Citation: Wang Jiyang, Lu Dazhi, Yu Haohai, Zhang Huaijin. Langasite Family Nonlinear Optical Crystals[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190700. doi: 10.3866/PKU.WHXB201907009 shu

Langasite Family Nonlinear Optical Crystals

  • Corresponding author: Wang Jiyang, jywang@sdu.edu.cn
  • Received Date: 1 July 2019
    Revised Date: 2 August 2019
    Accepted Date: 2 August 2019
    Available Online: 29 January 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (51772172)the National Natural Science Foundation of China 51772172

  • In the 1960s, Maiman constructed the first laser. Pulsed lasers with high repetition rates and short pulse widths have extensive applications in fiber optics, military applications, spectroscopy, laser ranging, materials processing, medicine, and frequency conversion, etc. For instance, short pulse lasers with high repetition rates are desirable for material processing, in which the processing speed depends upon the repetition rate of the laser source. Electro-optic Q-switching has numerous advantages in many fields because of its better hold-off ability, larger pulse energy, and more controllable repetition rates. In 1961, Franken et al. first applied a ruby laser directly to quartz crystals and observed double-frequency radiation. Afterward, Bloembergen et al. analyzed the principle of nonlinear optical parametric generation theoretically. Since then, nonlinear optics has been playing an increasingly vital role in human society. Mid-infrared (mid-IR) lasers using nonlinear optical (NLO) crystals have essential applications in science as well as in daily life (e.g., infrared remote sensing, biological tissue imaging, environmental monitoring, and minimally invasive medical surgery). For generating mid-IR lasers in the spectral range of 3–20 µm, NLO materials are indispensable for optical parametric oscillation (OPO) or difference frequency generation. It is common for the available wavelength range to be limited by multiphonon absorption in the oxide crystal, and the damage threshold for semiconductors is relatively low. At present, the most widely used NLO crystal materials in the mid-IR band are semiconductor crystals represented by ZnGeP2. However, their laser damage thresholds are low, which limits their application range. Therefore, one of the key issues in the field of NLO materials at present is to explore new mid-IR NLO crystal materials with excellent performance that are applicable to high-power lasers. Langasite materials are famous for their multifunctionality in optoelectronic applications, such as in piezoelectric convertors, electro-optic Q-switched laser generation, and surface acoustic wave devices. Their structure without central symmetry endows the crystal with electro-optic, piezoelectric, and NLO properties, and their laser damage threshold is high because they are oxides. The phonon energy of the crystal is low and the transmission range is wide owing to their composition, which may have important applications for mid-IR high-power lasers. The Langasite family comprise a set of perfect electro-optical crystals with an electro-optical coefficient of 2.3 × 10−12 m∙V−1, a broad transmission spectral range, and a high optical damage threshold of 950 MW∙cm−2. Besides, their small piezoelectric coefficient (6 × 10−12 C∙N−1) reveals the possibility for Q-switching under high repetition rates without a piezoelectric ring effect. In this brief review, three important compounds—La3Ga5SiO14, La3Ga5.5Nb0.5O14, and La3Ga5.5Ta0.5O14—are investigated and analyzed based on available experimental data. The electro-optical Q-switch and mid-IR OPO applications are summarized in detail. Finally, promising search directions for new metal oxides that have good mid-IR NLO performances are discussed.
  • 加载中
    1. [1]

      Bierlein, J. D.; Vanherzeele, H. J. Opt. Soc. Am. B: Opt. Phys. 1989, 6 (4), 622. doi: 10.1364/JOSAB.6.000622  doi: 10.1364/JOSAB.6.000622

    2. [2]

      Chen, C.; Wu, B.; Jiang, A.; You, G. Sci. China, Ser. B: Chem. 1985, 28(3), 235. doi: 10.1360/yb1985-28-3-235  doi: 10.1360/yb1985-28-3-235

    3. [3]

      Chen, C.; Wu, Y.; Jiang, A. J. Opt. Soc. Am. B 1989, 6 (4), 616. doi: 10.1364/JOSAB.6.000616  doi: 10.1364/JOSAB.6.000616

    4. [4]

      Chen, C.; Lu, J.; Togashi, T.; Suganuma, T.; Sekikawa, T.; Watanabe, S.; Xu, Z.; Wang, J. Opt. Lett. 2002, 27 (8), 637. doi: 10.1364/OL.27.000637  doi: 10.1364/OL.27.000637

