Citation: Chen Zhaolong, Gao Peng, Liu Zhongfan. Graphene-Based LED: from Principle to Devices[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190700. doi: 10.3866/PKU.WHXB201907004 shu

Graphene-Based LED: from Principle to Devices

  • Corresponding author: Gao Peng, p-gao@pku.edu.cn Liu Zhongfan, zfliu@pku.edu.cn
  • Received Date: 1 July 2019
    Revised Date: 26 August 2019
    Accepted Date: 27 August 2019
    Available Online: 3 January 2019

    Fund Project: the National Natural Science Foundation of China 51432002the National Key Basic Research Program of China (973) 2016YFA0200103The project was supported by the National Key Basic Research Program of China (973) (2016YFA0200103), the National Natural Science Foundation of China (51432002, 51290272) and the Beijing Municipal Science and Technology Planning Project, China (Z161100002116020)the National Natural Science Foundation of China 51290272the Beijing Municipal Science and Technology Planning Project, China Z161100002116020

  • Group-Ⅲ nitride (Ⅲ-N) films have numerous applications in LEDs, lasers, and high-power/high-frequency electronic devices because of their direct wide band gap, high breakdown voltage, high saturation velocity of electrons, and high stability. Commercial Ⅲ-N films are usually heteroepitaxially grown on c-sapphire substrate by metal-organic chemical vapor deposition (MOCVD). However, relatively large mismatches occur in the in-plane lattice and thermal expansion between the Ⅲ-N films and sapphire substrates, which lead to high stress and high dislocation density in epilayers that reduce the performance of the LED. Moreover, the poor thermal conductivity of sapphire substrate also hinders many applications. Recently, graphene was used as a buffer layer to overcome the mismatch between Ⅲ-N films and substrates by utilizing van der Waals epitaxy and improving heat dissipation. In this review article, we consider the recent progress in the development of a new type of epitaxial substrate, the so-called "graphene/sapphire substrate" for Ⅲ-N film growth and LED applications. The growth mechanisms are summarized and future prospects are proposed. The article is divided into three parts.1. The synthesis of graphene/sapphire substrate. High-quality monolayer graphene is directly synthesized on sapphire substrates (flat substrate and nanopatterned substrate) by metal-catalyst-free CVD method. The method does not depend on the metal catalyst nor involve a complex and highly technical transfer process, and is compatible with the MOCVD and molecular beam epitaxy process.2. Growth of high-quality Ⅲ-N films on graphene/sapphire substrates. The nucleation of Ⅲ-N on graphene can be tuned by the density of defects in the graphene film. N2 plasma treatment of the graphene/sapphire substrate can increase the nucleation sites for Ⅲ-N growth by introducing pyrrolic nitrogen doping. Epitaxial lateral overgrowth of the Ⅲ-N is promoted on the graphene/sapphire substrate owing to the relatively lower diffusion barrier of atoms on graphene. Consequently, the biaxial stress in group-Ⅲ nitride is significantly decreased while the dislocation density is reduced even without a low-temperature buffer layer. Moreover, vertically-oriented graphene nanowalls can effectively improve the heat dissipation in AlN films.3. High-performance LEDs on graphene/sapphire substrate. High-quality Ⅲ-N films obtained on graphene/sapphire substrates enable LED fabrication. The as-fabricated LEDs on graphene/sapphire substrate deliver much higher light output power compared with that on bare sapphire substrate. The as-fabricated LEDs have low turn-on voltage, high output power, and good reliability. Graphene can also be utilized as transfer medium or transparent conductive electrode to boost LED performance.
  • 加载中
    1. [1]

      Pimputkar, S.; Speck, J. S.; DenBaars, S. P.; Nakamura, S. Nat. Photonics 2009, 3, 179. doi: 10.1038/nphoton.2009.32  doi: 10.1038/nphoton.2009.32

    2. [2]

