Citation: Yang Yan, Zhang Yun, Hu Jin-Song, Wan Li-Jun. Progress in the Mechanisms and Materials for CO2 Electroreduction toward C2+ Products[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190608. doi: 10.3866/PKU.WHXB201906085 shu

Progress in the Mechanisms and Materials for CO2 Electroreduction toward C2+ Products


  • Author Bio:

    Jin-Song Hu is currently a professor at the Institute of Chemistry, Chinese Academy of Sciences (ICCAS). After receiving Ph.D. degree in Physical Chemistry at ICCAS in 2005, he joined in ICCAS as an assistant professor and was then promoted as an associated professor in 2007. He worked in professor Charles M. Lieber's group at Harvard University in 2008-2011, then moved back to ICCAS as a Full Professor. His research currently focuses on developing new functional nanomaterials for efficient electrochemical energy conversion and solar energy conversion

  • Corresponding author: Hu Jin-Song, hujs@iccas.ac.cn
  • Received Date: 27 June 2019
    Revised Date: 4 August 2019
    Accepted Date: 22 August 2019
    Available Online: 2 January 2019

    Fund Project: The project was supported by the National Key Research and Development Program of China (2016YFB0101202) and the National Natural Science Foundation of China (21773263, 91645123)the National Natural Science Foundation of China 21773263the National Key Research and Development Program of China 2016YFB0101202the National Natural Science Foundation of China 91645123

  • Over the past decades, advances in science and technology have greatly benefitted the society. However, the exploitation of fossil fuels and excessive emissions of polluting gases have disturbed the balance of the normal carbon cycle, causing serious environmental issues and energy crises. Global warming caused by heavy CO2 emissions is driving new attempts to mitigate the increase in the concentration of atmospheric CO2. Significant efforts have been devoted for CO2 conversion. To date, the electroreduction of CO2, which is highly efficient and offers a promising strategy for both storing energy and managing the global carbon balance, has attracted great attention. In addition, the electrosynthesis of value-added C2+ products from CO2 addresses the need for the long-term storage of renewable energy. Therefore, developing catalysts that function under ambient conditions to produce C2 selectively over C1 products will increase the utility of renewable feedstocks in industrial chemistry applications. Recently, great progress has been made in the development of materials for electrocatalytic CO2 reduction (ECR) toward C2+ products; however, some issues (e.g., low selectivity, low current efficiency, and poor durability) remain to be addressed. In addition, the elementary reaction mechanism of each C2+ product remains unclear, contributing to the blindness of catalyst design. In this regard, the development of proposed mechanisms of ECR toward C2+ products is summarized herein. The key to generating C2+ products is improving the chances of C―C coupling. Test conditions significantly influence the reaction path of the catalyst. Thus, three different paths that that are most likely to occur during ECR to C2+ products are proposed, including the CO, CO-COH, and CO-CO paths. In addition, typical material regulatory strategies and technical designs for ECR toward C2+ products (e.g. crystal facet modulation, defect engineering, size effect, confinement effects, electrolyzer design, and electrolyte pH) are introduced, focusing on their effects on the selectivity, current efficiency, and durability. The four strategies for catalyst design (crystal facet modulation, defect engineering, size effect, and confinement effect) primarily affect the selectivity of the ECR via adjustment of the adsorption of reaction intermediates. The last two strategies for technique design (electrolyzer design and electrolyte pH) contributing greatly toward improving the current efficiency than selectivity. Finally, the challenges and perspectives for ECR toward C2+ products and their future prospects are discussed herein. Therefore, breakthroughs in the promising field of ECR toward the generation of C2+ products are possible when these catalyst design strategies and mechanisms are applied and novel designs are developed.
  • 加载中
    1. [1]

      Gao, S.; Lin, Y.; Jiao, X.; Sun, Y.; Luo, Q.; Zhang, W.; Li, D.; Yang, J.; Xie, Y. Nature 2016, 529, 68. doi: 10.1038/nature16455  doi: 10.1038/nature16455

    2. [2]

