Citation: Liu Sirui, Quan Hui, Tian Hao, Zhou Rui, Yang Lijiang, Gao Yiqin. 1D Sequence Based 3D Chromatin Phase Separation: Forces, Processes, and Functions[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190701. doi: 10.3866/PKU.WHXB201907010 shu

1D Sequence Based 3D Chromatin Phase Separation: Forces, Processes, and Functions

  • Corresponding author: Gao Yiqin, gaoyq@pku.edu.cn
  • Received Date: 1 July 2019
    Revised Date: 30 August 2019
    Accepted Date: 30 August 2019
    Available Online: 6 January 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21573006, 21821004, 21873007) and the National Key R & D Program of China (2017YFA0204702)the National Natural Science Foundation of China 21573006the National Natural Science Foundation of China 21821004the National Natural Science Foundation of China 21873007the National Key R & D Program of China 2017YFA0204702

  • The high-order chromatin structure plays a non-negligible role in gene regulation. The formation of chromatin structure and its regulatory mechanisms have been studied intensely. To analyze the high-order chromatin structures, both computational and physical models have been developed, including polymer physics models and molecular crowding models. Over the past few years, the phase separation theory has drawn a lot of research interest, and the effect of heterochromatin and transcriptional factors (TFs) on phase separation has attracted much attention. Existing phase separation models for chromatin focus on multivalent molecules or on epigenetic properties and does not adequately explore the dependence of chromatin structure organization and remodeling on DNA sequence. Genomes of a number of species are highly uneven at multiple scales. It can be divided purely based on sequential properties into two sequentially, epigenetically, and transcriptionally distinct regions, namely forest and prairie domains, demonstrating the intrinsic mosaicity in genome. Compared to prairies, forest domains are on average more gene-rich, accessible, transcriptionally active, higher in open-sea methylation level, and are enriched in RNA polymerase Ⅱ binding sites as well as active histone modifications. Moreover, different structural properties of these two types of sequential domains suggest that sequence may play a role in topologically associated domain (TAD) and compartment formation. The chromatin sequence-structural relationship and functional regulation in different cell types with almost identical sequences are discussed in this review. We try to describe the evolution of chromatin structure in multiple biological processes including early development, differentiation, and senescence in a unified framework. The forest and prairie domains with high and low CGI densities, respectively, show enhanced segregation from each other in development, differentiation, and senescence. Meanwhile the multiscale forest-prairie spatial intermingling is cell-type specific and increases upon differentiation, thereby helping to define cell identity. The consistency between chromatin structure and open-sea methylation level suggests that the latter is a promising indicator of structural segregation, deepening our understanding of epigenetic-structure relation. We further discuss the physical driving forces of phase separation as well as their biological implications. The phase separation of the uneven 1D sequence in 3D space serves as a potential driving force, and together with cell type specific epigenetic marks and transcription factors shapes the chromatin structure in different cell types. Transcriptional complex along with dynamic TFs and epigenetic marks may account for local structure formation and separation, regulating chromatin structure at a smaller spatial-temporal scale based on their sequential environment. Finally, role of physical factors like temperature and sequence unevenness in affecting chromatin structure have also been discussed.
  • 加载中
    1. [1]

      Helmut, S. J. Phys. Condens. Matter 2003, 15, R699. doi: 10.1088/0953-8984/27/6/060301  doi: 10.1088/0953-8984/27/6/060301

    2. [2]

      Cortini, R.; Barbi, M.; Care, B. R.; Lavelle, C.; Lesne, A.; Mozziconacci, J.; Victor, J. M. Rev. Mod. Phys. 2016, 88, 025002. doi: 10.1103/Revmodphys.88.025002  doi: 10.1103/Revmodphys.88.025002

    3. [3]

      Thoma, F.; Koller, T.; Klug, A. J. Cell Biol. 1979, 83, 403. doi: 10.1083/jcb.83.2.403  doi: 10.1083/jcb.83.2.403

    4. [4]

      Finch, J. T.; Klug, A. Proc. Natl. Acad. Sci. U. S. A. 1976, 73, 1897. doi: 10.1073/pnas.73.6.1897  doi: 10.1073/pnas.73.6.1897

    5. [5]

      Cremer, T.; Cremer, M. Cold Spring Harb. Perspect. Biol. 2010, 2, a003889. doi: 10.1101/cshperspect.a003889  doi: 10.1101/cshperspect.a003889

    6. [6]

      Lieberman-Aiden, E.; van Berkum, N. L.; Williams, L.; Imakaev, M.; Ragoczy, T.; Telling, A.; Amit, I.; Lajoie, B. R.; Sabo, P. J.; Dorschner, M. O.; et al. Science 2009, 326, 289. doi: 10.1126/science.1181369  doi: 10.1126/science.1181369

    7. [7]

      Fullwood, M. J.; Liu, M. H.; Pan, Y. F.; Liu, J.; Xu, H.; Mohamed, Y. B.; Orlov, Y. L.; Velkov, S.; Ho, A.; Mei, P. H.; et al. Nature 2009, 462, 58. doi: 10.1038/nature08497  doi: 10.1038/nature08497

    8. [8]

      Dixon, J. R.; Selvaraj, S.; Yue, F.; Kim, A.; Li, Y.; Shen, Y.; Hu, M.; Liu, J. S.; Ren, B. Nature 2012, 485, 376. doi: 10.1038/nature11082  doi: 10.1038/nature11082

    9. [9]