      Schubert, E. F.; Kim, J. K. Science 2005, 308, 1274. doi: 10.1126/science.1108712  doi: 10.1126/science.1108712

    3. [3]

      Ponce, F. A.; Bour, D. P. Nature 1997, 386, 351. doi: 10.1038/386351a0  doi: 10.1038/386351a0

    4. [4]

      Kobayashi, Y.; Kumakura, K.; Akasaka, T.; Makimoto, T. Nature 2012, 484, 223. doi: 10.1038/nature10970  doi: 10.1038/nature10970

    5. [5]

      Choi, J. H.; Zoulkarneev, A.; Il Kim, S.; Baik, C. W.; Yang, M. H.; Park, S. S.; Suh, H.; Kim, U. J.; Bin Son, H.; Lee, J. S.; et al. Nat. Photonics 2011, 5, 763. doi: 10.1038/nphoton.2011.253  doi: 10.1038/nphoton.2011.253

    6. [6]

      Li, G.; Wang, W.; Yang, W.; Lin, Y.; Wang, H.; Lin, Z.; Zhou, S. Rep. Prog. Phys. 2016, 79, 056501. doi: 10.1088/0034-4885/79/5/056501  doi: 10.1088/0034-4885/79/5/056501

    7. [7]

      Nakamura, S.; Krames, M. R. Proc. IEEE 2013, 101, 2211. doi: 10.1109/jproc.2013.2274929  doi: 10.1109/jproc.2013.2274929

    8. [8]

      Sheu, J. K.; Chang, S. J.; Kuo, C. H.; Su, Y. K.; Wu, L. W.; Lin, Y. C.; Lai, W. C.; Tsai, J. M.; Chi, G. C.; Wu, R. K. IEEE Photonics Technol. Lett. 2003, 15, 18. doi: 10.1109/lpt.2002.805852  doi: 10.1109/lpt.2002.805852

    9. [9]

      Fernandez-Garrido, S.; Ramsteiner, M.; Gao, G.; Galves, L. A.; Sharma, B.; Corfdir, P.; Calabrese, G.; Schiaber, Z. D. S.; Pfueller, C.; Trampert, A.; et al. Nano Lett. 2017, 17, 5213. doi: 10.1021/acs.nanolett.7b01196  doi: 10.1021/acs.nanolett.7b01196

    10. [10]

      Kim, Y.; Cruz, S. S.; Lee, K.; Alawode, B. O.; Choi, C.; Song, Y.; Johnson, J. M.; Heidelberger, C.; Kong, W.; Choi, S.; et al. Nature 2017, 544, 340. doi: 10.1038/nature22053  doi: 10.1038/nature22053

    11. [11]

      Choi, J. H.; Zoulkarneev, A.; Kim, S. I.; Baik, C. W.; Yang, M. H.; Park, S. S.; Suh, H.; Kim, U. J.; Bin Son, H.; Lee, J. S.; et al. Nat. Photonics 2011, 5, 763. doi: 10.1038/nphoton.2011.253  doi: 10.1038/nphoton.2011.253

    12. [12]

      Meyaard, D. S.; Cho, J.; Schubert, E. F.; Han, S. H.; Kim, M. H.; Sone, C. Appl. Phys. Lett. 2013, 103, 121103. doi: 10.1063/1.4821538  doi: 10.1063/1.4821538

    13. [13]

      Yung, K. C.; Liem, H.; Choy, H. S.; Lun, W. K. J. Appl. Phys. 2011, 109, 094509. doi: 10.1063/1.3580264  doi: 10.1063/1.3580264

    14. [14]

      Chung, K.; Lee, C. H.; Yi, G. C. Science 2010, 330, 655. doi: 10.1126/science.1195403  doi: 10.1126/science.1195403

    15. [15]

      Wong, W. S.; Sands, T.; Cheung, N. W. Appl. Phys. Lett. 1998, 72, 599. doi: 10.1063/1.120816  doi: 10.1063/1.120816

