Citation: Zhao Huabo, Ma Ding. χ-Fe5C2: Structure, Synthesis, and Tuning of Catalytic Properties[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190608. doi: 10.3866/PKU.WHXB201906087 shu

χ-Fe5C2: Structure, Synthesis, and Tuning of Catalytic Properties

  • Corresponding author: Ma Ding, dma@pku.edu.cn
  • Received Date: 27 June 2019
    Revised Date: 3 August 2019
    Accepted Date: 19 August 2019
    Available Online: 22 January 2019

    Fund Project: The project was supported by the National Key Research and Development Program of China (2017YFB0602500)the National Key Research and Development Program of China 2017YFB0602500

  • Iron carbides, especially Hägg carbide (χ-Fe5C2), have become a topic of significant research interest due to their potential application in various fields over the past decades. For Fischer-Tr psch (F-T) synthesis, χ-Fe5C2 has been confirmed as an active phase. In addition, this well-known catalytic material is a candidate for potential application in electrochemistry, magnetic imaging, and various therapies. The physical chemistry, including structure, stability, and catalytic properties of χ-Fe5C2 has been studied since its discovery. The C2/c crystal structure of Hägg carbide was initially resolved in the 1960s. Because various iron oxides and carbides always co-exist in the synthesized χ-Fe5C2 samples, the structure model still faces challenges. The crystal structure is being revised with high-purity samples using modern characterization techniques and theoretical methods. However, it is very difficult to obtain the pure phase of χ-Fe5C2 via traditional preparation methods owing to the metastable phase of χ-Fe5C2. Hence, tremendous efforts have been devoted to the synthesis of χ-Fe5C2. Recently, some processes to prepare single-phase and structure-controlled χ-Fe5C2 nanostructures have been reported. Many iron and carbon precursors can be used to prepare Hägg carbide. Carburization in solid-solid, solid-gas, and solid-liquid phases can be adopted to synthesize χ-Fe5C2 of various sizes and morphologies. The success of synthetic chemistry has provided novel insights into the mechanism of phase transformation in χ-Fe5C2. More details regarding the formation of the χ-Fe5C2 structure in the solid-gas and solid-liquid phases have been revealed via in situ characterization methods. The formation and crystallization of an Fe-C amorphous composite is likely the key step. The application of χ-Fe5C2 in catalysis has also benefited from novel synthesis strategies. With the development of these preparation methods, tuning the activity and selectivity of χ-Fe5C2 has become possible. A heterostructure of small Co/χ-Fe5C2 with low cobalt loading showed an unexpectedly high CO conversion rate at low temperature. Beyond classical F-T synthesis, χ-Fe5C2 is a promising catalyst for the production of light olefins, long chain α-olefins, aromatics, and alcohol synthesis by modification with other elements. Combining density functional theory (DFT) calculations and kinetic analysis, the roles of promoters and interaction with χ-Fe5C2 have been evaluated to some extent. Herein, the recent progress in the synthesis, structural analysis, formation mechanisms, and catalytic performance of χ-Fe5C2 is summarized. A collection of synthesis methods is presented, and novel methods for regulating catalytic properties are reviewed. We believe that advanced synthesis methods are key to a deeper understanding and better utilization of this material.
  • 加载中
    1. [1]

      Jack, D. H.; Jack, K. H. Mater. Sci. Eng. 1973, 11 (1), 1. doi: 10.1016/0025-5416(73)90055-4  doi: 10.1016/0025-5416(73)90055-4

    2. [2]

      De Smit, E.; Weckhuysen, B. M. Chem. Soc. Rev. 2008, 37 (12), 2758. doi: 10.1039/b805427d  doi: 10.1039/b805427d

    3. [3]

      Fang, C. M.; Sluiter, M. H.; Van Huis, M. A.; Zandbergen, H. W. Phys. Rev. Lett. 2010, 105 (5), 055503. doi: 10.1103/PhysRevLett.105.055503  doi: 10.1103/PhysRevLett.105.055503