      Nora, E. P.; Lajoie, B. R.; Schulz, E. G.; Giorgetti, L.; Okamoto, I.; Servant, N.; Piolot, T.; van Berkum, N. L.; Meisig, J.; Sedat, J.; et al. Nature 2012, 485, 381. doi: 10.1038/nature11049  doi: 10.1038/nature11049

    10. [10]

      Sexton, T.; Yaffe, E.; Kenigsberg, E.; Bantignies, F.; Leblanc, B.; Hoichman, M.; Parrinello, H.; Tanay, A.; Cavalli, G. Cell 2012, 148, 458. doi: 10.1016/j.cell.2012.01.010  doi: 10.1016/j.cell.2012.01.010

    11. [11]

      Rao, S. S.; Huntley, M. H.; Durand, N. C.; Stamenova, E. K.; Bochkov, I. D.; Robinson, J. T.; Sanborn, A. L.; Machol, I.; Omer, A. D.; Lander, E. S.; et al. Cell 2014, 159, 1665. doi: 10.1016/j.cell.2014.11.021  doi: 10.1016/j.cell.2014.11.021

    12. [12]

      Dixon, J. R.; Jung, I.; Selvaraj, S.; Shen, Y.; Antosiewicz-Bourget, J. E.; Lee, A. Y.; Ye, Z.; Kim, A.; Rajagopal, N.; Xie, W.; et al. Nature 2015, 518, 331. doi: 10.1038/nature14222  doi: 10.1038/nature14222

    13. [13]

      Schmitt, A. D.; Hu, M.; Jung, I.; Xu, Z.; Qiu, Y.; Tan, C. L.; Li, Y.; Lin, S.; Lin, Y.; Barr, C. L.; et al. Cell Rep. 2016, 17, 2042. doi: 10.1016/j.celrep.2016.10.061  doi: 10.1016/j.celrep.2016.10.061

    14. [14]

      Boettiger, A. N.; Bintu, B.; Moffitt, J. R.; Wang, S.; Beliveau, B. J.; Fudenberg, G.; Imakaev, M.; Mirny, L. A.; Wu, C. T.; Zhuang, X. Nature 2016, 529, 418. doi: 10.1038/nature16496  doi: 10.1038/nature16496

    15. [15]

      Zuin, J.; Dixon, J. R.; van der Reijden, M. I.; Ye, Z.; Kolovos, P.; Brouwer, R. W.; van de Corput, M. P.; van de Werken, H. J.; Knoch, T. A.; van IJcken, W. F.; et al. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 996. doi: 10.1073/pnas.1317788111  doi: 10.1073/pnas.1317788111

    16. [16]

      Jabbari, K.; Bernardi, G. PloS One 2017, 12, e0168023. doi: 10.1371/journal.pone.0168023  doi: 10.1371/journal.pone.0168023

    17. [17]

      Lesne, A.; Riposo, J.; Roger, P.; Cournac, A.; Mozziconacci, J. Nat. Methods 2014, 11, 1141. doi: 10.1038/Nmeth.3104  doi: 10.1038/Nmeth.3104

    18. [18]

      Huet, S.; Lavelle, C.; Ranchon, H.; Carrivain, P.; Victor, J. M.; Bancaud, A. In.t Rev. Cell. Mol. Biol. 2014, 307, 443. doi: 10.1016/B978-0-12-800046-5.00013-8  doi: 10.1016/B978-0-12-800046-5.00013-8

    19. [19]

      Wong, H.; Marie-Nelly, H.; Herbert, S.; Carrivain, P.; Blanc, H.; Koszul, R.; Fabre, E.; Zimmer, C. Curr. Biol. 2012, 22, 1881. doi: 10.1016/j.cub.2012.07.069  doi: 10.1016/j.cub.2012.07.069

    20. [20]

      Jost, D.; Carrivain, P.; Cavalli, G.; Vaillant, C. Nucleic Acids Res. 2014, 42, 9553. doi: 10.1093/nar/gku698  doi: 10.1093/nar/gku698

    21. [21]

      Filion, G. J.; van Bemmel, J. G.; Braunschweig, U.; Talhout, W.; Kind, J.; Ward, L. D.; Brugman, W.; de Castro, I. J.; Kerkhoven, R. M.; Bussemaker, H. J.; et al. Cell 2010, 143, 212. doi: 10.1016/j.cell.2010.09.009  doi: 10.1016/j.cell.2010.09.009

    22. [22]

      Zhu, Y.; Chen, Z.; Zhang, K.; Wang, M. C.; Medovoy, D.; Whitaker, J. W.; Ding, B.; Li, N.; Zheng, L. N.; Wang, W. Nat. Commun. 2016, 7, 10812. doi: 10.1038/Ncomms10812  doi: 10.1038/Ncomms10812

    23. [23]

      Huang, J. L.; Marco, E.; Pinello, L.; Yuan, G. C. Genome Biol. 2015, 16, 162. doi: 10.1186/S13059-015-0740-Z  doi: 10.1186/S13059-015-0740-Z

    24. [24]

      Fortin, J. P.; Hansen, K. D. Genome Biol. 2015, 16, 180. doi: 10.1186/s13059-015-0741-y  doi: 10.1186/s13059-015-0741-y

    25. [25]

      Mirny, L. A. Chromosome Res. 2011, 19, 37. doi: 10.1007/s10577-010-9177-0  doi: 10.1007/s10577-010-9177-0

    26. [26]