    16. [16]

      Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849  doi: 10.1038/nmat1849

    17. [17]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    18. [18]

      Chen, J. H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S. Nat. Nanotechnol. 2008, 3, 206. doi: 10.1038/nnano.2008.58  doi: 10.1038/nnano.2008.58

    19. [19]

      Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X.; Yao, Z.; Huang, R.; Broido, D.; et al. Science 2010, 328, 213. doi: 10.1126/science.1184014  doi: 10.1126/science.1184014

    20. [20]

      Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996  doi: 10.1126/science.1157996

    21. [21]

      Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308. doi: 10.1126/science.1156965  doi: 10.1126/science.1156965

    22. [22]

      Meric, I.; Han, M. Y.; Young, A. F.; Ozyilmaz, B.; Kim, P.; Shepard, K. L. Nat. Nanotechnol. 2008, 3, 654. doi: 10.1038/nnano.2008.268  doi: 10.1038/nnano.2008.268

    23. [23]

      Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. Nat. Mater. 2015, 14, 271. doi: 10.1038/nmat4170  doi: 10.1038/nmat4170

    24. [24]

      Liu, Z. F. Acta Phys. -Chim. Sin. 2017, 33, 853.  doi: 10.3866/PKU.WHXB201703171

    25. [25]

      Liu, S. W.; Wang, H. P.; Xu, Q.; Ma, T. B.; Yu, G.; Zhang, C.; Geng, D.; Yu, Z.; Zhang, S.; Wang, W.; et al. Nat. Commun. 2017, 8, 839. doi: 10.1038/ncomms14029  doi: 10.1038/ncomms14029

    26. [26]

      Xia, F.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Nat. Nanotechnol. 2009, 4, 839. doi: 10.1038/nnano.2009.292  doi: 10.1038/nnano.2009.292

    27. [27]

      Nayak, T. R.; Andersen, H.; Makam, V. S.; Khaw, C.; Bae, S.; Xu, X.; Ee, P. L. R.; Ahn, J. H.; Hong, B. H.; Pastorin, G.; et al. ACS Nano 2011, 5, 4670. doi: 10.1021/nn200500h  doi: 10.1021/nn200500h

    28. [28]

      Kong, W.; Li, H.; Qiao, K.; Kim, Y.; Lee, K.; Nie, Y.; Lee, D.; Osadchy, T.; Molnar, R. J.; Gaskill, D. K.; et al. Nat. Mater. 2018, 17, 999. doi: 10.1038/s41563-018-0176-4  doi: 10.1038/s41563-018-0176-4

    29. [29]

      Tan, X.; Yang, S.; Li, H. Acta Chim. Sin. 2017, 75, 271.  doi: 10.6023/a16100552

    30. [30]

      Kim, J.; Bayram, C.; Park, H.; Cheng, C. W.; Dimitrakopoulos, C.; Ott, J. A.; Reuter, K. B.; Bedell, S. W.; Sadana, D. K. Nat. Commun. 2014, 5. doi: 10.1038/ncomms5836  doi: 10.1038/ncomms5836

    31. [31]

      Nam, H.; Tran Viet, C.; Han, M.; Ryu, B. D.; Chandramohan, S.; Park, J. B.; Kang, J. H.; Park, Y. J.; Ko, K. B.; Kim, H. Y.; et al. Nat. Commun. 2013, 4. doi: 10.1038/ncomms2448  doi: 10.1038/ncomms2448

    32. [32]

      Gupta, P.; Rahman, A. A.; Hatui, N.; Gokhale, M. R.; Deshmukh, M. M.; Bhattacharya, A. J. Cryst. Growth 2013, 372, 105. doi: 10.1016/j.jcrysgro.2013.03.020  doi: 10.1016/j.jcrysgro.2013.03.020

    33. [33]

