Machine-Learning Model for Predicting the Rate Constant of ProteinLigand Dissociation
- Corresponding author: Lin Haixia, haixialin@staff.shu.edu.cn Wang Renxiao, wangrx@mail.sioc.ac.cn
Citation: Su Minyi, Liu Huisi, Lin Haixia, Wang Renxiao. Machine-Learning Model for Predicting the Rate Constant of ProteinLigand Dissociation[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190700. doi: 10.3866/PKU.WHXB201907006
Copeland, R. A.; Pompliano, D. L.; Meek, T. D. Nat. Rev. Drug Discov. 2006, 5, 730. doi: 10.1038/nrd2082
doi: 10.1038/nrd2082
Tummino, P. J.; Copeland, R. A. Biochemistry 2008, 47, 5481. doi: 10.1021/bi8002023
doi: 10.1021/bi8002023
Schuetz, D. A.; Arnout de Witte, W. E.; Wong, Y. C.; Knasmueller, B.; Richter, L.; Kokh, D. B.; Sadiq, S. K.; Bosma, R.; Nederpelt, I.; Heitman, L. H.; et al. Drug Discov. Today 2017, 22, 896. doi: 10.1016/j.drudis.2017.02.002
doi: 10.1016/j.drudis.2017.02.002
Pan, A. C.; Borhani, D. W.; Dror, R. O.; Shaw, D. E. Drug Discov. Today 2013, 18, 667. doi: 10.1016/j.drudis.2013.02.007
doi: 10.1016/j.drudis.2013.02.007
Guo, D.; Mulder, K. T.; Ijzerman, A. P.; Heitman, L. H. Br. J. Pharmacol. 2012, 166, 1846. doi: 10.1111/j.1476-5381.2012.01897.x
doi: 10.1111/j.1476-5381.2012.01897.x
Folmer, R. H. A. Drug Discov. Today 2018, 23, 12. doi: 10.1016/j.drudis.2017.07.016
doi: 10.1016/j.drudis.2017.07.016
Bruce, N. J.; Ganotra, G. K.; Kokh, D. B.; Sadiq, S. K.; Wade, R. C. Curr. Opin. Struct. Biol. 2018, 49, 1. doi: 10.1016/j.sbi.2017.10.001
doi: 10.1016/j.sbi.2017.10.001
Qu, S. J.; Huang, S. H.; Pan, X. C.; Yang, L.; Mei, H. J. Chem. Inf. Model. 2016, 56, 2061. doi: 10.1021/acs.jcim.6b00326
doi: 10.1021/acs.jcim.6b00326
Ganotra, G. K.; Wade, R. C. ACS Med. Chem. Lett. 2018, 9, 1134. doi: 10.1021/acsmedchemlett.8b00397
doi: 10.1021/acsmedchemlett.8b00397
Liu, Z. H; Li, Y.; Han, L.; Li, J.; Liu, J.; Zhao, Z. X.; Nie, W.; Liu, Y. C; Wang, R. X. Bioinformatics 2015, 31, 405. doi: 10.1093/bioinformatics/btu626
doi: 10.1093/bioinformatics/btu626
Li, W.; Godzik, A. Bioinformatics 2006, 22, 1658. doi: 10.1093/bioinformatics/btl158
doi: 10.1093/bioinformatics/btl158
Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. Bioinformatics 2012, 28, 3150. doi: 10.1093/bioinformatics/bts565
doi: 10.1093/bioinformatics/bts565
Royston, J. P. Appl. Stat. 1982, 31, 115. doi: 10.2307/2347973
doi: 10.2307/2347973
Royston, J. P. Appl. Stat. 1982, 31, 176. doi: 10.2307/2347986
doi: 10.2307/2347986
Rogers, D.; Hahn, M. J. Chem. Inf. Model. 2010, 50, 742. doi: 10.1021/ci100050t
doi: 10.1021/ci100050t
Bietz, S.; Urbaczek, S.; Schulz, B.; Rarey, M. J. Cheminform. 2014, 6, 1. doi: 10.1186/1758-2946-6-12
doi: 10.1186/1758-2946-6-12
Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; et al. J. Med. Chem. 2004, 47, 1739. doi: 10.1021/jm0306430
doi: 10.1021/jm0306430
Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye, L. L.; Pollard, W. T.; Banks, J. L. J. Med. Chem. 2004, 47, 1750. doi: 10.1021/jm030644s
doi: 10.1021/jm030644s
Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. J. Med. Chem. 2006, 49, 6177. doi: 10.1021/jm051256o
doi: 10.1021/jm051256o
Qiu, D.; Shenkin, P. S.; Hollinger, F. P.; Still, W. C. J. Phys. Chem. A 1997, 101, 3005. doi: 10.1021/jp961992r
doi: 10.1021/jp961992r
Case, D. A.; Babin, V.; Berryman, J. T.; Betz, R. M.; Cai, Q.; Cerutti, D. S.; Cheatham, T. E., Ⅲ; Darden, T. A.; Duke, R. E.; Gohlke, H.; Goetz, A. W.; et al. AMBER 2014; University of California: San Francisco, CA, USA, 2014.
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2016.
Cieplak, P.; Cornell, W. D.; Bayly, C.; Kollman, P. A. J. Comput. Chem. 1995, 16, 1357. doi: 10.1002/jcc.540161106
doi: 10.1002/jcc.540161106
Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. J. Chem. Theory Comput. 2015, 11, 3696. doi: 10.1021/acs.jctc.5b00255
doi: 10.1021/acs.jctc.5b00255
Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157. doi: 10.1002/jcc.20035
doi: 10.1002/jcc.20035
Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. doi: 10.1063/1.445869
doi: 10.1063/1.445869
Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Chem. Phys. 1977, 23, 327. doi: 10.1.1.399.6868
Roe, D. R.; Cheatham, T. E., Ⅲ. J. Chem. Theory Comput. 2013, 9, 3084. doi: 10.1021/ct400341p
doi: 10.1021/ct400341p
Rudling, A.; Orro, A.; Carlsson, J. J. Chem. Inf. Model. 2018, 58, 350. doi: 10.1021/acs.jcim.7b00520
doi: 10.1021/acs.jcim.7b00520
Ballester, P. J.; Schreyer, A.; Blundell, T. L. J. Chem. Inf. Model. 2014, 54, 944. doi: 10.1021/ci500091r
doi: 10.1021/ci500091r
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. J. Mach. Learn. Res. 2011, 12, 2825.
Kennard, R. W.; Stone, L. A. Technometrics 1969, 11, 137. doi: 10.1080/00401706.1969.10490666
doi: 10.1080/00401706.1969.10490666
Martin, T. M.; Harten, P.; Young, D. M.; Muratov, E. N.; Golbraikh, A.; Zhu, H.; Tropsha, A. J. Chem. Inf. Model. 2012, 52, 2570. doi: 10.1021/ci300338w
doi: 10.1021/ci300338w
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
Qilu DU , Li ZHAO , Peng NIE , Bo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
Qilong Fang , Yiqi Li , Jiangyihui Sheng , Quan Yuan , Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039