    4. [4]

      Amelse, J. A.; Grynkewich, G.; Butt, J. B.; Matyi, R. J.; Schwartz, L. H.; Shapiro, A. J. Phys. Chem. 1981, 85 (17), 2484. doi: 10.1021/j150606a020  doi: 10.1021/j150606a020

    5. [5]

      Rao, K. R. P. M.; Huggins, F. E.; Ganguly, B.; Mahajan, V.; Huffman, G. P.; Davis, B.; O'Brien, R. J.; Xu, L. G.; Rao, V. U. S. Hyperfine Interact. 1994, 93 (1), 1755. doi: 10.1007/BF02072941  doi: 10.1007/BF02072941

    6. [6]

      Cubeiro, M. L.; Morales, H.; Goldwasser, M. R.; Pérez-Zurita, M. J.; González-Jiménez, F.; Urbina, de N. C. Appl. Catal. A 1999, 189 (1), 87. doi: 10.1016/S0926-860X(99)00262-8  doi: 10.1016/S0926-860X(99)00262-8

    7. [7]

      Schulz, H.; Riedel, T.; Schaub, G. Top. Catal. 2005, 32 (3), 117. doi: 10.1007/s11244-005-2883-8  doi: 10.1007/s11244-005-2883-8

    8. [8]

      Du Plessis, H. E.; De Villiers, J. P. R.; Kruger, G. J. Zeitschrift für Kristallographie 2007, 222 (5), 211. doi: 10.1524/zkri.2007.222.5.211  doi: 10.1524/zkri.2007.222.5.211

    9. [9]

      Leineweber, A.; Shang, S.; Liu, Z. K.; Widenmeyer, M. Zeitschrift für Kristallographie 2012, 227 (4), 207. doi: 10.1524/zkri.2012.1490  doi: 10.1524/zkri.2012.1490

    10. [10]

      Yang, C.; Zhao, H. B.; Hou Y. L.; Ma, D. J. Am. Chem. Soc. 2012, 134 (38), 15814. doi: 10.1021/ja305048p  doi: 10.1021/ja305048p

    11. [11]

      Xie, J. X.; Yang, J, Dugulan, A. I.; Holmen, A.; Chen, D.; de Jong, K. P.; Louwerse, M. J. ACS Catal. 2016, 6 (5), 3147. doi: 10.1021/acscatal.6b00131  doi: 10.1021/acscatal.6b00131

    12. [12]

      He, Y. R.; Zhao, P.; Meng, Y.; Guo, W. P.; Yang, Y.; Li, Y. W.; Huo, C. F.; Wen, X. D. J. Phys. Chem. C 2018, 122 (5), 2806. doi: 10.1021/acs.jpcc.7b11430  doi: 10.1021/acs.jpcc.7b11430

    13. [13]

      He, Y. R.; Zhao, P.; Yin J. P.; Guo, W. P.; Yang, Y.; Li, Y. W.; Huo, C. F.; Wen, X. D. J. Phys. Chem. C 2018, 122 (36), 20907. doi: 10.1021/acs.jpcc.8b06988  doi: 10.1021/acs.jpcc.8b06988

    14. [14]

      Broos, R. J. P.; Zijlstra, B.; Filot, I. A. W.; Hensen, E. J. M. J. Phys. Chem. C 2018, 122 (18), 9929. doi: 10.1021/acs.jpcc.8b01064  doi: 10.1021/acs.jpcc.8b01064

    15. [15]

      Yang, C.; Zhao, B.; Gao, R.; Yao, S. Y.; Zhai, P.; Li, S. W.; Yu, J.; Hou, Y. L, Ma, D.ACS Catal. 2017, 7 (9), 5661. doi: 10.1021/acscatal.7b01142  doi: 10.1021/acscatal.7b01142

    16. [16]