      Scolari, V. F.; Sclavi, B.; Cosentino Lagomarsino, M. Front. Microbiol. 2015, 6, 424. doi: 10.3389/fmicb.2015.00424  doi: 10.3389/fmicb.2015.00424

    27. [27]

      Falk, M.; Feodorova, Y.; Naumova, N.; Imakaev, M.; Lajoie, B. R.; Leonhardt, H.; Joffe, B.; Dekker, J.; Fudenberg, G.; Solovei, I.; et al. Nature 2019, 570, 395. doi: 10.1038/s41586-019-1275-3  doi: 10.1038/s41586-019-1275-3

    28. [28]

      Di Pierro, M.; Zhang, B.; Aiden, E. L.; Wolynes, P. G.; Onuchic, J. N. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 12168. doi: 10.1073/pnas.1613607113  doi: 10.1073/pnas.1613607113

    29. [29]

      Zhang, B.; Wolynes, P. G. Phys. Rev. Lett. 2016, 116, 248101. doi: 10.1103/PhysRevLett.116.248101  doi: 10.1103/PhysRevLett.116.248101

    30. [30]

      Xie, W. J.; Meng, L.; Liu, S.; Zhang, L.; Cai, X.; Gao, Y. Q. Sci. Rep. 2017, 7, 2818. doi: 10.1038/s41598-017-02923-6  doi: 10.1038/s41598-017-02923-6

    31. [31]

      Ellis, R. J. Trends. Biochem. Sci. 2001, 26, 597. doi: 10.1016/S0968-0004(01)01938-7  doi: 10.1016/S0968-0004(01)01938-7

    32. [32]

      Hyman, A. A.; Brangwynne, C. P. Dev. Cell 2011, 21, 14. doi: 10.1016/j.devcel.2011.06.013  doi: 10.1016/j.devcel.2011.06.013

    33. [33]

      Rivas, G.; Minton, A. P. Trends. Biochem. Sci. 2016, 41, 970. doi: 10.1016/j.tibs.2016.08.013  doi: 10.1016/j.tibs.2016.08.013

    34. [34]

      Zimmerman, S. B.; Minton, A. P. Annu. Rev. Biophys. Biom. Struct. 1993, 22, 27. doi: 10.1146/annurev.bb.22.060193.000331  doi: 10.1146/annurev.bb.22.060193.000331

    35. [35]

      Schnell, S.; Turner, T. E. Prog. Biophys. Mol. Biol. 2004, 85, 235. doi: 10.1016/j.pbiomolbio.2004.01.012  doi: 10.1016/j.pbiomolbio.2004.01.012

    36. [36]

      Wang, J.; Yang, L.; Zhu, T.; Wang, S.; Chen, Z. Acta Phys. -Chim. Sin. 2016, 32, 2027.  doi: 10.3866/PKU.WHXB201605033

    37. [37]

      Zhang, Y.; Tang, Q.; Cao, H.; Zheng, X. Acta Phys. -Chim. Sin. 2013, 29, 1785.  doi: 10.3866/PKU.WHXB201305271

    38. [38]

      Zhou, H. X.; Rivas, G.; Minton, A. P. Annu. Rev. Biophys. 2008, 37, 375. doi: 10.1146/annurev.biophys.37.032807.125817  doi: 10.1146/annurev.biophys.37.032807.125817

    39. [39]

      Zhou, B. R.; Zhou, Z.; Hu, Q. L.; Chen, J.; Liang, Y. Biochim. Biophys. Acta 2008, 1784, 472. doi: 10.1016/j.bbapap.2008.01.004  doi: 10.1016/j.bbapap.2008.01.004

    40. [40]

      Monterroso, B.; Reija, B.; Jiménez, M.; Zorrilla, S.; Rivas, G. PloS One 2016, 11, e0149060. doi: 10.1371/journal.pone.0149060  doi: 10.1371/journal.pone.0149060

    41. [41]

      Du, F.; Zhou, Z.; Mo, Z. Y.; Shi, J. Z.; Chen, J.; Liang, Y. J. Mol. Biol. 2006, 364, 469. doi: 10.1016/j.jmb.2006.09.018  doi: 10.1016/j.jmb.2006.09.018

    42. [42]

      Bancaud, A.; Huet, S.; Daigle, N.; Mozziconacci, J.; Beaudouin, J.; Ellenberg, J. EMBO J. 2009, 28, 3785. doi: 10.1038/emboj.2009.340  doi: 10.1038/emboj.2009.340

    43. [43]

      Kim, J. S.; Backman, V.; Szleifer, I. Phys. Rev. Lett. 2011, 106, 168102. doi: 10.1103/PhysRevLett.106.168102  doi: 10.1103/PhysRevLett.106.168102

    44. [44]

      Wu, F.; Swain, P.; Kuijpers, L.; Zheng, X.; Felter, K.; Guurink, M.; Chaudhuri, D.; Mulder, B.; Dekker, C. bioRxiv 2018, 348052. doi: 10.1101/348052  doi: 10.1101/348052

    45. [45]

      Walter, A.; Chapuis, C.; Huet, S.; Ellenberg, J. J. Struct. Biol. 2013, 184, 445. doi: 10.1016/j.jsb.2013.10.004  doi: 10.1016/j.jsb.2013.10.004

    46. [46]

      Marenduzzo, D.; Micheletti, C.; Cook, P. R. Biophys. J. 2006, 90, 3712. doi: 10.1529/biophysj.105.077685  doi: 10.1529/biophysj.105.077685

