Citation: Cao Aoneng. "Confined Lowest Energy Structure Fragments (CLESFs)" Hypothesis for Protein Structure and the "Stone Age" of Protein Prebiotic Evolution[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190700. doi: 10.3866/PKU.WHXB201907002 shu

"Confined Lowest Energy Structure Fragments (CLESFs)" Hypothesis for Protein Structure and the "Stone Age" of Protein Prebiotic Evolution

  • Corresponding author: Cao Aoneng, ancao@shu.edu.cn
  • Received Date: 1 July 2019
    Revised Date: 5 August 2019
    Accepted Date: 22 August 2019
    Available Online: 2 January 2019

    Fund Project: the National Key Research and Development Plan of China 2016YFA0201600The project was supported by the National Natural Science Foundation of China (31871007, 31571024) and the National Key Research and Development Plan of China (2016YFA0201600)the National Natural Science Foundation of China 31871007the National Natural Science Foundation of China 31571024

  • The protein folding problem is regarded as the second genetic code which has yet to be deciphered. To date, Anfinsen's thermodynamic hypothesis, i.e., the native structure of a protein is its most stable state, is the only generally accepted theory for protein folding, although exceptions have been reported. However, this hypothesis is a simple overall statement, with no information regarding where or how a protein is folded. The mechanism underlying protein folding has not yet been elucidated, and it is still not clear how the overall sequence (context) determines the structure of a protein. Based on our recent study, we propose a "Confined Lowest Energy Structure Fragments" (CLESFs) hypothesis. This hypothesis states that proteins are CLESFs joined together by a small number of strong constraints (key long-range interactions). Although the native structure of a protein contains various long-range interactions between amino acids that are far apart in the sequence, only a few strong interactions, such as disulfide bonds, hydrophobic packing, structural ion coordination as in zinc fingers, and hydrogen-bonding networks within beta-sheets, are critical. These key long-range interactions serve as a form of punctuation in the "language" of protein sequence and divide the protein sequence into different "sentences, " i.e., fragments (CLESFs). The local native structures of these CLESFs are the lowest energy structures under the confinements of those key long-range interactions, but the overall protein structure is not necessarily the global minimum as Anfinsen hypothesized. The same fragment may adopt different native structures in different proteins. Each native structure of the same fragment in a different protein is a local minimum for the free fragment and the "global minimum" for the fragment under the specific confinement in the specific protein. Essentially, the native local structures of the CLESFs have an enthalpic advantage (local minimum) which serves as a driving force to form the key long-range interactions; the key long-range interactions stabilize the native local structures with entropy effects by excluding enormous amount of random conformations possible for the fragments. Our CLESFs hypothesis suggests that the protein folding code is not as mysterious as previously thought. Only a few critical long-range interactions have principal influence on the local structures of protein fragments. This is why protein fragments can be grafted onto different proteins, and even more notably, can be grafted onto gold nanoparticles to form a "goldbody". Given that short peptides are generally flexible, and flexible peptides are usually unstable and inactive, it is still a mystery how proteins, i.e., peptides that are long enough to fold into unique structures, evolved in the first place. The CLESFs hypothesis implies that prior to the appearance of the first protein that was long enough to fold into a unique stable structure, there might have been a "Stone Age" during prebiotic protein evolution. At that time, short peptides that could not fold by themselves might have been able to adopt active conformations with a few strong anchors to the surface of "stones", such as rocks, solid particles, or vesicles in the primitive soup, forming CLESFs and gaining an evolutionary advantage against degradation. Later, multiple CLESFs on the same "stone" might have assembled in certain ways to perform more complicated functions, and finally, the first protein might have emerged when individual CLESFs joined together and left the "stone".
  • 加载中
    1. [1]

      Sela, M.; White, F. H.; Anfinsen, C. B. Science 1957, 125, 691. doi: 10.1126/science.125.3250.691  doi: 10.1126/science.125.3250.691

    2. [2]

      Kennedy, D.; Norman, C. Science 2005, 309, 75. doi: 10.1126/science.309.5731.75  doi: 10.1126/science.309.5731.75

    3. [3]

      Cao, A.; Sha, Y.; Lai, L.; Tang, Y. Protein Peptide Lett. 1998, 5, 53.