      Gao, W.; Gao, R.; Zhao, Y. F.; Peng, M.; Song, C. Q.; Li, M. Z.; Li, S. W.; Liu, J. J.; Li, W. Z.; Deng, Y. C.; et al. Chem 2018, 4 (12), 2917. doi: 10.1016/j.chempr.2018.09.017  doi: 10.1016/j.chempr.2018.09.017

    17. [17]

      Tang, W.; Zhen, Z. P.; Yang, C.; Wang, L.; Cowger, T.; Chen, H. M.; Todd, T.; Hekmatyar, K.; Zhao, Q.; Hou, Y. L.; Xie, J. Small 2014, 10 (7), 1245. doi: 10.1002/smll.201303263  doi: 10.1002/smll.201303263

    18. [18]

      Yu, J.; Yang, C.; Li, J. D. S.; Ding, Y. C.; Zhang, L.; Yousaf, M. Z.; Lin, J.; Pang, R.; Wei, L. B.; Xu, L. L.; et al. Adv. Mater. 2014, 26 (24), 4114. doi: 10.1002/adma.201305811  doi: 10.1002/adma.201305811

    19. [19]

      Li, P.; Qiu, Y.; Liu, S. G.; Li, H. L.; Zhao, S.; Diao, J. X.; Guo, X. H. Eur. J. Inorg. Chem. 2019, 27, 3253. doi: 10.1002/ejic.201900390  doi: 10.1002/ejic.201900390

    20. [20]

      Wang, D.; Chen, B. X.; Duan, X. Z.; Chen, D.; Zhou, X. G. J. Energy Chem. 2016, 25 (6), 911. doi: 10.1016/j.jechem.2016.11.002  doi: 10.1016/j.jechem.2016.11.002

    21. [21]

      Wilson, D. V. Nature 1951, 167 (4257), 899. doi: 10.1038/167899b0  doi: 10.1038/167899b0

    22. [22]

      Jack, K. H.; Wild, S. Nature 1966, 212 (5059), 248. doi: 10.1038/212248b0  doi: 10.1038/212248b0

    23. [23]

      Retief, J. J. Powder Diffr. 1999, 14 (2), 130. doi: 10.1017/S0885715600010435  doi: 10.1017/S0885715600010435

    24. [24]

      Du Plessis, H. E.; De Villiers, J. P.; Kruger, G. J.; Steuwer, A.; Brunelli, M. J. Synchrotron Rad. 2011, 18 (Pt 2), 266. doi: 10.1107/S0909049510048958  doi: 10.1107/S0909049510048958

    25. [25]

      Li, X. N.; Zhu, K. Y.; Pang, J. F.; Tian, M.; Liu, J. Y.; Rykov, A. I.; Zheng, M. Y.; Wang, X. D.; Zhu, X. F.; Huang, Y. Q.; et al. Appl. Catal. B 2018, 224, 518. doi: 10.1016/j.apcatb.2017.11.004  doi: 10.1016/j.apcatb.2017.11.004

    26. [26]

      Niemantsverdriet, J. W.; Van Der Kraan, A. M.; Van Dijk, W. L.; Van der Baan, H. S. J. Phys. Chem. 1980, 84 (25), 3363. doi: 10.1021/j100462a011  doi: 10.1021/j100462a011

    27. [27]

      Raupp, G. B.; Delgass, W. N. J. Catal. 1979, 58 (3), 348. doi: 10.1016/0021-9517(79)90274-4  doi: 10.1016/0021-9517(79)90274-4

    28. [28]

      Pijolat, M.; Perrichon, V.; Bussière, P. J. Catal. 1987, 107 (1), 82. doi: 10.1016/0021-9517(87)90274-0  doi: 10.1016/0021-9517(87)90274-0

    29. [29]

      Liu, X. W.; Cao, Z.; Zhao, S.; Gao, R.; Meng, Y.; Zhu, J. X.; Rogers, C.; Huo, C. F.; Yang, Y.; Li, Y. W.; Wen, X. D. J. Phys. Chem. C 2017, 121 (39), 21390. doi: 10.1021/acs.jpcc.7b06104  doi: 10.1021/acs.jpcc.7b06104