    47. [47]

      Junier, I.; Martin, O.; Kepes, F. PLoS Comput. Biol. 2010, 6, e1000678. doi: 10.1371/journal.pcbi.1000678  doi: 10.1371/journal.pcbi.1000678

    48. [48]

      Barbieri, M.; Chotalia, M.; Fraser, J.; Lavitas, L. M.; Dostie, J.; Pombo, A.; Nicodemi, M. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 16173. doi: 10.1073/pnas.1204799109  doi: 10.1073/pnas.1204799109

    49. [49]

      Scolari, V. F.; Cosentino Lagomarsino, M. Soft Matt. 2015, 11, 1677. doi: 10.1039/c4sm02434f  doi: 10.1039/c4sm02434f

    50. [50]

      Larson, A. G.; Elnatan, D.; Keenen, M. M.; Trnka, M. J.; Johnston, J. B.; Burlingame, A. L.; Agard, D. A.; Redding, S.; Narlikar, G. J. Nature 2017, 547, 236. doi: 10.1038/nature22822  doi: 10.1038/nature22822

    51. [51]

      Strom, A. R.; Emelyanov, A. V.; Mir, M.; Fyodorov, D. V.; Darzacq, X.; Karpen, G. H. Nature 2017, 547, 241. doi: 10.1038/nature22989  doi: 10.1038/nature22989

    52. [52]

      Boija, A.; Klein, I. A.; Sabari, B. R.; Dall'Agnese, A.; Coffey, E. L.; Zamudio, A. V.; Li, C. H.; Shrinivas, K.; Manteiga, J. C.; Hannett, N. M.; et al. Cell 2018, 175, 1842. doi: 10.1016/j.cell.2018.10.042  doi: 10.1016/j.cell.2018.10.042

    53. [53]

      Hnisz, D.; Shrinivas, K.; Young, R. A.; Chakraborty, A. K.; Sharp, P. A. Cell 2017, 169, 13. doi: 10.1016/j.cell.2017.02.007  doi: 10.1016/j.cell.2017.02.007

    54. [54]

      Erdel, F.; Rippe, K. Biophys. J. 2018, 114, 2262. doi: 10.1016/j.bpj.2018.03.011  doi: 10.1016/j.bpj.2018.03.011

    55. [55]

      Alipour, E.; Marko, J. F. Nucleic Acids Res. 2012, 40, 11202. doi: 10.1093/nar/gks925  doi: 10.1093/nar/gks925

    56. [56]

      Sanborn, A. L.; Rao, S. S.; Huang, S. C.; Durand, N. C.; Huntley, M. H.; Jewett, A. I.; Bochkov, I. D.; Chinnappan, D.; Cutkosky, A.; Li, J.; et al. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, E6456. doi: 10.1073/pnas.1518552112  doi: 10.1073/pnas.1518552112

    57. [57]

      Fudenberg, G.; Imakaev, M.; Lu, C.; Goloborodko, A.; Abdennur, N.; Mirny, L. A. Cell Rep. 2016, 15, 2038. doi: 10.1016/j.celrep.2016.04.085  doi: 10.1016/j.celrep.2016.04.085

    58. [58]

      Weintraub, A. S.; Li, C. H.; Zamudio, A. V.; Sigova, A. A.; Hannett, N. M.; Day, D. S.; Abraham, B. J.; Cohen, M. A.; Nabet, B.; Buckley, D. L.; et al. Cell 2017, 171, 1573. doi: 10.1016/j.cell.2017.11.008  doi: 10.1016/j.cell.2017.11.008

    59. [59]

      Banani, S. F.; Lee, H. O.; Hyman, A. A.; Rosen, M. K. Nat. Rev. Mol. Cell Biol. 2017, 18, 285. doi: 10.1038/nrm.2017.7  doi: 10.1038/nrm.2017.7

    60. [60]

      Brangwynne, C. P.; Tompa, P.; Pappu, R. V. Nat. Phys. 2015, 11, 899. doi: 10.1038/nphys3532  doi: 10.1038/nphys3532

    61. [61]

      Bernardi, G.; Olofsson, B.; Filipski, J.; Zerial, M.; Salinas, J.; Cuny, G.; Meunier-Rotival, M.; Rodier, F. Science 1985, 228, 953. doi: 10.1126/science.4001930  doi: 10.1126/science.4001930

    62. [62]

      Costantini, M.; Clay, O.; Auletta, F.; Bernardi, G. Genome Res. 2006, 16, 536. doi: 10.1101/gr.4910606  doi: 10.1101/gr.4910606

    63. [63]

      Quante, T.; Bird, A. Nat. Rev. Mol. Cell Biol. 2016, 17, 257. doi: 10.1038/nrm.2015.31  doi: 10.1038/nrm.2015.31

    64. [64]

      Deaton, A. M.; Bird, A. Genes Dev. 2011, 25, 1010. doi: 10.1101/gad.2037511  doi: 10.1101/gad.2037511

    65. [65]

      Schneider, R.; Grosschedl, R. Genes Dev. 2007, 21, 3027. doi: 10.1101/gad.1604607  doi: 10.1101/gad.1604607

    66. [66]

      Clauset, A.; Shalizi, C. R.; Newman, M. E. J. Siam. Rev. 2009, 51, 661. doi: 10.1137/070710111  doi: 10.1137/070710111

    67. [67]

