Citation: Su Minyi, Liu Huisi, Lin Haixia, Wang Renxiao. Machine-Learning Model for Predicting the Rate Constant of ProteinLigand Dissociation[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190700. doi: 10.3866/PKU.WHXB201907006 shu

Machine-Learning Model for Predicting the Rate Constant of ProteinLigand Dissociation

  • Corresponding author: Lin Haixia, haixialin@staff.shu.edu.cn Wang Renxiao, wangrx@mail.sioc.ac.cn
  • Received Date: 1 July 2019
    Revised Date: 6 August 2019
    Accepted Date: 30 August 2019
    Available Online: 3 January 2019

    Fund Project: National Natural Science Foundation of China 21472226the National Key Research Program of Ministry of Science and Technology of China 2016YFA0502302National Natural Science Foundation of China 21661162003National Natural Science Foundation of China 21673276National Natural Science Foundation of China 81725022National Natural Science Foundation of China 21472227This project was supported by the National Key Research Program of Ministry of Science and Technology of China (2016YFA0502302), National Natural Science Foundation of China (81725022, 81430083, 21661162003, 21673276, 21472227, 21472226), and Strategic Priority Research Program of Chinese Academy of Sciences (XDB20000000)Strategic Priority Research Program of Chinese Academy of Sciences XDB20000000National Natural Science Foundation of China 81430083

  • An increasing number of recent studies have shown that the binding kinetics of a drug molecule to its target correlates strongly with its efficacy in vivo. Therefore, ligand optimization oriented to improved binding kinetics provides new ideas for rational drug design. Currently, ligand binding kinetics is modeled mainly through extensive molecular dynamics simulations, which limits its application to real-world problems. The present study aimed at obtaining a general-purpose quantitative structure-kinetics relationship (QSKR) model for predicting the dissociation rate constant (koff) of a ligand based on its complex structure. This type of model is expected to be suitable for high-throughput tasks in structure-based drug design. We collected the experimentally measured koff values for 406 ligand molecules from literature, and then constructed a three-dimensional structural model for each protein-ligand complex through molecular modeling. A training set was compiled using 60% of those complexes while the remaining 40% were assigned to two test sets. Based on distance-dependent protein-ligand atom pair descriptors, a random forest algorithm was adopted to derive a QSKR model. Various random forest models were then generated based on the descriptor sets obtained under different conditions, such as distance cutoff, bin width, and feature selection criteria. The cross-validation results of those models were then examined. It was observed that the optimal model was obtained when the distance cutoff was 15 Å (1 Å = 0.1 nm), the bin width was 3 Å, and feature selection variance level was 2. The final QSKR model produced correlation coefficients around 0.62 on the two independent test sets. This level of accuracy is at least comparable to that of the predictive models described in literature, which are typically computationally much more expensive. Our study attempts to address the issue of predicting koff values in drug design. We hope that it can provide inspiration for further studies by other researchers.
  • 加载中
    1. [1]

      Copeland, R. A.; Pompliano, D. L.; Meek, T. D. Nat. Rev. Drug Discov. 2006, 5, 730. doi: 10.1038/nrd2082  doi: 10.1038/nrd2082

    2. [2]

      Tummino, P. J.; Copeland, R. A. Biochemistry 2008, 47, 5481. doi: 10.1021/bi8002023  doi: 10.1021/bi8002023

    3. [3]

      Schuetz, D. A.; Arnout de Witte, W. E.; Wong, Y. C.; Knasmueller, B.; Richter, L.; Kokh, D. B.; Sadiq, S. K.; Bosma, R.; Nederpelt, I.; Heitman, L. H.; et al. Drug Discov. Today 2017, 22, 896. doi: 10.1016/j.drudis.2017.02.002  doi: 10.1016/j.drudis.2017.02.002

    4. [4]

      Pan, A. C.; Borhani, D. W.; Dror, R. O.; Shaw, D. E. Drug Discov. Today 2013, 18, 667. doi: 10.1016/j.drudis.2013.02.007  doi: 10.1016/j.drudis.2013.02.007

    5. [5]

      Guo, D.; Mulder, K. T.; Ijzerman, A. P.; Heitman, L. H. Br. J. Pharmacol. 2012, 166, 1846. doi: 10.1111/j.1476-5381.2012.01897.x  doi: 10.1111/j.1476-5381.2012.01897.x

    6. [6]

      Folmer, R. H. A. Drug Discov. Today 2018, 23, 12. doi: 10.1016/j.drudis.2017.07.016  doi: 10.1016/j.drudis.2017.07.016

    7. [7]

      Bruce, N. J.; Ganotra, G. K.; Kokh, D. B.; Sadiq, S. K.; Wade, R. C. Curr. Opin. Struct. Biol. 2018, 49, 1. doi: 10.1016/j.sbi.2017.10.001  doi: 10.1016/j.sbi.2017.10.001

    8. [8]

      Qu, S. J.; Huang, S. H.; Pan, X. C.; Yang, L.; Mei, H. J. Chem. Inf. Model. 2016, 56, 2061. doi: 10.1021/acs.jcim.6b00326  doi: 10.1021/acs.jcim.6b00326

