Zhong, D.; Peng, L. M. Science 2017, 355, 271. doi: 10.1126/science.aaj1628  doi: 10.1126/science.aaj1628

    9. [9]

      Appenzeller, J.; Lin, Y. M.; Knoch, J.; Avouris, P. Phys. Rev. Lett. 2004, 93, 196805. doi: 10.1103/PhysRevLett.93.196805  doi: 10.1103/PhysRevLett.93.196805

    10. [10]

      Franklin, A. D.; Luisier, M.; Han, S. J.; Tulevski, G.; Breslin, C. M.; Gignac, L.; Lundstrom, M. S.; Haensch, W. Nano Lett. 2012, 12, 758. doi: 10.1021/nl203701g  doi: 10.1021/nl203701g

    11. [11]

      An, K. H.; Kim, W. S.; Park, Y. S.; Moon, J. M.; Bae, D. J.; Lim, S. C.; Lee, Y. S.; Lee, Y. H. Adv. Funct. Mater. 2001, 11, 387. doi: 10.1002/1616-3028(200110)11:5 < 387::AID-ADFM387 > 3.0.CO; 2-G  doi: 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G

    12. [12]

      Sotowa, C.; Origi, G.; Takeuchi, M.; Nishimura, Y.; Takeuchi, K.; Jang, I. Y.; Kim, Y. J.; Hayashi, T.; Kim, Y. A.; Endo, M.; et al. ChemSusChem 2008, 1, 911. doi: 10.1002/cssc.200800170  doi: 10.1002/cssc.200800170

    13. [13]

      Niu, C.; Sichel, E. K.; Hoch, R.; Moy, D.; Tennent, H. Appl. Phys. Lett. 1997, 70, 1480. doi: 10.1063/1.118568  doi: 10.1063/1.118568

    14. [14]

      Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L. Phys. Rev. Lett. 2001, 87, 215502. doi: 10.1103/PhysRevLett.87.215502  doi: 10.1103/PhysRevLett.87.215502

    15. [15]

      Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902. doi: 10.1021/nl0731872  doi: 10.1021/nl0731872

    16. [16]

      Franklin, A. D. Science 2015, 349, 6249. doi: 10.1126/science.aab2750  doi: 10.1126/science.aab2750

    17. [17]

      Dresselhaus, M. S.; Dresselhaus, G.; Saito, R. Carbon 1995, 33, 883. doi: 10.1016/0008-6223(95)00017-8  doi: 10.1016/0008-6223(95)00017-8

    18. [18]

      Chen, Y.; Zhang, J. Acc. Chem. Res. 2014, 47, 2273. doi: 10.1021/ar400314b  doi: 10.1021/ar400314b

    19. [19]

      Chen, Y.; Zhang, Y.; Hu, Y.; Kang, L.; Zhang, S.; Xie, H.; Liu, D.; Zhao, Q.; Li, Q.; Zhang, J. Adv. Mater. 2014, 26, 5898. doi: 10.1002/adma.201400431  doi: 10.1002/adma.201400431

    20. [20]

      Zhang, R.; Zhang, Y.; Wei, F. Acc. Chem. Res. 2017, 50, 179. doi: 10.1021/acs.accounts.6b00430  doi: 10.1021/acs.accounts.6b00430

    21. [21]

      Wang, H.; Yuan, Y.; Wei, L.; Goh, K.; Yu, D.; Chen, Y. Carbon 2015, 81, 1. doi: 10.1016/j.carbon.2014.09.063  doi: 10.1016/j.carbon.2014.09.063

    22. [22]

      Yang, F.; Wang, X.; Li, M.; Liu, X.; Zhao, X.; Zhang, D.; Zhang, Y.; Yang, J.; Li, Y. Acc. Chem. Res. 2016, 49, 606. doi: 10.1021/acs.accounts.5b00485  doi: 10.1021/acs.accounts.5b00485

    23. [23]

      Li, Y.; Kim, W.; Zhang, Y.; Rolandi, M.; Wang, D.; Dai, H. J. Phys. Chem. B 2001, 105, 11424. doi: 10.1021/jp012085b  doi: 10.1021/jp012085b

    24. [24]