      Li, W. Phys. Rev. A 1991, 43, 5240. doi: 10.1103/physreva.43.5240  doi: 10.1103/physreva.43.5240

    68. [68]

      Azbel, M. Y. Phys. Rev. Lett. 1973, 31, 589. doi: 10.1103/PhysRevLett.31.589  doi: 10.1103/PhysRevLett.31.589

    69. [69]

      Azbel, M. Y.; Kantor, Y.; Verkh, L.; Vilenkin, A. Biopolymers 1982, 21, 1687. doi: 10.1002/bip.360210816  doi: 10.1002/bip.360210816

    70. [70]

      Azbel, M. Y. Phys. Rev. Lett. 1995, 75, 168. doi: 10.1103/PhysRevLett.75.168  doi: 10.1103/PhysRevLett.75.168

    71. [71]

      Grosberg, A.; Rabin, Y.; Havlin, S.; Neer, A. Europhys. Lett. 1993, 23, 373. doi: 10.1209/0295-5075/23/5/012  doi: 10.1209/0295-5075/23/5/012

    72. [72]

      Liu, S.; Zhang, L.; Quan, H.; Tian, H.; Meng, L.; Yang, L.; Feng, H.; Gao, Y. Q. Nucleic Acids Res. 2018, doi: 10.1093/nar/gky633  doi: 10.1093/nar/gky633

    73. [73]

      Du, Z.; Zheng, H.; Huang, B.; Ma, R.; Wu, J.; Zhang, X.; He, J.; Xiang, Y.; Wang, Q.; Li, Y.; et al. Nature 2017, 547, 232. doi: 10.1038/nature23263  doi: 10.1038/nature23263

    74. [74]

      Ke, Y.; Xu, Y.; Chen, X.; Feng, S.; Liu, Z.; Sun, Y.; Yao, X.; Li, F.; Zhu, W.; Gao, L.; et al. Cell 2017, 170, 367. doi: 10.1016/j.cell.2017.06.029  doi: 10.1016/j.cell.2017.06.029

    75. [75]

      Lu, F.; Liu, Y.; Inoue, A.; Suzuki, T.; Zhao, K.; Zhang, Y. Cell 2016, 165, 1375. doi: 10.1016/j.cell.2016.05.050  doi: 10.1016/j.cell.2016.05.050

    76. [76]

      Flyamer, I. M.; Gassler, J.; Imakaev, M.; Brandao, H. B.; Ulianov, S. V.; Abdennur, N.; Razin, S. V.; Mirny, L. A.; Tachibana-Konwalski, K. Nature 2017, 544, 110. doi: 10.1038/nature21711  doi: 10.1038/nature21711

    77. [77]

      Quan, H.; Liu, S.; Zhang, Y.; Xie, W.; Gao, Y. Q. bioRxiv 2019, 521401v1. doi: 10.1101/521401  doi: 10.1101/521401

    78. [78]

      Efroni, S.; Duttagupta, R.; Cheng, J.; Dehghani, H.; Hoeppner, D. J.; Dash, C.; Bazett-Jones, D. P.; Le Grice, S.; McKay, R. D.; Buetow, K. H.; et al. Cell Stem Cell 2008, 2, 437. doi: 10.1016/j.stem.2008.03.021  doi: 10.1016/j.stem.2008.03.021

    79. [79]

      Park, S. H.; Park, S. H.; Kook, M. C.; Kim, E. Y.; Park, S.; Lim, J. H. Ultrastruct. Pathol. 2004, 28, 229. doi: 10.1080/01913120490515595  doi: 10.1080/01913120490515595

    80. [80]

      Hawkins, R. D.; Hon, G. C.; Lee, L. K.; Ngo, Q.; Lister, R.; Pelizzola, M.; Edsall, L. E.; Kuan, S.; Luu, Y.; Klugman, S.; et al. Cell Stem Cell 2010, 6, 479. doi: 10.1016/j.stem.2010.03.018  doi: 10.1016/j.stem.2010.03.018

    81. [81]

      Meshorer, E.; Yellajoshula, D.; George, E.; Scambler, P. J.; Brown, D. T.; Misteli, T. Dev. Cell 2006, 10, 105. doi: 10.1016/j.devcel.2005.10.017  doi: 10.1016/j.devcel.2005.10.017

    82. [82]

      Bonev, B.; Mendelson Cohen, N.; Szabo, Q.; Fritsch, L.; Papadopoulos, G. L.; Lubling, Y.; Xu, X.; Lv, X.; Hugnot, J. P.; Tanay, A.; et al. Cell 2017, 171, 557. doi: 10.1016/j.cell.2017.09.043  doi: 10.1016/j.cell.2017.09.043

    83. [83]

      Chandra, T.; Ewels, P. A.; Schoenfelder, S.; Furlan-Magaril, M.; Wingett, S. W.; Kirschner, K.; Thuret, J. Y.; Andrews, S.; Fraser, P.; Reik, W. Cell Rep. 2015, 10, 471. doi: 10.1016/j.celrep.2014.12.055  doi: 10.1016/j.celrep.2014.12.055

    84. [84]

      Chandra, T.; Kirschner, K.; Thuret, J. Y.; Pope, B. D.; Ryba, T.; Newman, S.; Ahmed, K.; Samarajiwa, S. A.; Salama, R.; Carroll, T.; et al. Mol. Cell 2012, 47, 203. doi: 10.1016/j.molcel.2012.06.010  doi: 10.1016/j.molcel.2012.06.010

