Citation: Liu Dongmei, Chen Xiumei, Yuan Ze, Lu Min, Yin Lisha, Xie Xiaoji, Huang Ling. Coating and Transforming the Y(OH)CO3 Shell on Upconversion Nanoparticles[J]. Acta Physico-Chimica Sinica, ;2020, 36(7): 190701. doi: 10.3866/PKU.WHXB201907011 shu

Coating and Transforming the Y(OH)CO3 Shell on Upconversion Nanoparticles

  • Corresponding author: Yin Lisha, iamlsyin@njtech.edu.cn Xie Xiaoji, iamxjxie@njtech.edu.cn
  • Received Date: 1 July 2019
    Revised Date: 25 July 2019
    Accepted Date: 26 July 2019
    Available Online: 2 August 2019

    Fund Project: The project was supported by the National Key Research and Development Program of China (2017YFB1002900) and the Natural Science Foundation of Jiangsu Province, China (BK20160987)the National Key Research and Development Program of China 2017YFB1002900the Natural Science Foundation of Jiangsu Province, China BK20160987

  • Along with the promising applications of lanthanide doped upconversion nanomaterials in diverse fields such as biology, anti-counterfeiting, and lasering, the demand for multifunctional upconversion nanomaterials is increasing. One effective means of obtaining these nanomaterials is to fabricate upconversion nanomaterial-based heterostructures, which may provide superior properties as compared to the sum of the parts. However, obtaining heterostructured upconversion nanomaterials remains challenging mainly because of the crystal lattice mismatch between upconversion nanomaterials and other materials. Typically used strategies for synthesizing upconversion nanomaterial-based heterostructures are applicable only to limited types of materials. Alternatively, transformation of the intermediate layer is a promising strategy used to obtain these heterostructures. Nevertheless, this method remains in its infancy and, to date, only a few intermediate layers have been developed. New types of intermediate layers are therefore highly desirable. In this study, we show that amorphous Y(OH)CO3 can be a promising candidate as an intermediate layer for fabricating upconversion nanoparticle-based heterostructures. As a proof-of-concept experiment, ligand-free NaGdF4:Yb/Tm upconversion nanoparticles were first prepared as core nanoparticles. The Y(OH)CO3 shell was then directly coated on the NaGdF4:Yb/Tm upconversion nanoparticles in an aqueous solution using urea and Y(NO3)3, by a homogeneous precipitation approach. The thickness of the resulting Y(OH)CO3 shell could be tuned by adjusting the amounts of either urea or Y(NO3)3. The as-coated Y(OH)CO3 shell could be easily converted to YOF by heating at 300 ℃, yielding NaGdF4:Yb/Tm@YOF core-shell heterostructured nanoparticles. In addition, we found that the NaGdF4 core could be transformed to lanthanide oxide fluoride if the NaGdF4:Yb/Tm@Y(OH)CO3 core-shell nanoparticles were heated at 350 ℃. We also observed that treating the NaGdF4:Yb/Tm@Y(OH)CO3 core-shell nanoparticles at even higher temperatures (e.g., 400 ℃) produced aggregations of nanoparticles without regular morphologies. The transformation of the shell can be attributed to the decomposition of Y(OH)CO3 and reactions between the Y(OH)CO3 shell and NaGdF4 core. Meanwhile, the transformation of the NaGdF4 core at relatively high temperatures could be primarily due to the reactions between Y(OH)CO3 and NaGdF4. Notably, in this study, the core-shell structured nanoparticles, with either a Y(OH)CO3 or YOF shell, maintained the photon upconversion properties of NaGdF4:Yb/Tm upconversion nanoparticles. In addition, the method used here could be extended to the coating of other shells such as Tb(OH)CO3 and Yb(OH)CO3 on upconversion nanoparticles. Moreover, the NaGdF4:Yb/Tm@Y(OH)CO3 core-shell nanoparticles could be transformed to other nanoparticles with novel structures such as yolk-shell nanoparticles. These results can pave the way for preparing upconversion nanoparticle-based heterostructures and multifunctional composites, thus promoting new applications of upconversion nanoparticles.
  • 加载中
    1. [1]

      Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Chem. Rev. 2015, 115, 10725. doi: 10.1021/acs.chemrev.5b00091  doi: 10.1021/acs.chemrev.5b00091

    2. [2]

      Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L.; Wang, X.; Tao, Y.; Huang, A. J. Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H.; et al. Science 2018, 359, 679. doi: 10.1126/science.aaq1144  doi: 10.1126/science.aaq1144

    3. [3]

      Feng, Y.; Yang, C.; Fang, W.; Huang, B.; Shao, Q.; Huang, X. Nano Energy 2019, 58, 234. doi: 10.1016/j.nanoen.2019.01.036  doi: 10.1016/j.nanoen.2019.01.036

    4. [4]

      Bu, L.; Zhang, N.; Guo, S.; Zhang, X.; Li, J.; Yao, J.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D.; et al. Science 2016, 354, 1410. doi: 10.1126/science.aah6133  doi: 10.1126/science.aah6133

    5. [5]

      Yuan, Z.; Zhang, L.; Li, S.; Zhang, W.; Lu, M.; Pan, Y.; Xie, X.; Huang, L.; Huang, W. J. Am. Chem. Soc. 2018, 140, 15507. doi: 10.1021/jacs.8b10122  doi: 10.1021/jacs.8b10122

    6. [6]

      Fan, Y.; Liu, L.; Zhang, F. Nano Today 2019, 25, 68. doi: 10.1016/j.nantod.2019.02.009  doi: 10.1016/j.nantod.2019.02.009

    7. [7]

      Chaudhuri, G. R.; Paria, S. Chem. Rev. 2012, 112, 2373. doi: 10.1021/cr100449n  doi: 10.1021/cr100449n

    8. [8]

      Hudry, D.; Howard, I. A.; Popescu, R.; Gerthsen, D.; Richards, B. S. Adv. Mater. 2019, 31, 1900623. doi: 10.1002/adma.201900623  doi: 10.1002/adma.201900623

    9. [9]

      Chen, G.; Ågren, H.; Ohulchanskyy, T. Y.; Prasad, P. N. Chem. Soc. Rev. 2015, 44, 1680. doi: 10.1039/C4CS00170B  doi: 10.1039/C4CS00170B

    10. [10]

      Chen, X.; Peng, D.; Ju, Q.; Wang, F. Chem. Soc. Rev. 2015, 44, 1318. doi: 10.1039/C4CS00151F  doi: 10.1039/C4CS00151F

    11. [11]

      Yu, S.; Tu, D.; Lian, W.; Xu, J.; Chen, X. Sci. China Mater. 2019, 62, 1071. doi: 10.1007/s40843-019-9414-4  doi: 10.1007/s40843-019-9414-4

    12. [12]

      Zhou, B.; Shi, B.; Jin, D.; Liu, X. Nat. Nanotechnol. 2015, 10, 924. doi: 10.1038/nnano.2015.251  doi: 10.1038/nnano.2015.251

    13. [13]

      Yang, D.; Ma, P.; Hou, Z.; Cheng, Z.; Li, C.; Lin, J. Chem. Soc. Rev. 2015, 44, 1416. doi: 10.1039/C4CS00155A  doi: 10.1039/C4CS00155A

    14. [14]

      Lyu, L.; Cheong, H.; Ai, X.; Zhang, W.; Li, J.; Yang, H. H.; Lin, J.; Xing, B. NPG Asia Mater. 2018, 10, 685. doi: 10.1038/s41427-018-0065-y  doi: 10.1038/s41427-018-0065-y

    15. [15]

      Zhang, Z.; Shikha, S.; Liu, J.; Zhang, J.; Mei, Q.; Zhang, Y. Anal. Chem. 2019, 91, 548. doi: 10.1021/acs.analchem.8b04049  doi: 10.1021/acs.analchem.8b04049

    16. [16]

      Hirsh, D. A.; Johnson, N. J. J.; van Veggel, F. C. J. M.; Schurko, R. W. Chem. Mater. 2015, 27, 6495. doi: 10.1021/acs.chemmater.5b01986  doi: 10.1021/acs.chemmater.5b01986

    17. [17]