      Mohseni, P. K.; Behnam, A.; Wood, J. D.; Zhao, X.; Yu, K. J.; Wang, N. C.; Rockett, A.; Rogers, J. A.; Lyding, J. W.; Pop, E.; et al. Adv. Mater. 2014, 26, 3755. doi: 10.1002/adma.201305909  doi: 10.1002/adma.201305909

    34. [34]

      Chen, Z.; Liu, Z.; Wei, T.; Yang, S.; Dou, Z.; Wang, Y.; Ci, H.; Chang, H.; Qi, Y.; Yan, J.; et al. Adv. Mater. 2019, 31, 1807345. doi: 10.1002/adma.201807345  doi: 10.1002/adma.201807345

    35. [35]

      Chang, H.; Chen, Z.; Li, W.; Yan, J.; Hou, R.; Yang, S.; Liu, Z.; Yuan, G.; Wang, J.; Li, J.; et al. Appl. Phys. Lett. 2019, 114, 091107. doi: 10.1063/1.5081112  doi: 10.1063/1.5081112

    36. [36]

      Zhang, L.; Li, X.; Shao, Y.; Yu, J.; Wu, Y.; Hao, X.; Yin, Z.; Dai, Y.; Tian, Y.; Huo, Q.; et al. ACS Appl. Mater. Interfaces 2015, 7, 4504. doi: 10.1021/am5087775  doi: 10.1021/am5087775

    37. [37]

      Yoo, H.; Chung, K.; Choi, Y. S.; Kang, C. S.; Oh, K. H.; Kim, M.; Yi, G. C. Adv. Mater. 2012, 24, 515. doi: 10.1002/adma.201103829  doi: 10.1002/adma.201103829

    38. [38]

      Li, Y.; Zhao, Y.; Wei, T.; Liu, Z.; Duan, R.; Wang, Y.; Zhang, X.; Wu, Q.; Yan, J.; Yi, X.; et al. Jpn. J. Appl. Phys. 2017, 56. doi: 10.7567/jjap.56.085506  doi: 10.7567/jjap.56.085506

    39. [39]

      Yoo, H.; Chung, K.; Park, S. I.; Kim, M.; Yi, G. C. Appl. Phys. Lett. 2013, 102, 051908. doi: 10.1063/1.4790385  doi: 10.1063/1.4790385

    40. [40]

      Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O'Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P.; et al. Nat. Mater. 2014, 13, 624. doi: 10.1038/nmat3944  doi: 10.1038/nmat3944

    41. [41]

      Chen, X. D.; Liu, Z. B.; Zheng, C. Y.; Xing, F.; Yan, X. Q.; Chen, Y.; Tian, J. G. Carbon 2013, 56, 271. doi: 10.1016/j.carbon.2013.01.011  doi: 10.1016/j.carbon.2013.01.011

    42. [42]

      Liang, X.; Sperling, B. A.; Calizo, I.; Cheng, G.; Hacker, C. A.; Zhang, Q.; Obeng, Y.; Yan, K.; Peng, H.; Li, Q.; et al. ACS Nano 2011, 5, 9144. doi: 10.1021/nn203377t  doi: 10.1021/nn203377t

    43. [43]

      Lin, Y. C.; Jin, C.; Lee, J. C.; Jen, S. F.; Suenaga, K.; Chiu, P. W. ACS Nano 2011, 5, 2362. doi: 10.1021/nn200105j  doi: 10.1021/nn200105j

    44. [44]

      Chen, Z.; Zhang, X.; Dou, Z.; Wei, T.; Liu, Z.; Qi, Y.; Ci, H.; Wang, Y.; Li, Y.; Chang, H.; et al. Adv. Mater. 2018, 30, 1801608. doi: 10.1002/adma.201801608  doi: 10.1002/adma.201801608

    45. [45]

      Qi, Y.; Wang, Y.; Pang, Z.; Dou, Z.; Wei, T.; Gao, P.; Zhang, S.; Xu, X.; Chang, Z.; Deng, B.; et al. J. Am. Chem. Soc. 2018, 140, 11935. doi: 10.1021/jacs.8b03871  doi: 10.1021/jacs.8b03871