    30. [30]

      De Smit, E.; Beale, A. M.; Nikitenko, S.; Weckhuysen, B. M. J. Catal. 2009, 262 (2), 244. doi: 10.1016/j.jcat.2008.12.021  doi: 10.1016/j.jcat.2008.12.021

    31. [31]

      Ribeiro, M. C.; Jacobs, G.; Davis, B. H.; Cronauer, D. C.; Kropf, A.; Jeremy, M.; Christopher, L. J. Phys. Chem. C 2010, 114 (17), 7895. doi: 10.1021/jp911856q  doi: 10.1021/jp911856q

    32. [32]

      Pham, T. H.; Duan, X. Z.; Qian, G.; Zhou, X. G.; Chen, D. J. Phys. Chem. C 2014, 118 (19), 10170. doi: 10.1021/jp502225r  doi: 10.1021/jp502225r

    33. [33]

      Zhao, S.; Liu, X. W.; Huo, C. F.; Li, Y. W.; Wang, J. G.; Jiao, H. J. J. Catal. 2012, 294, 47. doi: 10.1016/j.jcat.2012.07.003  doi: 10.1016/j.jcat.2012.07.003

    34. [34]

      Zhao, S.; Liu, X. W.; Huo, C. F.; Guo, W. P.; Cao, D. B.; Yang, Y.; Li, Y. W.; Wang, J. G.; Jiao, H. J. Catal. Today 2016, 261, 93. doi: 10.1016/j.cattod.2015.07.035  doi: 10.1016/j.cattod.2015.07.035

    35. [35]

      Song, L.; Wang, T.; Li, L.; Wu, C.; He, J. Appl. Catal. B 2019, 244, 197. doi: 10.1016/j.apcatb.2018.11.005  doi: 10.1016/j.apcatb.2018.11.005

    36. [36]

      Hu, E.; Yu, X.Y.; Chen, F.; Wu, Y.; Hu, Y.; Lou, X. W. Adv. Energy Mater. 2018, 8 (9), 1702476. doi: 10.1002/aenm.201702476  doi: 10.1002/aenm.201702476

    37. [37]

      Lodya, J. A. L.; Gericke, H.; Ngubane, J.; Dlamini, T. H. Hyperfine Interact. 2009, 190 (1–3), 37. doi: 10.1007/s10751-009-9919-6  doi: 10.1007/s10751-009-9919-6

    38. [38]

      Bauer-Grosse, E.; Le Caer, G. Mater. Sci. Eng. 1988, 97, 273. doi: 10.1016/0025-5416(88)90056-0  doi: 10.1016/0025-5416(88)90056-0

    39. [39]

      Bauer-Grosse, E. Solid State Phenom. 2011, 172-174, 959. doi: 10.4028/www.scientific.net/SSP.172-174.959  doi: 10.4028/www.scientific.net/SSP.172-174.959

    40. [40]

      Podgurski, H. H.; Kummer, J. T.; Dewitt, T. W.; Emmett, P. H. J. Am. Chem. Soc. 1950, 72 (12), 5382. doi: 10.1021/ja01168a006  doi: 10.1021/ja01168a006

    41. [41]

      Hirano, S. I.; Tajima, S. J. Mater. Sci. 1990, 25 (10), 4457. doi: 10.1007/BF00581108  doi: 10.1007/BF00581108

    42. [42]

      Hong, S. Y.; Chun, D. H.; Yang, J.I.; Jung, H.; Lee, H. T.; Hong, S.; Jang, S.; Lim, J. T.; Kim, C. S.; Park, J. C. Nanoscale 2015, 7 (40), 16616. doi: 10.1039/C5NR04546K  doi: 10.1039/C5NR04546K

    43. [43]

      Kang, S. W.; Kim, K.; Chun, D. H.; Yang, J. I.; Lee, H. T.; Jung, H.; Lim, J. T.; Jang, S.; Kim, C. S.; Lee, C. W.; et al. J. Catal. 2017, 349, 66. doi: 10.1016/j.jcat.2017.03.004.  doi: 10.1016/j.jcat.2017.03.004