      An, L.; Owens, J. M.; McNeil, L. E.; Liu, J. J. Am. Chem. Soc. 2002, 124, 13688. doi: 10.1021/ja0274958  doi: 10.1021/ja0274958

    25. [25]

      Zhang, R.; Zhang, Y.; Zhang, Q.; Xie, H.; Qian, W.; Wei, F. ACS Nano 2013, 7, 6156. doi: 10.1021/nn401995z  doi: 10.1021/nn401995z

    26. [26]

      Kang, L.; Zhang, S.; Li, Q.; Zhang, J. J. Am. Chem. Soc. 2016, 138, 6727. doi: 10.1021/jacs.6b03527  doi: 10.1021/jacs.6b03527

    27. [27]

      Zhang, S.; Kang, L.; Wang, X.; Tong, L.; Yang, L.; Wang, Z.; Qi, K.; Deng, S.; Li, Q.; Bai, X.; et al. Nature 2017, 543, 234. doi: 10.1038/nature21051  doi: 10.1038/nature21051

    28. [28]

      Moisala, A.; Nasibulin, A. G.; Brown, D. P.; Jiang, H.; Khriachtchev, L.; Kauppinen, E. I. Chem. Eng. Sci. 2006, 61, 4393. doi: 10.1016/j.ces.2006.02.020  doi: 10.1016/j.ces.2006.02.020

    29. [29]

      Zhang, Q.; Huang, J. Q.; Zhao, M. Q.; Qian, W. Z.; Wei, F. ChemSusChem 2011, 4, 864. doi: 10.1002/cssc.201100177  doi: 10.1002/cssc.201100177

    30. [30]

      Iijima, S.; Ichihashi, T. Nature 1993, 363, 603. doi: 10.1038/363603a0  doi: 10.1038/363603a0

    31. [31]

      Hayashi, T.; Kim, Y. A.; Matoba, T.; Esaka, M.; Nishimura, K.; Tsukada, T.; Endo, M.; Dresselhaus, M. S. Nano Lett. 2003, 3, 887. doi: 10.1021/nl034080r  doi: 10.1021/nl034080r

    32. [32]

      Zhang, C.; Bets, K.; Lee, S. S.; Sun, Z.; Mirri, F.; Colvin, V. L.; Yakobson, B. I.; Hauge, R. H. ACS Nano 2012, 6, 6023. doi: 10.1021/nn301039v  doi: 10.1021/nn301039v

    33. [33]

      Hou, P. X.; Li, W. S.; Zhao, S. Y.; Li, G. X.; Shi, C.; Liu, C.; Cheng, H. M. ACS Nano 2014, 8, 7156. doi: 10.1021/nn502120k  doi: 10.1021/nn502120k

    34. [34]

      Chen, Y.; Shen, Z.; Xu, Z.; Hu, Y.; Xu, H.; Wang, S.; Guo, X.; Zhang, Y.; Peng, L.; Ding, F.; et al. Nat. Commun. 2013, 4, 2205. doi: 10.1038/ncomms3205  doi: 10.1038/ncomms3205

    35. [35]

      Kang, L.; Hu, Y.; Liu, L.; Wu, J.; Zhang, S.; Zhao, Q.; Ding, F.; Li, Q.; Zhang, J. Nano Lett. 2015, 15, 403. doi: 10.1021/nl5037325  doi: 10.1021/nl5037325

    36. [36]

      Zhang, S.; Tong, L.; Hu, Y.; Kang, L.; Zhang, J. J. Am. Chem. Soc. 2015, 137, 8904. doi: 10.1021/jacs.5b05384  doi: 10.1021/jacs.5b05384

    37. [37]

      Zhang, Q.; Huang, J. Q.; Qian, W. Z.; Zhang, Y. Y.; Wei, F. Small 2013, 9, 1237. doi: 10.1002/smll.201203252  doi: 10.1002/smll.201203252

    38. [38]

      Hu, Y.; Kang, L.; Zhao, Q.; Zhong, H.; Zhang, S.; Yang, L.; Wang, Z.; Lin, J.; Li, Q.; Zhang, Z.; et al. Nat. Commun. 2015, 6, 6099. doi: 10.1038/ncomms7099  doi: 10.1038/ncomms7099