    4. [4]

      Yan, G. H.; Wang, K.; Shao, Z.; Luo, L.; Song, Z. M.; Chen, J.; Jin, R.; Deng, X.; Wang, H.; Cao, Z.; et al. Proc. Nat. Acad. Sci. U.S.A. 2018, 115, E34. doi: 10.1073/pnas.1713526115  doi: 10.1073/pnas.1713526115

    5. [5]

      Ramachandran, G. N.; Ramakrishnan, C.; Sasisekharan, V. J. Mol. Biol. 1963, 7, 95. doi: 10.1016/S0022-2836(63)80023-6  doi: 10.1016/S0022-2836(63)80023-6

    6. [6]

      Cao, A.; Lai, L.; Tang, Y. Prog. Biochem. Biophys. 1998, 25 (3), 197.  doi: 10.3321/j.issn:1000-3282.1998.03.002

    7. [7]

      Chou, P. Y.; Fasman, G. D. Biochemistry 1974, 13, 211. doi: 10.1021/bi00699a001  doi: 10.1021/bi00699a001

    8. [8]

      Pauling, L.; Corey, R. B.; Branson, H. R. Proc. Nat. Acad. Sci. U.S.A. 1951, 37, 205. doi: 10.1073/pnas.37.4.205  doi: 10.1073/pnas.37.4.205

    9. [9]

      Pauling, L.; Corey, R. B. Proc. Nat. Acad. Sci. U.S.A. 1951, 37, 251. doi: 10.1073/pnas.37.5.251  doi: 10.1073/pnas.37.5.251

    10. [10]

      Plaxco, K. W.; Simons, K. T.; Baker, D. J. Mol. Biol. 1998, 277, 985. doi: 10.1006/jmbi.1998.1645  doi: 10.1006/jmbi.1998.1645

    11. [11]

      Landschulz, W. H.; Johnson, P. F.; McKnight, S. L. Science 1988, 240, 1759. doi: 10.1126/science.3289117  doi: 10.1126/science.3289117

    12. [12]

      Kauzmann, W. Adv. Protein Chem. 1959, 14, 1. doi: 10.1016/S0065-3233(08)60608-7  doi: 10.1016/S0065-3233(08)60608-7

    13. [13]

      Lai, B.; Li, Y.; Cao, A.; Lai, L. Acta Phys. -Chim. Sin. 2001, 17 (10), 865.  doi: 10.3866/PKU.WHXB20011001

    14. [14]

      Laity, J. H.; Lee, B. M.; Wright, P. E. Curr. Opin. Struct. Biol. 2001, 11, 39. doi: 10.1016/S0959-440X(00)00167-6  doi: 10.1016/S0959-440X(00)00167-6

    15. [15]

      Richards, F. M. Proc. Nat. Acad. Sci. U.S.A. 1958, 44, 162. doi: 10.1073/pnas.44.2.162  doi: 10.1073/pnas.44.2.162

    16. [16]

      Potts, Jr. J. T.; Young, D. M.; Anfinsen, C. B. J. Biol. Chem. 1963, 238, 2593.
       

    17. [17]

      Wang, Z.; Lai, B.; Cao, J.; Li, Z.; Qu, L.; Cao, A.; Lai, L. Acta Phys. -Chim. Sin. 2008, 24 (10), 1745.  doi: 10.1016/S1872-1508(08)60070-4

    18. [18]

      Wu, H. Chin. J. Physiol. 1931, 5 (4), 321. doi: 10.1016/S0065-3233(08)60330-7  doi: 10.1016/S0065-3233(08)60330-7

    19. [19]

      Epstein, C. J.; Goldberger, R. F.; Anfinsen, C. B. Cold Spring Harbor Symp. Quant. Biol. 1963, 28, 439.  doi: 10.1101/SQB.1963.028.01.060

    20. [20]

      Anfinsen, C. B. Science 1973, 181, 223. doi: 10.1126/science.181.4096.223  doi: 10.1126/science.181.4096.223

    21. [21]

      Levinthal, C. J. Chem. Phys. 1968, 65, 44.