    5. [5]

      Chen, C. T.; Wang, G. L.; Wang, X. Y.; Xu, Z. Y. Appl. Phys. B: Lasers Opt. 2009, 97 (1), 9. doi: 10.1007/s00340-009-3554-4  doi: 10.1007/s00340-009-3554-4

    6. [6]

      Ghotbi, M.; Sun, Z.; Majchrowski, A.; Michalski, E.; Kityk, I. V.; Ebrahim-Zadeh, M. Appl. Phys. Lett. 2006, 89 (17), 173124. doi: 10.1063/1.2364880  doi: 10.1063/1.2364880

    7. [7]

      Petrov, V. Prog. Quantum Electron. 2015, 42, 1. doi: 10.1016/j.pquantelec.2015.04.001  doi: 10.1016/j.pquantelec.2015.04.001

    8. [8]

      Arriola, A.; Gross, S.; Ams, M.; Gretzinger, T.; Le Coq, D.; Wang, R. P.; Tuthill, P.; Ireland, M. Opt. Mater. Express 2017, 7 (3), 698. doi: 10.1364/OME.7.000698  doi: 10.1364/OME.7.000698

    9. [9]

      Zhao, Z.; Wu, B.; Wang, X.; Pan, Z.; Liu, Z.; Zhang, P.; Shen, X.; Mie, Q.; Dai S.; Wang, R. Laser Photonics Rev. 2017, 11 (2), 1700005. doi: 10.1002/lpor.201700005  doi: 10.1002/lpor.201700005

    10. [10]

      Pestov, D.; Wang, X.; Ariunbold, G. O.; Murawski, R. K.; Sautenkov, V. A.; Dogariu, A.; Sokolov, A.; Scully, M. O. Proc. Natl. Acad. Sci. U.S.A. 2008, 105 (2), 422. doi: 10.1073/pnas.0710427105  doi: 10.1073/pnas.0710427105

    11. [11]

      Chung, I.; Kanatzidis, M. G. Chem. Mater. 2013, 26 (1), 849. doi: 10.1021/cm401737s  doi: 10.1021/cm401737s

    12. [12]

      Ohmer, M. C.; Pandey, R. MRS Bull. 1998, 23 (7), 16. doi: 10.1557/S0883769400029031  doi: 10.1557/S0883769400029031

    13. [13]

      Ruderman, W.; Maffetone, J.; Zelman, D. E.; Poirier, D. M. MRS Online Proc. Libr. 1997, 484. doi: 10.1557/PROC-484-519  doi: 10.1557/PROC-484-519

    14. [14]

      Schunemann, P. G. AIP Conf. Proc. 2007, 916 (1), 541. doi: 10.1063/1.2751932  doi: 10.1063/1.2751932

    15. [15]

      Liang, F.; Kang, L.; Lin, Z.; Wu, Y.; Chen, C. Coord. Chem. Rev. 2017, 333, 57. doi: 10.1016/j.ccr.2016.11.012  doi: 10.1016/j.ccr.2016.11.012

    16. [16]

      Liang, F.; Kang, L.; Lin, Z.; Wu, Y. Cryst. Growth Des. 2017, 17 (4), 2254. doi: 10.1021/acs.cgd.7b00214  doi: 10.1021/acs.cgd.7b00214

    17. [17]

      Lu, D.; Xu, T.; Yu, H.; Fu, Q.; Zhang, H.; Segonds, P.; Boulanger, B.; Zhang, X.; Wang, J. Opt. Express, 2016, 24 (16), 17603. doi: 10.1364/OE.24.017603  doi: 10.1364/OE.24.017603

    18. [18]

      Ma, S.; Yu, H.; Zhang, H.; Han, X.; Lu, Q.; Ma, C.; Boughton, R.; Wang, J. Sci. Rep. 2016, 6, 30517. doi: 10.1038/srep30517  doi: 10.1038/srep30517

    19. [19]

      Ma, S.; Lu, D.; Yu, H.; Zhang, H.; Han, X.; Lu, Q.; Ma C.; Wang, J. Opt. Express 2017, 25 (20), 24007. doi: 10.1364/OE.25.024007  doi: 10.1364/OE.25.024007

    20. [20]