    39. [39]

      Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Science 2004, 306, 1362. doi: 10.1126/science.1104962  doi: 10.1126/science.1104962

    40. [40]

      Sun, D. M.; Timmermans, M. Y.; Tian, Y.; Nasibulin, A. G.; Kauppinen, E. I.; Kishimoto, S.; Mizutani, T.; Ohno, Y. Nat. Nanotechnol. 2011, 6, 156. doi: 10.1038/nnano.2011.1  doi: 10.1038/nnano.2011.1

    41. [41]

      Du, R.; Zhao, Q.; Zhang, N.; Zhang, J. Small 2015, 11, 3263. doi: 10.1002/smll.201403170  doi: 10.1002/smll.201403170

    42. [42]

      Li, Y. L.; Kinloch, I. A.; Windle, A. H. Science 2004, 304, 276. doi: 10.1126/science.1094982  doi: 10.1126/science.1094982

    43. [43]

      Liu, C.; Cong, H. T.; Li, F.; Tan, P. H.; Cheng, H. M.; Lu, K.; Zhou, B. L. Carbon 1999, 11, 1865. doi: 10.1016/S0008-6223(99)00196-7  doi: 10.1016/S0008-6223(99)00196-7

    44. [44]

      Guo, T.; Nikolaev, P.; Rinzler, A. G.; Tomanek, D.; Colbert, D. T.; Smalley, R. E. J. Phys. Chem. 1995, 99, 10694. doi: 10.1021/acs.energyfuels.7b03144  doi: 10.1021/acs.energyfuels.7b03144

    45. [45]

      Zhang, X.; Jiang, K.; Feng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T.; Li, Q.; Fan, S. Adv. Mater. 2006, 18, 1505. doi: 10.1002/adma.200502528  doi: 10.1002/adma.200502528

    46. [46]

      Wang, Y.; Wei, F.; Luo, G.; Yu, H.; Gu, G. Chem. Phys. Lett. 2002, 364, 568. doi: 10.1016/S0009-2614(02)01384-2  doi: 10.1016/S0009-2614(02)01384-2

    47. [47]

      Gui, X.; Wei, J.; Wang, K.; Cao, A.; Zhu, H.; Jia, Y.; Shu, Q.; Wu, D. Adv. Mater. 2010, 22, 617. doi: 10.1002/adma.200902986  doi: 10.1002/adma.200902986

    48. [48]

      Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Nat. Nanotechnol. 2006, 1, 60. doi: 10.1038/nnano.2006.52  doi: 10.1038/nnano.2006.52

    49. [49]

      Liu, H.; Nishide, D.; Tanaka, T.; Kataura, H. Nat. Commun. 2011, 2, 309. doi: 10.1038/ncomms1313  doi: 10.1038/ncomms1313

    50. [50]

      Khripin, C. Y.; Fagan, J. A.; Zheng, M. J. Am. Chem. Soc. 2013, 135, 6822. doi: 10.1021/ja402762e  doi: 10.1021/ja402762e

    51. [51]

      Lolli, G.; Zhang, L.; Balzano, L.; Sakulchaicharoen, N.; Tan, Y.; Resasco, D. E. J. Phys. Chem. B 2006, 110, 2108. doi: 10.1021/jp056095e  doi: 10.1021/jp056095e

    52. [52]

      Wang, H.; Wei, L.; Ren, F.; Wang, Q.; Pfefferle, L. D.; Haller, G. L.; Chen, Y. ACS Nano 2012, 7, 614. doi: 10.1021/nn3047633  doi: 10.1021/nn3047633

    53. [53]

      Yang, F.; Wang, X.; Zhang, D.; Yang, J.; Luo, D.; Xu, Z.; Wei, J.; Wang, J. Q.; Xu, Z.; Peng, F.; et al. Nature 2014, 510, 522. doi: 10.1038/nature13434  doi: 10.1038/nature13434

    54. [54]

      Wang, Z.; Zhao, Q.; Tong, L.; Zhang, J. J. Phys. Chem. C 2017, 121, 27655. doi: 10.1021/acs.jpcc.7b06653  doi: 10.1021/acs.jpcc.7b06653