    44. [44]

      An, B.; Cheng, K.; Wang, C.; Wang, Y.; Lin, W. B. ACS Catal. 2016, 6 (6), 3610. doi: 10.1021/acscatal.6b00464  doi: 10.1021/acscatal.6b00464

    45. [45]

      Wezendonk, T. A.; Santos, V. P.; Nasalevich, M. A, ; Warringa, Q. S. E.; Dugulan, A. I.; Chojecki, A.; Koeken, A. C. J.; Ruitenbeek, M.; Meima, G.; Islam, H. -U.; et al. ACS Catal. 2016, 6 (5), 3236. doi: 10.1016/j.jcat.2018.03.034  doi: 10.1016/j.jcat.2018.03.034

    46. [46]

      Wezendonk, T. A.; Sun, X. H.; Dugulan, A. I.; van Hoof, A. J. F.; Hensen, E. J. M.; Kapteijn, F.; Gascon, J. J. Catal. 2018, 362, 106. doi: 10.1016/j.jcat.2018.03.034  doi: 10.1016/j.jcat.2018.03.034

    47. [47]

      Malina, O.; Jakubec, P.; Kašlík, J.; Tuček, J.; Zbořil, R. Nanoscale 2017, 9 (29), 10440. doi: 10.1039/c7nr02383a  doi: 10.1039/c7nr02383a

    48. [48]

      Wang, R. X.; Wu, B. S.; Li, Y. W. Chin. J. Catal. 2013, 33 (5), 863. doi: 10.3724/sp.J.1088.2012.11204  doi: 10.3724/sp.J.1088.2012.11204

    49. [49]

      Park, H.; Youn, D. H.; Kim, J. Y.; Kim, W. Y.; Choi, Y. H.; Lee, Y. H.; Choi, S. H.; Lee, J. S. ChemCatChem 2015, 7 (21), 3488. doi: 10.1002/cctc.201500794  doi: 10.1002/cctc.201500794

    50. [50]

      Mansker, L. D.; Jin, Y.; Bukur, D. B.; Datye, A. K. Appl. Catal. A 1999, 186 (1), 277. doi: 10.1016/S0926-860X(99)00149-0  doi: 10.1016/S0926-860X(99)00149-0

    51. [51]

      Bukur, D. B.; Sivaraj, C. Appl. Catal. A 2002, 231 (1), 201. doi: 10.1016/S0926-860X(02)00053-4  doi: 10.1016/S0926-860X(02)00053-4

    52. [52]

      Barinov, V. A.; Protasov, A.V.; Surikov, V. T. Phys. Met. Metallogr. 2015, 116 (8), 791. doi: 10.1134/S0031918X15080025  doi: 10.1134/S0031918X15080025

    53. [53]

      Meffre, A.; Mehdaoui, B.; Kelsen, V.; Fazzini, P. F.; Carrey, J.; Lachaize, S.; Respaud, M.; Chaudret, B. Nano Lett. 2012, 12 (9), 4722. doi: 10.1021/nl302160d  doi: 10.1021/nl302160d

    54. [54]

      Ge, W.; Gao, W.; Zhu, J.; Li, Y. J. Alloy. Compd. 2019, 1069. doi: 10.1016/j.jallcom.2018.12.154  doi: 10.1016/j.jallcom.2018.12.154

    55. [55]

      Matteazzi, P.; Le Ca r, G. J. Am. Ceram. Soc. 1991, 74 (6), 1382. doi: 10.1016/j.jallcom.2018.12.154  doi: 10.1016/j.jallcom.2018.12.154

    56. [56]

      de Smit, E.; Cinquini, F.; Beale, A. M.; Safonova, O. V.; van Beek, W.; Sautet, P.; Weckhuysen, B. M. J. Am. Chem. Soc. 2010, 132 (42), 14928. doi: 10.1021/ja105853q  doi: 10.1021/ja105853q