    9. [9]

      Ganotra, G. K.; Wade, R. C. ACS Med. Chem. Lett. 2018, 9, 1134. doi: 10.1021/acsmedchemlett.8b00397  doi: 10.1021/acsmedchemlett.8b00397

    10. [10]

      Liu, Z. H; Li, Y.; Han, L.; Li, J.; Liu, J.; Zhao, Z. X.; Nie, W.; Liu, Y. C; Wang, R. X. Bioinformatics 2015, 31, 405. doi: 10.1093/bioinformatics/btu626  doi: 10.1093/bioinformatics/btu626

    11. [11]

      Li, W.; Godzik, A. Bioinformatics 2006, 22, 1658. doi: 10.1093/bioinformatics/btl158  doi: 10.1093/bioinformatics/btl158

    12. [12]

      Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. Bioinformatics 2012, 28, 3150. doi: 10.1093/bioinformatics/bts565  doi: 10.1093/bioinformatics/bts565

    13. [13]

      Royston, J. P. Appl. Stat. 1982, 31, 115. doi: 10.2307/2347973  doi: 10.2307/2347973

    14. [14]

      Royston, J. P. Appl. Stat. 1982, 31, 176. doi: 10.2307/2347986  doi: 10.2307/2347986

    15. [15]

      Rogers, D.; Hahn, M. J. Chem. Inf. Model. 2010, 50, 742. doi: 10.1021/ci100050t  doi: 10.1021/ci100050t

    16. [16]

      Bietz, S.; Urbaczek, S.; Schulz, B.; Rarey, M. J. Cheminform. 2014, 6, 1. doi: 10.1186/1758-2946-6-12  doi: 10.1186/1758-2946-6-12

    17. [17]

      Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; et al. J. Med. Chem. 2004, 47, 1739. doi: 10.1021/jm0306430  doi: 10.1021/jm0306430

    18. [18]

      Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye, L. L.; Pollard, W. T.; Banks, J. L. J. Med. Chem. 2004, 47, 1750. doi: 10.1021/jm030644s  doi: 10.1021/jm030644s

    19. [19]

      Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. J. Med. Chem. 2006, 49, 6177. doi: 10.1021/jm051256o  doi: 10.1021/jm051256o

    20. [20]

      Qiu, D.; Shenkin, P. S.; Hollinger, F. P.; Still, W. C. J. Phys. Chem. A 1997, 101, 3005. doi: 10.1021/jp961992r  doi: 10.1021/jp961992r

    21. [21]

      Case, D. A.; Babin, V.; Berryman, J. T.; Betz, R. M.; Cai, Q.; Cerutti, D. S.; Cheatham, T. E., Ⅲ; Darden, T. A.; Duke, R. E.; Gohlke, H.; Goetz, A. W.; et al. AMBER 2014; University of California: San Francisco, CA, USA, 2014.

    22. [22]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2016.

    23. [23]

      Cieplak, P.; Cornell, W. D.; Bayly, C.; Kollman, P. A. J. Comput. Chem. 1995, 16, 1357. doi: 10.1002/jcc.540161106  doi: 10.1002/jcc.540161106

    24. [24]

      Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. J. Chem. Theory Comput. 2015, 11, 3696. doi: 10.1021/acs.jctc.5b00255  doi: 10.1021/acs.jctc.5b00255

    25. [25]

      Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157. doi: 10.1002/jcc.20035  doi: 10.1002/jcc.20035

    26. [26]

      Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. doi: 10.1063/1.445869  doi: 10.1063/1.445869

    27. [27]

      Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Chem. Phys. 1977, 23, 327. doi: 10.1.1.399.6868

    28. [28]

      Roe, D. R.; Cheatham, T. E., Ⅲ. J. Chem. Theory Comput. 2013, 9, 3084. doi: 10.1021/ct400341p  doi: 10.1021/ct400341p

    29. [29]

      Rudling, A.; Orro, A.; Carlsson, J. J. Chem. Inf. Model. 2018, 58, 350. doi: 10.1021/acs.jcim.7b00520  doi: 10.1021/acs.jcim.7b00520

    30. [30]

      Ballester, P. J.; Schreyer, A.; Blundell, T. L. J. Chem. Inf. Model. 2014, 54, 944. doi: 10.1021/ci500091r  doi: 10.1021/ci500091r

    31. [31]

      Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. J. Mach. Learn. Res. 2011, 12, 2825.

    32. [32]

      Kennard, R. W.; Stone, L. A. Technometrics 1969, 11, 137. doi: 10.1080/00401706.1969.10490666  doi: 10.1080/00401706.1969.10490666

    33. [33]

      Martin, T. M.; Harten, P.; Young, D. M.; Muratov, E. N.; Golbraikh, A.; Zhu, H.; Tropsha, A. J. Chem. Inf. Model. 2012, 52, 2570. doi: 10.1021/ci300338w  doi: 10.1021/ci300338w

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    4. [4]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    15. [15]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    16. [16]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    17. [17]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    18. [18]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    19. [19]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    20. [20]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

Metrics
  • PDF Downloads(8)
  • Abstract views(275)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return