    55. [55]

      Zhou, W.; Zhan, S.; Ding, L.; Liu, J. J. Am. Chem. Soc. 2012, 134, 14019. doi: 10.1021/ja3038992  doi: 10.1021/ja3038992

    56. [56]

      Zhang, G.; Qi, P.; Wang, X.; Lu, Y.; Li, X.; Tu, R.; Bangsaruntip, S.; Mann, D.; Zhang, L.; Dai, H. Science 2006, 314, 974. doi: 10.1126/science.1133781  doi: 10.1126/science.1133781

    57. [57]

      Zhang, S.; Wang, X.; Yao, F.; He, M.; Lin, D.; Ma, H.; Sun, Y.; Zhao, Q.; Liu, K.; Ding, F.; et al. Chem 2019, 5, 1182. doi: 10.1016/j.chempr.2019.02.012  doi: 10.1016/j.chempr.2019.02.012

    58. [58]

      Zhang, S.; Tong, L.; Zhang, J. Nat. Sci. Rev. 2017, 5, 310. doi: 10.1093/nsr/nwx080  doi: 10.1093/nsr/nwx080

    59. [59]

      Ding, F.; Harutyunyan, A. R.; Yakobson, B. I. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 2506. doi: 10.1073/pnas.0811946106  doi: 10.1073/pnas.0811946106

    60. [60]

      Artyukhov, V. I.; Penev, E. S.; Yakobson, B. I. Nat. Commun. 2014, 5, 4892. doi: 10.1038/ncomms5892  doi: 10.1038/ncomms5892

    61. [61]

      Yao, Y.; Feng, C.; Zhang, J.; Liu, Z. Nano Lett. 2009, 9, 1673. doi: 10.1021/nl900207v  doi: 10.1021/nl900207v

    62. [62]

      Liu, J.; Wang, C.; Tu, X.; Liu, B.; Chen, L.; Zheng, M.; Zhou, C. Nat. Commun. 2012, 3, 1199. doi: 10.1038/ncomms2205  doi: 10.1038/ncomms2205

    63. [63]

      O'connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon1, K. L.; Boul1, P. J.; Noon, W. H.; Kittrell1, C.; et al. Science 2002, 297, 593. doi: 10.1126/science.1072631  doi: 10.1126/science.1072631

    64. [64]

      Ortiz-Acevedo, A.; Xie, H.; Zorbas, V.; Sampson, W. M.; Dalton, A. B.; Baughman, R. H.; Draper, R. K.; Musselman, I. H.; Dieckmann, G. R. J. Am. Chem. Soc. 2005, 127, 9512. doi: 10.1021/ja050507f  doi: 10.1021/ja050507f

    65. [65]

      Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Nat. Nanotechnol. 2007, 2, 640. doi:10.1038/nnano.2007.290  doi: 10.1038/nnano.2007.290

    66. [66]

      D Franklin, A. D. Nature 2013, 498, 443. doi: 10.1038/498443a  doi: 10.1038/498443a

    67. [67]

      Cao, Q.; Han, S. J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Nat. Nanotechnol. 2013, 8, 180. doi: 10.1038/nnano.2012.257  doi: 10.1038/nnano.2012.257

    68. [68]

      Kuznetsov, A. A.; Fonseca, A. F.; Baughman, R. H.; Zakhidov, A. A. ACS Nano 2011, 5, 985. doi: 10.1021/nn102405u  doi: 10.1021/nn102405u

    69. [69]

      Liao, Y.; Jiang, H.; Wei, N.; Laiho, P.; Zhang, Q.; Khan, S. A.; Kauppinen, E. I. J. Am. Chem. Soc. 2018, 140, 9797. doi: 10.1021/jacs.8b05151  doi: 10.1021/jacs.8b05151

    70. [70]

      Shan, C.; Zhao, W.; Lu, X. L.; O'Brien, D. J.; Li, Y.; Cao, Z.; Suhr, J. Nano Lett. 2013, 13, 5514. doi: 10.1021/nl403109g  doi: 10.1021/nl403109g

    71. [71]