    46. [46]

      Ci, H.; Chang, H.; Wang, R.; Wei, T.; Wang, Y.; Chen, Z.; Sun, Y.; Dou, Z.; Liu, Z..; Li, J.; et al. Adv. Mater. 2019, 31, 1901624. doi: 10.1002/adma.201901624  doi: 10.1002/adma.201901624

    47. [47]

      Chen, Z.; Qi, Y.; Chen, X.; Zhang, Y.; Liu, Z. Adv. Mater. 2019, 31, 1803639. doi: 10.1002/adma.201803639  doi: 10.1002/adma.201803639

    48. [48]

      Sun, J.; Chen, Y.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z.; Chen, Z.; Song, X.; Gao, Y.; Ruemmeli, M. H.; et al. Nano Lett. 2015, 15, 5846. doi: 10.1021/acs.nanolett.5b01936  doi: 10.1021/acs.nanolett.5b01936

    49. [49]

      Kohler, C.; Hajnal, Z.; Deak, P.; Frauenheim, T.; Suhai, S. Phys. Rev. B 2001, 64, 085333. doi: 10.1103/PhysRevB.64.085333  doi: 10.1103/PhysRevB.64.085333

    50. [50]

      Fanton, M. A.; Robinson, J. A.; Puls, C.; Liu, Y.; Hollander, M. J.; Weiland, B. E.; LaBella, M.; Trumbull, K.; Kasarda, R.; Howsare, C.; et al. ACS Nano 2011, 5, 8062. doi: 10.1021/nn202643t  doi: 10.1021/nn202643t

    51. [51]

      Hwang, J.; Kim, M.; Campbell, D.; Alsalman, H. A.; Kwak, J. Y.; Shivaraman, S.; Woll, A. R.; Singh, A. K.; Hennig, R. G.; Gorantla, S.; et al. ACS Nano 2013, 7, 385. doi: 10.1021/nn305486x  doi: 10.1021/nn305486x

    52. [52]

      Alaskar, Y.; Arafin, S.; Wickramaratne, D.; Zurbuchen, M. A.; He, L.; McKay, J.; Lin, Q.; Goorsky, M. S.; Lake, R. K.; Wang, K. L. Adv. Funct. Mater. 2014, 24, 6629. doi: 10.1002/adfm.201400960  doi: 10.1002/adfm.201400960

    53. [53]

      Sun, M.; Tang, W.; Ren, Q.; Wang, S.; JinYu; Du, Y.; Zhang, Y. Appl. Surf. Sci. 2015, 356, 668. doi: 10.1016/j.apsusc.2015.08.102  doi: 10.1016/j.apsusc.2015.08.102

    54. [54]

      Al Balushi, Z. Y.; Miyagi, T.; Lin, Y. C.; Wang, K.; Calderin, L.; Bhimanapati, G.; Redwing, J. M.; Robinson, J. A. Surf. Sci. 2015, 634, 81. doi: 10.1016/j.susc.2014.11.020  doi: 10.1016/j.susc.2014.11.020

    55. [55]

      Nam, H.; Tran Viet, C.; Han, M.; Ryu, B. D.; Chandramohan, S.; Park, J. B.; Kang, J. H.; Park, Y. J.; Ko, K. B.; Kim, H. Y.; et al. Nat. Commun. 2013, 4, 1452. doi: 10.1038/ncomms2448  doi: 10.1038/ncomms2448

    56. [56]

      Moon, J.; An, J.; Sim, U.; Cho, S. P.; Kang, J. H.; Chung, C.; Seo, J. H.; Lee, J.; Nam, K. T.; Hong, B. H. Adv. Mater. 2014, 26, 3501. doi: 10.1002/adma.201306287  doi: 10.1002/adma.201306287

    57. [57]