      Bai, H. R.; Fan, H. H.; Zhang, X. B.; Chen, Z.; Tan, W. H. Acta Phys. -Chim. Sin. 2018, 34, 348.  doi: 10.3866/PKU.WHXB201708311

    18. [18]

      Arboleda, C.; He, S.; Stubelius, A.; Johnson, N. J. J.; Almutairi, A. Chem. Mater. 2019, 31, 3103. doi: 10.1021/acs.chemmater.8b04057  doi: 10.1021/acs.chemmater.8b04057

    19. [19]

      Zhao, H.; Xia, J.; Yin, D.; Luo, M.; Yan, C.; Du, Y. Coord. Chem. Rev. 2019, 390, 32. doi: 10.1016/j.ccr.2019.03.011  doi: 10.1016/j.ccr.2019.03.011

    20. [20]

      Cui, C.; Tou, M.; Li, M.; Luo, Z.; Xiao, L.; Bai, S.; Li, Z. Inorg. Chem. 2017, 56, 2328. doi: 10.1021/acs.inorgchem.6b03079  doi: 10.1021/acs.inorgchem.6b03079

    21. [21]

      Tang, Y.; Di, W.; Zhai, X.; Yang, R.; Qin, W. ACS Catal. 2013, 3, 405. doi: 10.1021/cs300808r  doi: 10.1021/cs300808r

    22. [22]

      Li, Y.; Di, Z.; Gao, J.; Cheng, P.; Di, C.; Zhang, G.; Liu, B.; Shi, X.; Sun, L. D.; Li, L.; et al. J. Am. Chem. Soc. 2017, 139, 13804. doi: 10.1021/jacs.7b07302  doi: 10.1021/jacs.7b07302

    23. [23]

      Xu, J.; Xu, L.; Wang, C.; Yang, R.; Zhuang, Q.; Han, X.; Dong, Z.; Zhu, W.; Peng, R.; Liu, Z. ACS Nano 2017, 11, 4463. doi: 10.1021/acsnano.7b00715  doi: 10.1021/acsnano.7b00715

    24. [24]

      Feng, L.; He, F.; Dai, Y.; Gai, S.; Zhong, C.; Li, C.; Yang, P. Biomater. Sci. 2017, 5, 2456. doi: 10.1039/C7BM00798A  doi: 10.1039/C7BM00798A

    25. [25]

      Chen, J.; Zhang, D.; Zou, Y.; Wang, Z.; Hao, M.; Zheng, M.; Xue, X.; Pan, X.; Lu, Y.; Wang, J.; et al. J. Mater. Chem. B 2018, 6, 7862. doi: 10.1039/C8TB02213E  doi: 10.1039/C8TB02213E

    26. [26]

      Dong, H.; Sun, L. D.; Li, L. D.; Si, R.; Liu, R.; Yan, C. H. J. Am. Chem. Soc. 2017, 139, 18492. doi: 10.1021/jacs.7b11836  doi: 10.1021/jacs.7b11836

    27. [27]

      Su, Q.; Feng, W.; Yang, D.; Li, F. Acc. Chem. Res. 2017, 50, 32. doi: 10.1021/acs.accounts.6b00382  doi: 10.1021/acs.accounts.6b00382

    28. [28]

      Zuo, J.; Sun, D.; Tu, L.; Wu, Y.; Cao, Y.; Xue, B.; Zhang, Y.; Chang, Y.; Liu, X.; Kong, X.; et al. Angew. Chem. Int. Ed. 2018, 57, 3054. doi: 10.1002/anie.201711606  doi: 10.1002/anie.201711606

    29. [29]

      Lay, A.; Siefe, C.; Fischer, S.; Mehlenbacher, R. D.; Ke, F.; Mao, W. L.; Alivisatos, A. P.; Goodman, M. B.; Dionne, J. A. Nano Lett. 2018, 18, 4454. doi: 10.1021/acs.nanolett.8b01535  doi: 10.1021/acs.nanolett.8b01535

    30. [30]

      Yang, G.; Yang, D.; Yang, P.; Lv, R.; Li, C.; Zhong, C.; He, F.; Gai, S.; Lin, J. Chem. Mater. 2015, 27, 7957. doi: 10.1021/acs.chemmater.5b03136  doi: 10.1021/acs.chemmater.5b03136