    22. [22]

      Cao, A.; Welker, E.; Scheraga, H. Biochemistry 2001, 40, 8536. doi: 10.1021/bi010692j  doi: 10.1021/bi010692j

    23. [23]

      Radford, S. E.; Dobson, C. M.; Evans, P. A. Nature 1992, 358, 302. doi: 10.1038/358302a0  doi: 10.1038/358302a0

    24. [24]

      Creighton, T. E. Science 1992, 256, 111. doi: 10.1126/science.1373519  doi: 10.1126/science.1373519

    25. [25]

      Bu, P.; He, C.; Zhao, X. Acta Phys. -Chim. Sin. 2019, 35 (5), 546.  doi: 10.3866/PKU.WHXB201806072

    26. [26]

      Clarke, J.; Cota, E.; Fowler, S. B.; Hamill, S. J. Structure 1999, 7 (9), 1145. doi: 10.1016/S0969-2126(99)80181-6  doi: 10.1016/S0969-2126(99)80181-6

    27. [27]

      Cao, A.; Wang, G.; Lai, L.; Tang, Y. Biochem. Bioph. Res. Co. 2002, 291, 795. doi: 10.1006/bbrc.2002.6526  doi: 10.1006/bbrc.2002.6526

    28. [28]

      Kim, P. S.; Baldwin, R. L. Annu. Rev. Biochem. 1982, 51, 459. doi: 10.1146/annurev.bi.51.070182.002331  doi: 10.1146/annurev.bi.51.070182.002331

    29. [29]

      Kim, P. S.; Baldwin, R. L. Annu. Rev. Biochem. 1990, 59, 631. doi: 10.1146/annurev.bi.59.070190.003215  doi: 10.1146/annurev.bi.59.070190.003215

    30. [30]

      Ptitsyn, O. B.; Rashin, A. A. Biophys. Chem. 1975, 3, 1. doi: 10.1016/0301-4622(75)80033-0  doi: 10.1016/0301-4622(75)80033-0

    31. [31]

      Schellman, J. A. Compt. Rend. Lab. Carlsberg. Ser. Chim. 1955, 29, 230.

    32. [32]

      Tanford, C. J. Am. Chem. Soc. 1962, 84, 4240. doi: 10.1021/ja00881a009  doi: 10.1021/ja00881a009

    33. [33]

      Creighton, T. E. Trends Biochem. Sci. 1997, 22, 6. doi: 10.1016/S0968-0004(96)20030-1  doi: 10.1016/S0968-0004(96)20030-1

    34. [34]

      Baldwin, R. L. Trends Biochem. Sci. 1989, 14, 291. doi: 10.1016/0968-0004(89)90067-4  doi: 10.1016/0968-0004(89)90067-4

    35. [35]

      Daggett, V.; Fersht, A. R. Trends Biochem. Sci. 2003, 28, 18. doi: 10.1016/S0968-0004(02)00012-9  doi: 10.1016/S0968-0004(02)00012-9

    36. [36]

      Thirumalai, D.; Samanta, H. S.; Maity, H.; Reddy, G. Trends Biochem. Sci. 2019, 44, 675. doi: 10.1016/j.tibs.2019.04.003  doi: 10.1016/j.tibs.2019.04.003

    37. [37]

      Hayer-Hartl, M.; Bracher, A.; Hartl, F. U. Trends Biochem. Sci. 2016, 41, 62. doi: 10.1016/j.tibs.2015.07.009  doi: 10.1016/j.tibs.2015.07.009

    38. [38]