      Ma, S.; Lu, D.; Yu, H.; Zhang, H.; Han, X.; Lu, Q.; Ma, C.; Wang, J. Opt. Commun. 2019, 447, 13. doi: 10.1016/j.optcom.2019.04.014  doi: 10.1016/j.optcom.2019.04.014

    21. [21]

      Ma, J.; Wang, J.; Hu, D.; Yuan, P.; Xie, G.; Zhu, H.; Yu, H.; Zhang, H.; Wang, J.; Qian, L. Opt. Express. 2016, 24 (21), 23957. doi: 10.1364/OE.24.023957  doi: 10.1364/OE.24.023957

    22. [22]

      Boursier, E.; Segonds, P.; Boulanger, B.; Félix, C.; Debray, J.; Jegouso, D.; Menaert, D.; Shoji, I. Opt. Express. 2014, 39 (13), 4033. doi: 10.1364/OL.39.004033  doi: 10.1364/OL.39.004033

    23. [23]

      Takeda, H.; Aoyagi, R.; Okamura, S.; Shiosaki, T. Ferroelectrics 2003, 295 (1), 67. doi: 10.1080/714040624  doi: 10.1080/714040624

    24. [24]

      Stade, J.; Bohat , L.; Hengst, M.; Heimann, R. B. Cryst. Res. Technol. 2002, 37 (10), 1113. doi: 10.1002/1521-4079(200210)37: 10 < 1113::AID-CRAT1113 > 3.0.CO; 2-E  doi: 10.1002/1521-4079(200210)37:10<1113::AID-CRAT1113>3.0.CO;2-E

    25. [25]

      Zhang, S.; Yu, F. J. Am. Ceram. Soc. 2011, 94 (10), 3153. doi: 10.1111/j.1551-2916.2011.04792.x  doi: 10.1111/j.1551-2916.2011.04792.x

    26. [26]

      Roshchupkin, D.; Ortega, L.; Plotitcyna, O.; Erko, A.; Zizak, I.; Vadilonga, S.; Irzhak, S.; Emelin, E.; Buzanov, O. Leitenberger, W. Appl. Phys. A 2016, 122 (8), 753. doi: 10.1007/s00339-016-0279-1  doi: 10.1007/s00339-016-0279-1

    27. [27]

      Kaminskii, A. A.; Silvestrova, I. M.; Sarkisov, S. E.; Denisenko, G. A. Phys. Status Solidi A 1983, 80 (2), 607. doi: 10.1002/pssa.2210800225  doi: 10.1002/pssa.2210800225

    28. [28]

      Kaminskii, A. A.; Mill, B. V.; Khodzhabagyan, G. G.; Konstantinova, A. F.; Okorochkov, A. I.; Silvestrova, I. M. Phys. Status Solidi A 1983, 80 (1), 387. doi: 10.1002/pssa.2210800142  doi: 10.1002/pssa.2210800142

    29. [29]

      Kaminskii, A. A.; Belokoneva, E. L.; Mill, B. V.; Pisarevskii, Y. V.; Sarkisov, S. E.; Silvestrova, I. M.; Butashin, A. V.; Khodzhabagyan, G. G. Phys. Status Solidi A. 1984, 86 (1), 345. doi: 10.1002/pssa.2210860139  doi: 10.1002/pssa.2210860139

    30. [30]

      Pavlovska, A.; Schneider, J.; Werner, S.; Maximov, B.; Mill, B.; Baetz, C. Z. Kristallogr. - Cryst. Mater. 2003, 218 (3), 187. doi: 10.1524/zkri.218.3.187.20748  doi: 10.1524/zkri.218.3.187.20748

    31. [31]

      Wang, J.; Yin, X.; Han, R.; Zhang, S.; Kong, H.; Zhang, H.; Hu, X.; Jiang, M. Opt. Mater. 2003, 23 (1–2), 393. doi: 10.1016/S0925-3467(02)00325-7  doi: 10.1016/S0925-3467(02)00325-7

    32. [32]

      Kugaenko, O. M.; Uvarova, S. S.; Krylov, S. A.; Senatulin, B. R.; Petrakov, V. S.; Buzanov, O. A.; Egorov, V. N.; Sakharov, S. A. Bull. Russ. Acad. Sci.: Phys. 2012, 76 (11), 1258. doi: 10.3103/S1062873812110123  doi: 10.3103/S1062873812110123