    85. [85]

      Singhal, N.; Graumann, J.; Wu, G.; Arauzo-Bravo, M. J.; Han, D. W.; Greber, B.; Gentile, L.; Mann, M.; Scholer, H. R. Cell 2010, 141, 943. doi: 10.1016/j.cell.2010.04.037  doi: 10.1016/j.cell.2010.04.037

    86. [86]

      Gaspar-Maia, A.; Alajem, A.; Polesso, F.; Sridharan, R.; Mason, M. J.; Heidersbach, A.; Ramalho-Santos, J.; McManus, M. T.; Plath, K.; Meshorer, E.; et al. Nature 2009, 460, 863. doi: 10.1038/nature08212  doi: 10.1038/nature08212

    87. [87]

      Wang, L.; Du, Y.; Ward, J. M.; Shimbo, T.; Lackford, B.; Zheng, X.; Miao, Y. L.; Zhou, B.; Han, L.; Fargo, D. C.; et al. Cell Stem Cell 2014, 14, 575. doi: 10.1016/j.stem.2014.02.013  doi: 10.1016/j.stem.2014.02.013

    88. [88]

      Barutcu, A. R.; Maass, P. G.; Lewandowski, J. P.; Weiner, C. L.; Rinn, J. L. Nat. Commun. 2018, 9, 1444. doi: 10.1038/s41467-018-03614-0  doi: 10.1038/s41467-018-03614-0

    89. [89]

      Wang, F.; Higgins, J. M. Trends Cell Biol. 2013, 23, 175. doi: 10.1016/j.tcb.2012.11.005  doi: 10.1016/j.tcb.2012.11.005

    90. [90]

      Thomson, I.; Gilchrist, S.; Bickmore, W. A.; Chubb, J. R. Curr. Biol. 2004, 14, 166. doi: 10.1016/j.cub.2003.12.024  doi: 10.1016/j.cub.2003.12.024

    91. [91]

      Walter, J.; Schermelleh, L.; Cremer, M.; Tashiro, S.; Cremer, T. J. Cell Biol. 2003, 160, 685. doi: 10.1083/jcb.200211103  doi: 10.1083/jcb.200211103

    92. [92]

      Nagano, T.; Lubling, Y.; Stevens, T. J.; Schoenfelder, S.; Yaffe, E.; Dean, W.; Laue, E. D.; Tanay, A.; Fraser, P. Nature 2013, 502, 59. doi: 10.1038/nature12593  doi: 10.1038/nature12593

    93. [93]

      Egli, D.; Birkhoff, G.; Eggan, K. Nat. Rev. Mol. Cell Biol. 2008, 9, 505. doi: 10.1038/nrm2439  doi: 10.1038/nrm2439

    94. [94]

      Sabari, B. R.; Dall'Agnese, A.; Boija, A.; Klein, I. A.; Coffey, E. L.; Shrinivas, K.; Abraham, B. J.; Hannett, N. M.; Zamudio, A. V.; Manteiga, J. C.; et al. Science 2018, 361, eaar3958. doi: 10.1126/science.aar3958  doi: 10.1126/science.aar3958

    95. [95]

      Rademacher, A.; Erdel, F.; Trojanowski, J.; Schumacher, S.; Rippe, K. J. Cell Sci. 2017, 130, 4213. doi: 10.1242/jcs.205534  doi: 10.1242/jcs.205534

    96. [96]

      Janicki, S. M.; Tsukamoto, T.; Salghetti, S. E.; Tansey, W. P.; Sachidanandam, R.; Prasanth, K. V.; Ried, T.; Shav-Tal, Y.; Bertrand, E.; Singer, R. H.; et al. Cell 2004, 116, 683. doi: 10.1016/S0092-8674(04)00171-0  doi: 10.1016/S0092-8674(04)00171-0

    97. [97]

      Li, G.; Ruan, X.; Auerbach, R. K.; Sandhu, K. S.; Zheng, M.; Wang, P.; Poh, H. M.; Goh, Y.; Lim, J.; Zhang, J.; et al. Cell 2012, 148, 84. doi: 10.1016/j.cell.2011.12.014  doi: 10.1016/j.cell.2011.12.014

    98. [98]

      Hsieh, T. H.; Weiner, A.; Lajoie, B.; Dekker, J.; Friedman, N.; Rando, O. J. Cell 2015, 162, 108. doi: 10.1016/j.cell.2015.05.048  doi: 10.1016/j.cell.2015.05.048

    99. [99]

      Hsieh, T. H. S.; Fudenberg, G.; Goloborodko, A.; Rando, O. J. Nat. Methods 2016, 13, 1009. doi: 10.1038/nmeth.4025  doi: 10.1038/nmeth.4025

    100. [100]

      Hsieh, T. H. S.; Slobodyanyuk, E.; Hansen, A. S.; Cattoglio, C.; Rando, O. J.; Tjian, R.; Darzacq, X. bioRxiv 2019, 638775. doi: 10.1101/638775  doi: 10.1101/638775

    101. [101]

      Sexton, T.; Cavalli, G. Cell 2015, 160, 1049. doi: 10.1016/j.cell.2015.02.040  doi: 10.1016/j.cell.2015.02.040

    102. [102]

      Barbieri, M.; Chotalia, M.; Fraser, J.; Lavitas, L. M.; Dostie, J.; Pombo, A.; Nicodemi, M. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 16173. doi: 10.1073/pnas.1204799109  doi: 10.1073/pnas.1204799109