      Šali, A.; Shakhnovich, E.; Karplus, M. Nature 1994, 369, 248. doi: 10.1038/369248a0  doi: 10.1038/369248a0

    39. [39]

      Zhou, R.; Huang, X.; Margulis, C. J.; Berne, B. J. Science 2004, 305, 1605. doi: 10.1126/science.1101176  doi: 10.1126/science.1101176

    40. [40]

      Onuchic, J. N.; Nymeyer, H.; García, A. E.; Chahine, J.; Socci, N. D. Adv. Protein Chem. 2000, 53, 152. doi: 10.1016/S0065-3233(00)53003-4  doi: 10.1016/S0065-3233(00)53003-4

    41. [41]

      Wolynes, P. G. Biochimie 2015, 119, 218. doi: 10.1016/j.biochi.2014.12.007  doi: 10.1016/j.biochi.2014.12.007

    42. [42]

      Harper, J.W.; Vallee, B. L. Biochemistry 1989, 28, 1875. doi: 10.1021/bi00430a067  doi: 10.1021/bi00430a067

    43. [43]

      Raines, R. T.; Toscano, M. P.; Nierengarten, D. M.; Ha, J. H.; Auerbach, R. J. Biol. Chem. 1995, 270, 17180. doi: 10.1074/jbc.270.29.17180  doi: 10.1074/jbc.270.29.17180

    44. [44]

      Nicaise, M.; Valerio-Lepiniec, M.; Minard, P.; Desmadril, M. Protein Sci. 2004, 13, 1882. doi: 10.1110/ps.03540504  doi: 10.1110/ps.03540504

    45. [45]

      Kiss, C.; Fisher, H.; Pesavento, E.; Dai, M.; Valero, R.; Ovecka, M.; Nolan, R.; Phipps, M. L.; Velappan, N.; Chasteen, L.; et al. Nucleic Acids Res. 2006, 34 (19), e132. doi: 10.1093/nar/gkl681  doi: 10.1093/nar/gkl681

    46. [46]

      Skerra, A. J. Mol. Recognit. 2000, 13, 167.  doi: 10.1002/1099-1352(200007/08)13:4<167::AID-JMR502>3.0.CO;2-9

    47. [47]

      Miburn, P. J.; Scheraga, H. A. J. Protein Chem. 1988, 7, 377. doi: 10.1007/BF01024887  doi: 10.1007/BF01024887

    48. [48]

      Mottonen, J.; Strand, A.; Symersky, J.; Sweet, R. M.; Danley, D. E.; Geoghegan, K. F.; Gerard, R. D.; Goldsmith, E. J. Nature 1992, 355, 270. doi: 10.1038/355270a0  doi: 10.1038/355270a0

    49. [49]

      Yu, C.; Niu, X.; Jin, F.; Liu, Z.; Jin, C.; Lai, L. Sci. Rep. 2016, 6, 22298. doi: 10.1038/srep22298  doi: 10.1038/srep22298

    50. [50]

      Tompa, P. Trends Biochem. Sci. 2012, 37, 509. doi: 10.1016/j.tibs.2012.08.004  doi: 10.1016/j.tibs.2012.08.004

    51. [51]

      Cao, A.; Hu, D.; Lai, L. Protein Sci. 2004, 13, 319. doi: 10.1110/ps.03183404  doi: 10.1110/ps.03183404

    52. [52]

      Cao, A.; Wang, W.; Yuwen, T.; Deng, W.; Lai, L. Acta Phys. -Chim. Sin. 2010, 26 (7), 2015.  doi: 10.3866/PKU.WHXB20100708

    53. [53]

      Cao, A.; Ye, Z.; Cai, Z.; Dong, E.; Yang, X.; Liu, G.; Deng, X.; Wang, Y.; Yang, S. T.; Wang, H.; et al. Angew. Chim. Int. Ed. 2010, 49, 3022. doi: 10.1002/anie.200906883  doi: 10.1002/anie.200906883

    54. [54]