    33. [33]

      Kaminskii, A. A.; Butashin, A. V.; Maslyanitsin, I. A.; Shigorin, V. D. Phys. Status Solidi A 1989, 112 (1): K49. doi: 10.1002/pssa.2211120172  doi: 10.1002/pssa.2211120172

    34. [34]

      Kang, L.; Luo, S.; Huang, H.; Ye, N.; Lin, Z.; Qin, J.; Chen, C. J. Phys. Chem. C 2013, 117 (48), 25684. doi: 10.1021/jp409992d  doi: 10.1021/jp409992d

    35. [35]

      Nieuwenhuis, A. F.; Lee, C. J.; Slot, P. J.; Lindsay, I. D.; Groß, P.; Boller, K. J. Opt. Express. 2008, 33 (1), 52. doi: 10.1364/OL.33.000052  doi: 10.1364/OL.33.000052

    36. [36]

      Kong, H.; Wang, J.; Zhang, H.; Yin, X.; Zhang, S.; Liu, Y.; Jiang, M. J. Cryst. Growth. 2003, 254 (3–4), 360. doi: 10.1016/S0022-0248(03)01106-0  doi: 10.1016/S0022-0248(03)01106-0

    37. [37]

      Tang, H.; Zhu, X.; Feng, Y. Comparison of 30 kHz Qswitched Nd: YVO4 Lasers with LGS and RTP Electro-optic Modulator. In Proceedings of the 8th Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim'09), Shanghai, China, August 2009.

    38. [38]

      Hansson, G.; Karlsson, H.; Wang, S.; Laurell, F. Appl. Opt. 2000, 39 (27), 5058. doi: 10.1364/AO.39.005058  doi: 10.1364/AO.39.005058

    39. [39]

      Komatsu, R.; Sugawara, T.; Uda, S. Jpn. J. Appl. Phys. 1997, 36 (9S), 6159. doi: 10.1143/JJAP.36.6159  doi: 10.1143/JJAP.36.6159

    40. [40]

      Thiré, N.; Beaulieu, S.; Cardin, V.; Laramée, A.; Wanie, V.; Schmidt, B. E.; Légaré, F. Appl. Phys. Lett. 2015, 106 (9), 091110. doi: 10.1063/1.4914344  doi: 10.1063/1.4914344

    41. [41]

      Mitrofanov, A. V.; Voronin, A. A.; Mitryukovskiy, S. I.; Sidorov-Biryukov, D. A.; Pugžlys, A.; Andriukaitis, G.; Flöry, T.; Stepanov, E. A.; Fedotov, A. B.; Baltuška, A.; et al. Opt. Express. 2015, 40 (9), 2068. doi: 10.1364/OL.40.002068  doi: 10.1364/OL.40.002068

    42. [42]

      Boursier, E.; Archipovaite, G. M.; Delagnes, J. C.; Petit, S.; Ernotte, G.; Lassonde, P.; Segonds, P.; Boulanger, B.; Petit, Y.; Légaré, F.; et al. Opt. Lett. 2017, 42 (18), 3698. doi: 10.1364/OL.42.003698  doi: 10.1364/OL.42.003698

    43. [43]

      Yu, H.; Zhang, W.; Young, J.; Rondinelli, J. M.; Halasyamani, P. S. J. Am. Chem. Soc. 2015, 138 (1), 88. doi: 10.1021/jacs.5b11712  doi: 10.1021/jacs.5b11712

    44. [44]

      Lan, H.; Liang, F.; Jiang, X.; Zhang, C.; Yu, H.; Lin, Z.; Zhang, H.; Wang, J.; Wu, Y. J. Am. Chem. Soc. 2018, 140 (13), 4684. doi: 10.1021/jacs.8b01009  doi: 10.1021/jacs.8b01009

  • 加载中
    1. [1]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    2. [2]

      Yajun Jian Quanguo Zhai Quan Gu Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006

    3. [3]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    4. [4]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    5. [5]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    6. [6]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    7. [7]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    8. [8]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    11. [11]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    12. [12]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    13. [13]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    14. [14]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    18. [18]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    19. [19]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    20. [20]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

Metrics
  • PDF Downloads(16)
  • Abstract views(752)
  • HTML views(172)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return