    103. [103]

      Jin, F.; Li, Y.; Dixon, J. R.; Selvaraj, S.; Ye, Z.; Lee, A. Y.; Yen, C. A.; Schmitt, A. D.; Espinoza, C. A.; Ren, B. Nature 2013, 503, 290. doi: 10.1038/nature12644  doi: 10.1038/nature12644

    104. [104]

      Sanyal, A.; Lajoie, B. R.; Jain, G.; Dekker, J. Nature 2012, 489, 109. doi: 10.1038/nature11279  doi: 10.1038/nature11279

    105. [105]

      Toth, K. F.; Knoch, T. A.; Wachsmuth, M.; Frank-Stohr, M.; Stohr, M.; Bacher, C. P.; Muller, G.; Rippe, K. J. Cell Sci. 2004, 117, 4277. doi: 10.1242/jcs.01293  doi: 10.1242/jcs.01293

    106. [106]

      Hsu, J. Y.; Sun, Z. W.; Li, X.; Reuben, M.; Tatchell, K.; Bishop, D. K.; Grushcow, J. M.; Brame, C. J.; Caldwell, J. A.; Hunt, D. F.; et al. Cell 2000, 102, 279. doi: 10.1016/s0092-8674(00)00034-9  doi: 10.1016/s0092-8674(00)00034-9

    107. [107]

      Crosio, C.; Fimia, G. M.; Loury, R.; Kimura, M.; Okano, Y.; Zhou, H.; Sen, S.; Allis, C. D.; Sassone-Corsi, P. Mol. Cell Biol. 2002, 22, 874. doi: 10.1128/mcb.22.3.874-885.2002  doi: 10.1128/mcb.22.3.874-885.2002

    108. [108]

      Van Hooser, A.; Goodrich, D. W.; Allis, C. D.; Brinkley, B. R.; Mancini, M. A. J Cell Sci. 1998, 111 (Pt 23), 3497

    109. [109]

      West, M. H.; Bonner, W. M. Nucleic Acids Res. 1980, 8, 4671. doi: 10.1093/nar/8.20.4671  doi: 10.1093/nar/8.20.4671

    110. [110]

      Xiao, T.; Kao, C. F.; Krogan, N. J.; Sun, Z. W.; Greenblatt, J. F.; Osley, M. A.; Strahl, B. D. Mol. Cell Biol. 2005, 25, 637. doi: 10.1128/mcb.25.2.637-651.2005  doi: 10.1128/mcb.25.2.637-651.2005

    111. [111]

      Fierz, B.; Chatterjee, C.; McGinty, R. K.; Bar-Dagan, M.; Raleigh, D. P.; Muir, T. W. Nat. Chem. Biol. 2011, 7, 113. doi: 10.1038/nchembio.501  doi: 10.1038/nchembio.501

    112. [112]

      Kadauke, S.; Blobel, G. A. Epigenetics Chromatin 2013, 6, 6. doi: 10.1186/1756-8935-6-6  doi: 10.1186/1756-8935-6-6

    113. [113]

      Naumova, N.; Imakaev, M.; Fudenberg, G.; Zhan, Y.; Lajoie, B. R.; Mirny, L. A.; Dekker, J. Science 2013, 342, 948. doi: 10.1126/science.1236083  doi: 10.1126/science.1236083

    114. [114]

      Nagano, T.; Lubling, Y.; Varnai, C.; Dudley, C.; Leung, W.; Baran, Y.; Mendelson Cohen, N.; Wingett, S.; Fraser, P.; Tanay, A. Nature 2017, 547, 61. doi: 10.1038/nature23001  doi: 10.1038/nature23001

    115. [115]

      Simonis, M.; Klous, P.; Splinter, E.; Moshkin, Y.; Willemsen, R.; de Wit, E.; van Steensel, B.; de Laat, W. Nat. Genet. 2006, 38, 1348. doi: 10.1038/ng1896  doi: 10.1038/ng1896

    116. [116]

      Zhang, L.; Xie, W. J.; Liu, S.; Meng, L.; Gu, C.; Gao, Y. Q. Biophys. J. 2017, 113, 1395. doi: 10.1016/j.bpj.2017.08.019  doi: 10.1016/j.bpj.2017.08.019

    117. [117]

      Graf, W.; Porje, I. G.; Allgoth, A. M. Gastroenterologia 1955, 83, 233. doi: 10.1159/000200143  doi: 10.1159/000200143

    118. [118]

      Dewasmes, G.; Loos, N.; Delanaud, S.; Ramadan, W.; Dewasmes, D. Sleep 2003, 26, 948. doi: 10.1093/sleep/26.8.948  doi: 10.1093/sleep/26.8.948

    119. [119]

      Liu, C.; Cheng, Y. J.; Wang, J. W.; Weigel, D. Nat. Plants 2017, 3, 742. doi: 10.1038/s41477-017-0005-9  doi: 10.1038/s41477-017-0005-9

    120. [120]

      Xiao, H.; Run, X.; Cao, X.; Su, Y.; Sun, Z.; Tian, C.; Sun, S.; Liang, Z. Psychiatry Clin. Neurosci. 2013, 67, 493. doi: 10.1111/pcn.12091  doi: 10.1111/pcn.12091

    121. [121]

      Ahmadian-Attari, M. M.; Dargahi, L.; Mosaddegh, M.; Kamalinejad, M.; Khallaghi, B.; Noorbala, F.; Ahmadiani, A. Neurotox. Res. 2015, 28, 95. doi: 10.1007/s12640-015-9525-0  doi: 10.1007/s12640-015-9525-0

    122. [122]

      Lawson, R. N.; Chughtai, M. S. Can. Med. Assoc. J. 1963, 88, 68.
       