      Shao, Y.; Zhang, S.; Engelhard, M. H.; Li, G.; Shao, G.; Wang, Y.; Liu, J.; Aksay, I. A.; Lin, Y. J. Mater. Chem. 2010, 20, 7491. doi: 10.1039/c0jm00782j  doi: 10.1039/c0jm00782j

    58. [58]

      Jafri, R. I.; Rajalakshmi, N.; Ramaprabhu, S. J. Mater. Chem. 2010, 20, 7114. doi: 10.1039/c0jm00467g  doi: 10.1039/c0jm00467g

    59. [59]

      Cancado, L. G.; Jorio, A.; Martins Ferreira, E. H.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Nano Lett. 2011, 11, 3190. doi: 10.1021/nl201432g  doi: 10.1021/nl201432g

    60. [60]

      Trodahl, H. J.; Martin, F.; Muralt, P.; Setter, N. Appl. Phys. Lett. 2006, 89, 061905. doi: 10.1063/1.2335582  doi: 10.1063/1.2335582

    61. [61]

      Prokofyeva, T.; Seon, M.; Vanbuskirk, J.; Holtz, M.; Nikishin, S. A.; Faleev, N. N.; Temkin, H.; Zollner, S. Phys. Rev. B 2001, 63, 125313. doi: 10.1103/PhysRevB.63.125313  doi: 10.1103/PhysRevB.63.125313

    62. [62]

      Sarua, A.; Kuball, M.; Van Nostrand, J. E. Appl. Phys. Lett. 2002, 81, 1426. doi: 10.1063/1.1501762  doi: 10.1063/1.1501762

    63. [63]

      Srikant, V.; Speck, J. S.; Clarke, D. R. J. Appl. Phys. 1997, 82, 4286. doi: 10.1063/1.366235  doi: 10.1063/1.366235

    64. [64]

      Wu, Y.; Hanlon, A.; Kaeding, J. F.; Sharma, R.; Fini, P. T.; Nakamura, S.; Speck, J. S. Appl. Phys. Lett. 2004, 84, 912. doi: 10.1063/1.1646222  doi: 10.1063/1.1646222

    65. [65]

      Ra, Y. H.; Navamathavan, R.; Park, J. H.; Lee, C. R. ACS Appl. Mater. Interfaces 2013, 5, 2111. doi: 10.1021/am303056v  doi: 10.1021/am303056v

    66. [66]

      Goldberger, J.; He, R. R.; Zhang, Y. F.; Lee, S. W.; Yan, H. Q.; Choi, H. J.; Yang, P. D. Nature 2003, 422, 599. doi: 10.1038/nature01551  doi: 10.1038/nature01551

    67. [67]

      Yasan, A.; McClintock, R.; Mayes, K.; Shiell, D.; Gautero, L.; Darvish, S. R.; Kung, P.; Razeghi, M. Appl. Phys. Lett. 2003, 83, 4701. doi: 10.1063/1.1633019  doi: 10.1063/1.1633019

    68. [68]

      Yasan, A.; McClintock, R.; Mayes, K.; Darvish, S. R.; Kung, P.; Razeghi, M. Appl. Phys. Lett. 2002, 81, 801. doi: 10.1063/1.1497709  doi: 10.1063/1.1497709

    69. [69]

      Hoiaas, I. M.; Liudi Mulyo, A.; Vullum, P. E.; Kim, D. C.; Ahtapodov, L.; Fimland, B. O.; Kishino, K.; Weman, H. Nano Lett. 2019, 19, 1649. doi: 10.1021/acs.nanolett.8b04607  doi: 10.1021/acs.nanolett.8b04607

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    3. [3]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    10. [10]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    11. [11]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    12. [12]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    13. [13]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    14. [14]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    15. [15]

      Yajun Jian Quanguo Zhai Quan Gu Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006

    16. [16]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    17. [17]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    18. [18]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(14)
  • Abstract views(214)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return