      Liu, Y.; Cao, A. Meth. Enzymol. 2017, 590, 1. doi: 10.1016/bs.mie.2016.12.001  doi: 10.1016/bs.mie.2016.12.001

    55. [55]

      Liu, Y.; Song, Z. M.; Deng, X.; Cui, Y.; Yang, Y. F.; Han, K.; Jin. R.; Wang, H.; Liu, Y.; Cao, A. Nanomedicine (Lond.) 2015, 10 (13), 2005. doi: 10.2217/NNM.15.56  doi: 10.2217/NNM.15.56

    56. [56]

      Yang, S. T.; Liu, Y.; Wang, Y. W.; Cao, A. Small 2013, 9, 1635. doi: 10.1002/smll.201201492  doi: 10.1002/smll.201201492

    57. [57]

      Yang, Y.; Xiang, K.; Yang, Y. X.; Wang, Y. W.; Zhang, X.; Cui, Y.; Wang, H.; Zhu, Q.; Fan, L.; Liu, Y.; et al. Nanoscale 2013, 5, 10345. doi: 10.1039/c3nr02508j  doi: 10.1039/c3nr02508j

    58. [58]

      Cai, Z.; Ye, Z.; Yang, X.; Chang, Y.; Wang, H.; Liu, Y.; Cao, A. Nanoscale 2011, 3, 1974. doi: 10.1039/c0nr00956c  doi: 10.1039/c0nr00956c

    59. [59]

      Yang, X.; Cai, Z.; Ye, Z.; Chen, S.; Yang, Y.; Wang, H.; Cao, A. Nanoscale 2012, 4, 414. doi: 10.1039/c1nr11153a  doi: 10.1039/c1nr11153a

    60. [60]

      Cao, Y.; Cui, Y.; Yang, Y.; Hua, J.; Song, Z. M.; Wang, H.; Liu, Y.; Cao, A. Nano Res. 2018, 11 (5), 2512. doi: 10.1007/s12274-017-1876-9  doi: 10.1007/s12274-017-1876-9

    61. [61]

      Schopf, J. W. Science 1993, 260, 640. doi: 10.1126/science.260.5108.640  doi: 10.1126/science.260.5108.640

    62. [62]

      Gesteland, R. F.; Atkins, J. F. The RNA World; Cold Spring Harbour Press, New York, USA, 1993.

    63. [63]

      Miller, S. L. Science 1953, 117, 528. doi: 10.1126/science.117.3046.528  doi: 10.1126/science.117.3046.528

    64. [64]

      Parker, E. T.; Cleaves, H. J.; Dworkin, J. P.; Glavin, D. P.; Callahan, M.; Aubrey, A.; Lazcano, A.; Bada, J. L. Proc. Nat. Acad. Sci. U.S.A. 2011, 108, 5526. doi: 10.1073/pnas.1019191108  doi: 10.1073/pnas.1019191108

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Jialin Xie Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Life’s Guardian Angel: Progesterone. University Chemistry, 2024, 39(10): 416-419. doi: 10.12461/PKU.DXHX202403068

    4. [4]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    5. [5]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    6. [6]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    7. [7]

      Qingcui Yang Wen Liu Li Cao Chen Tang Bing Xu Jie Zhao . For Entropy Hurts: Life Thrives on Negative Entropy. University Chemistry, 2024, 39(9): 151-156. doi: 10.12461/PKU.DXHX202402029

    8. [8]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    9. [9]

      Jing Du Xi Yu Xiaofei Ma Wentao Zhao . Artificial Intelligence & Chemistry Course Construction. University Chemistry, 2024, 39(11): 65-71. doi: 10.12461/PKU.DXHX202403072

    10. [10]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

    11. [11]

      Ping Li Chao Yin . Teaching Exploration and Practical Innovation of General Education Courses in the Context of Artificial Intelligence. University Chemistry, 2024, 39(10): 402-407. doi: 10.12461/PKU.DXHX202403075

Metrics
  • PDF Downloads(9)
  • Abstract views(419)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return