    123. [123]

      Chandrasoma, P.; Taylor, C. R. Concise Pathology, 3rd ed.; Appleton & Lange: Stamford, Connecticut, US, 1998; p. 1040.

    124. [124]

      Johnston, R. K.; Snell, T. W. Exp. Gerontol. 2016, 78, 12. doi: 10.1016/j.exger.2016.02.014  doi: 10.1016/j.exger.2016.02.014

    125. [125]

      Conti, B.; Sanchez-Alavez, M.; Winsky-Sommerer, R.; Morale, M. C.; Lucero, J.; Brownell, S.; Fabre, V.; Huitron-Resendiz, S.; Henriksen, S.; Zorrilla, E. P.; et al. Science 2006, 314, 825. doi: 10.1126/science.1132191  doi: 10.1126/science.1132191

    126. [126]

      Waalen, J.; Buxbaum, J. N. J. Gerontol. A-Biol. Sci. Med. Sci. 2011, 66, 487. doi: 10.1093/gerona/glr001  doi: 10.1093/gerona/glr001

    127. [127]

      Bernardi, G. Gene 2000, 241, 3. doi: 10.1016/S0378-1119(99)00485-0  doi: 10.1016/S0378-1119(99)00485-0

    128. [128]

      White, C. R.; Seymour, R. S. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 4046. doi: 10.1073/pnas.0436428100  doi: 10.1073/pnas.0436428100

    129. [129]

      Brattstrom, B. H. Am. Midl. Nat. 1965, 73, 376. doi: 10.2307/2423461  doi: 10.2307/2423461

    130. [130]

      Coulondre, C.; Miller, J. H.; Farabaugh, P. J.; Gilbert, W. Nature 1978, 274, 775. doi: 10.1038/274775a0  doi: 10.1038/274775a0

    131. [131]

      Dudchenko, O.; Batra, S. S.; Omer, A. D.; Nyquist, S. K.; Hoeger, M.; Durand, N. C.; Shamim, M. S.; Machol, I.; Lander, E. S.; Aiden, A. P.; et al. Science 2017, 356, 92. doi: 10.1126/science.aal3327  doi: 10.1126/science.aal3327

  • 加载中
    1. [1]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Shui Hu Houjin Li Zhenming Zang Lianyun Li Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Anyang Li Xiaohui Ning Zhihui Ren Wei Sun Yan Li Bin Cui . Support and Guarantee for Talent Cultivation and Discipline Development: Exploration and Practice of the Construction of National Demonstration Center for Experimental Chemistry Education in Northwest University. University Chemistry, 2024, 39(7): 140-146. doi: 10.12461/PKU.DXHX202405052

    6. [6]

      Shuyong Zhang Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078

    7. [7]

      Jie Li Rong Lai Hua Xiao Shui Hu Tao Chen Houjin Li Xianfang Xu Guping Hu Hongyan Chen Fang Zhu . Exploration and Practice of Research Training and Subject Competition Management in Experimental Teaching Center. University Chemistry, 2024, 39(4): 13-18. doi: 10.3866/PKU.DXHX202311010

    8. [8]

      Haiying Wei Daqing Yang Mingtao Run Guoyan Huo . Examination and Analysis on Rationality of Experimental Design: Based on Reaction of Potassium Permanganate with Potassium Bormide. University Chemistry, 2024, 39(10): 283-288. doi: 10.12461/PKU.DXHX202404068

    9. [9]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    10. [10]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    11. [11]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    12. [12]

      Luhong Chen Yan Zhang . Chem&Bio Interdisciplinary Graduates Training in Nanjing University Promoted by Chemistry and Biomedicine Innovation Center. University Chemistry, 2024, 39(6): 12-16. doi: 10.3866/PKU.DXHX202311089

    13. [13]

      Weiliang Wang Zijing Yu Jingyuan Li Hong Shang . The Debate between Traditional Chinese Medicine and Western Medicine. University Chemistry, 2024, 39(9): 109-114. doi: 10.12461/PKU.DXHX202402001

    14. [14]

      Dehong Yang Shaokang Liu Kun Wang Qi Qin Wenjie Fan Mingli Jiao Benyong Yang . Forever with Bats. University Chemistry, 2024, 39(9): 157-163. doi: 10.12461/PKU.DXHX202401080

    15. [15]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    16. [16]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    17. [17]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    18. [18]

      Suqing Shi Anyang Li Yuan He Jianli Li Xinjun Luan . Exploration and Practice of the “Progressive” Integrated Training Mode for Innovative Chemistry Talents at Comprehensive Universities in Western China. University Chemistry, 2024, 39(6): 42-49. doi: 10.3866/PKU.DXHX202402009

    19. [19]

      Jing Yan Haiyuan Wang Jing Chang Fubao Xing Zhen Zhang Mingyue Chen Xiaofeng Li Yu Liu Yi Li Xia Feng . Exploration and Practice in the Teaching of Chemistry Research Training Course. University Chemistry, 2024, 39(10): 236-241. doi: 10.12461/PKU.DXHX202404108

    20. [20]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

Metrics
  • PDF Downloads(7)
  • Abstract views(269)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return