    57. [57]

      Liu, X.; Zhang, C. H.; Li, Y. W.; Niemantsverdriet, J. W.; Wagner, J. B.; Hansen, T. W. ACS Catal. 2017, 7 (7), 4867. doi: 10.1021/acscatal.7b00946  doi: 10.1021/acscatal.7b00946

    58. [58]

      Yao, S. Y.; Yang, C.; Zhao, H. B.; Li, S. W..; Lin, L. L.; Wen, W.; Liu, J. X.; Hu, G, Li, W. X.; Hou, Y. L.; et al. J. Phys. Chem. C 2017, 121 (9), 5154. doi: 10.1021/acs.jpcc.7b00198  doi: 10.1021/acs.jpcc.7b00198

    59. [59]

      Li, Y. J.; Li, Z. S.; Ahsen, A.; Lammich, L.; Mannie, G. J. A.; Niemantsverdriet, J. W. H.; Lauritsen, J. V. ACS Catal. 2018, 9 (2), 1264. doi: 10.1021/acscatal.8b03684  doi: 10.1021/acscatal.8b03684

    60. [60]

      Zhou, X.; Mannie, G. J. A.; Yin, J. Q.; Yu, X.; Weststrate, C. J.; Wen, X. D.; Wu, K.; Yang, Y.; Li, Y. W.; Niemantsverdriet, J. W. H. ACS Catal. 2018, 8 (8), 7326. doi: 10.1021/acscatal.8b02076  doi: 10.1021/acscatal.8b02076

    61. [61]

      Torres Galvis, H. M.; Bitter, J. H.; Khare, C. B.; Ruitenbeek, M.; Dugulan, A. I.; de Jong, K. P. Science 2012, 335 (6070), 835. doi: 10.1126/science.1215614  doi: 10.1126/science.1215614

    62. [62]

      Zhai, P.; Xu, C.; Gao, R.; Liu, X.; Li, M. Z.; Li, W. Z.; Fu, X. P.; Jia, C. J, Xie, J. L.; Zhao, M.; et al. Angew. Chem. Int. Ed. 2016, 55 (34), 9902. doi: 10.1002/anie.201603556  doi: 10.1002/anie.201603556

    63. [63]

      Zhao, B.; Zhai, P.; Wang, P. F.; Li, J. Q.; Li, T.; Peng, M.; Zhao, M.; Hu, G.; Yang, Y.; Li, Y. -W.; et al. Chem 2017, 3 (2), 323. doi: 10.1016/j.chempr.2017.06.017  doi: 10.1016/j.chempr.2017.06.017

    64. [64]

      Lu, Y. W.; Zhang, R. G.; Cao, B. B.; Ge, B. H..; Tao, F. F.; Shan, J. J.; Nguyen, L.; Bao, Z. H.; Wu, T. P.; Pote, J. W.; et al. ACS Catal. 2017, 7 (8), 5500. doi: 10.1021/acscatal.7b01469  doi: 10.1021/acscatal.7b01469

    65. [65]

      Xu, K.; Sun, B.; Lin, J.; Wen, W.; Pei, Y.; Yan, S. W.; Qiao, M. H.; Zhang, X. X.; Zong, B. N. Nat. Commun. 2014, 5, 5783. doi: 10.1038/ncomms6783  doi: 10.1038/ncomms6783

    66. [66]

      Wang, P.; Chen, W.; Chiang, F. K.; Dugulan, A. I.; Song, Y.; Pestman, R.; Zhang, K.; Yao, J. S.; Feng, B.; Miao, P.; et al. Sci. Adv. 2018, 4 (10), 2947. doi: 10.1126/sciadv.aau2947  doi: 10.1126/sciadv.aau2947

  • 加载中
    1. [1]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    2. [2]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    3. [3]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    4. [4]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    5. [5]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    6. [6]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    7. [7]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    8. [8]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    17. [17]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    18. [18]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    19. [19]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(9)
  • Abstract views(318)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return