      Hough, L. A.; Islam, M. F.; Hammouda, B.; Yodh, A. G.; Heiney, P. A. Nano Lett. 2006, 6, 313. doi: 10.1021/nl051871f  doi: 10.1021/nl051871f

    72. [72]

      Kim, K. H.; Oh, Y.; Islam, M. F. Adv. Funct. Mater. 2013, 23, 377. doi: 10.1002/adfm.201201055  doi: 10.1002/adfm.201201055

    73. [73]

      Du, R.; Wu, J.; Chen, L.; Huang, H.; Zhang, X.; Zhang, J. Small 2014, 10, 1387. doi: 10.1002/smll.201302649  doi: 10.1002/smll.201302649

    74. [74]

      Wei, F.; Zhang, Q.; Qian, W. Z.; Yu, H.; Wang, Y.; Luo, G. H.; Wang, D. Z. Powder Technol. 2008, 183, 10. doi: 10.1016/j.powtec.2007.11.025  doi: 10.1016/j.powtec.2007.11.025

    75. [75]

      Jia, X.; Wei, F. Topics Curr. Chem. 2017, 375, 18. doi: 10.1007/s41061-017-0102-2  doi: 10.1007/s41061-017-0102-2

    76. [76]

      He, M.; Magnin, Y.; Amara, H.; Jiang, H.; Cui, H.; Fossard, F.; Castan, A.; Kauppinen, E.; Loiseau, A.; Bichara, C. Carbon 2017, 113, 231. doi: 10.1016/j.carbon.2016.11.057  doi: 10.1016/j.carbon.2016.11.057

    77. [77]

      Magnin, Y.; Amara, H.; Ducastelle, F.; Loiseau, A.; Bichara, C. Science 2018, 362, 212. doi: 10.1126/science.aat6228  doi: 10.1126/science.aat6228

    78. [78]

      Hussain, A.; Liao, Y.; Zhang, Q.; Ding, E. X.; Laiho, P.; Ahmad, S.; Wei, N.; Tian, Y.; Jiang, H.; Kauppinen, E. I. Nanoscale 2018, 10, 9752. doi: 10.1039/C8NR00716K  doi: 10.1039/C8NR00716K

    79. [79]

      Wilder, J. W.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C. Nature 1998, 391, 59. doi: 10.1038/34139  doi: 10.1038/34139

    80. [80]

      Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S. Nature 2004, 430, 870. doi: 10.1038/nature02817  doi: 10.1038/nature02817

    81. [81]

      Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Science 2002, 298, 2361. doi: 10.1126/science.1078727  doi: 10.1126/science.1078727

    82. [82]

      Araujo, P. T.; Jorio, A. Phys. Status Solidi B 2008, 245, 2201. doi: 10.1002/pssb.200879625  doi: 10.1002/pssb.200879625

    83. [83]

      Joh, D. Y.; Herman, L. H.; Ju, S. Y.; Kinder, J.; Segal, M. A.; Johnson, J. N.; Chan, G.; Park, J. Nano Lett. 2010, 1, 1. doi: 10.1021/nl1012568  doi: 10.1021/nl1012568

    84. [84]

      Tans, S. J.; Verschueren, A. R.; Dekker, C. Nature 1998, 393, 49. doi: 10.1038/29954  doi: 10.1038/29954

    85. [85]

      Appenzeller, J.; Lin, Y. M.; Knoch, J.; Avouris, P. Phys. Rev. Lett. 2004, 93, 196805. doi: 10.1103/PhysRevLett.93.196805  doi: 10.1103/PhysRevLett.93.196805

    86. [86]

      Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Nature 2013, 501, 526. doi: 10.1038/nature12502  doi: 10.1038/nature12502

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Simin Fang Hong Wu Sizhe Sheng Lingling Li Yuxi Wang Hongchun Li Jun Jiang . The Food Kingdom Lecture Series: The Science behind Color. University Chemistry, 2024, 39(9): 177-182. doi: 10.12461/PKU.DXHX202402012

    5. [5]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    6. [6]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    7. [7]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    8. [8]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    9. [9]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    10. [10]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    11. [11]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    12. [12]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    13. [13]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    14. [14]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(21)
  • Abstract views(624)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return