    31. [31]

      Tou, M.; Luo, Z.; Bai, S.; Liu, F.; Chai, Q.; Li, S.; Li, Z. Mater. Sci. Eng. C 2017, 70, 1141. doi: 10.1016/j.msec.2016.03.038  doi: 10.1016/j.msec.2016.03.038

    32. [32]

      Zhang, F.; Braun, G. B.; Pallaoro, A.; Zhang, Y.; Shi, Y.; Cui, D.; Moskovits, M.; Zhao, D.; Stucky, G. D. Nano Lett. 2012, 12, 61. doi: 10.1021/nl202949y  doi: 10.1021/nl202949y

    33. [33]

      Wang, W.; Zhao, M.; Zhang, C.; Qian, H. Chem. Rec. 2019, 19, doi: 10.1002/tcr.201900006  doi: 10.1002/tcr.201900006

    34. [34]

      Chen, G.; Qiu, H.; Prasad, P. N.; Chen, X. Chem. Rev. 2014, 114, 5161. doi: 10.1021/cr400425h  doi: 10.1021/cr400425h

    35. [35]

      Liu, K. C.; Zhang, Z. Y.; Shan, C. X.; Feng, Z. Q.; Li, J. S.; Song, C. L.; Bao, Y. N.; Qi, X. H.; Dong, B. Light Sci. Appl. 2016, 5, e16136.doi: 10.1038/lsa.2016.136  doi: 10.1038/lsa.2016.136

    36. [36]

      Wang, Y.; Yang, G.; Wang, Y.; Zhao, Y.; Jiang, H.; Han, Y.; Yang, P. Nanoscale 2017, 9, 4759. doi: 10.1039/C6NR09030C  doi: 10.1039/C6NR09030C

    37. [37]

      Wang, F.; Liu, X. Acc. Chem. Res. 2014, 47, 1378. doi: 10.1021/ar5000067  doi: 10.1021/ar5000067

    38. [38]

      Cheng, X.; Pan, Y.; Yuan, Z.; Wang, X.; Su, W.; Yin, L.; Xie, X.; Huang, L. Adv. Funct. Mater. 2018, 28, 1800208. doi: 10.1002/adfm.201800208  doi: 10.1002/adfm.201800208

    39. [39]

      Yan, C.; Dadvand, A.; Rosei, F.; Perepichka, D. F. J. Am. Chem. Soc. 2010, 132, 8868. doi: 10.1021/ja103743t  doi: 10.1021/ja103743t

    40. [40]

      Zhang, F.; Wang, W.; Cong, H.; Luo, L.; Zha, Z.; Qian, H. Part. Part. Syst. Charact. 2017, 34, 1600222. doi: 10.1002/ppsc.201600222  doi: 10.1002/ppsc.201600222

    41. [41]

      Ling, X.; Shi, R.; Zhang, J.; Liu, D.; Weng, M.; Zhang, C.; Lu, M.; Xie, X.; Huang, L.; Huang, W. ACS Sens. 2018, 3, 1683. doi: 10.1021/acssensors.8b00368  doi: 10.1021/acssensors.8b00368

    42. [42]

      Xu, Z.; Ma, P.; Li, C.; Hou, Z.; Zhai, X.; Huang, S.; Lin, J. Biomaterials 2011, 32, 4161. doi: 10.1016/j.biomaterials.2011.02.026  doi: 10.1016/j.biomaterials.2011.02.026

    43. [43]

      Lv, C.; Di, W.; Liu, Z.; Zheng, K.; Qin, W. Dalton Trans. 2014, 43, 3681. doi: 10.1039/c3dt53213e  doi: 10.1039/c3dt53213e

  • 加载中
    1. [1]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    2. [2]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    3. [3]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2023.100393

    4. [4]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    5. [5]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    6. [6]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    7. [7]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    8. [8]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    9. [9]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    10. [10]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    11. [11]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    12. [12]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    13. [13]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    14. [14]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    15. [15]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    16. [16]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    17. [17]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    18. [18]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    20. [20]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

Metrics
  • PDF Downloads(8)
  • Abstract views(569)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return