      Asadi, M.; Kim, K.; Liu, C.; Addepalli, A. V.; Abbasi, P.; Yasaei, P.; Phillips, P.; Behranginia, A.; Cerrato, J. M.; Haasch, R.; et al. Science 2016, 353, 467. doi: 10.1126/science. aaf4767  doi: 10.1126/science.aaf4767

    3. [3]

      Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C. T.; Fan, F.; Cao, C.; et al. Nature 2016, 537, 382. doi: 10.1038/nature19060  doi: 10.1038/nature19060

    4. [4]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Science 2017, 355, 146. doi: 10.1126/science.aad4998  doi: 10.1126/science.aad4998

    5. [5]

      Zhao, H.; Hu, J.; Wang, J.; Zhou, L.; Liu, H. Acta Phys. -Chim. Sin. 2007, 23, 801.  doi: 10.1016/s1872-1508(07)60046-1

    6. [6]

      Costentin, C.; Robert, M.; Saveant, J. M. Chem. Soc. Rev. 2013, 42, 2423. doi: 10.1039/c2cs35360a  doi: 10.1039/c2cs35360a

    7. [7]

      Larrazabal, G. O.; Martin, A. J.; Perez-Ramirez, J. J. Phys. Chem. Lett. 2017, 8, 3933. doi: 10.1021/acs.jpclett.7b01380  doi: 10.1021/acs.jpclett.7b01380

    8. [8]

      Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Adv. Mater. 2016, 28, 3423. doi: 10.1002/adma.201504766  doi: 10.1002/adma.201504766

    9. [9]

      Wang, Y.; Liu, J.; Wang, Y.; Al-Enizi, A. M.; Zheng, G. Small 2017, 13, 1701809. doi: 10.1002/smll.201701809  doi: 10.1002/smll.201701809

    10. [10]

      He, M. Sci. China Chem. 2017, 60, 1145. doi: 10.1007/s11426-017-9105-4  doi: 10.1007/s11426-017-9105-4

    11. [11]

      Yuan, G.; Zhao, Y.; Wu, Y.; Li, R.; Chen, Y.; Xu, D.; Liu, Z. Sci. China Chem. 2017, 60, 958. doi: 10.1007/s11426-016-0507-7  doi: 10.1007/s11426-016-0507-7

    12. [12]

      Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. Chem. Rev. 2015, 115, 12936. doi: 10.1021/acs.chemrev.5b00197  doi: 10.1021/acs.chemrev.5b00197

    13. [13]

      Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; LarrazÁBal, G. O.; PÉRez-RamÍRez, J. Energy Environ. Sci. 2013, 6, 3112. doi: 10.1039/c3ee41272e  doi: 10.1039/c3ee41272e

    14. [14]

      Porosoff, M. D.; Yan, B.; Chen, J. G. Energy Environ. Sci. 2016, 9, 62. doi: 10.1039/c5ee02657a  doi: 10.1039/c5ee02657a

    15. [15]

      Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. Chem. Soc. Rev. 2014, 43, 631. doi: 10.1039/c3cs60323g  doi: 10.1039/c3cs60323g

    16. [16]

      Costentin, C.; Robert, M.; Saveant, J. M. Acc. Chem. Res. 2015, 48, 2996. doi: 10.1021/acs.accounts.5b00262  doi: 10.1021/acs.accounts.5b00262

    17. [17]

      Lu, Q.; Jiao, F. Nano Energy 2016, 29, 439. doi: 10.1016/j.nanoen.2016.04.009  doi: 10.1016/j.nanoen.2016.04.009

    18. [18]

      Khodakov, A. Y.; Chu, W.; Fongarland, P. Chem. Rev. 2007, 107, 1692. doi: 10.1021/cr050972v  doi: 10.1021/cr050972v

    19. [19]

      Hori, Y.; Murata, A.; Takahashi, R. J. Chem. Soc., Faraday Trans. 1. 1989, 85, 2309. doi: 10.1039/f19898502309  doi: 10.1039/f19898502309

    20. [20]

      Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Energy Environ. Sci. 2012, 5, 7050. doi: 10.1039/c2ee21234j  doi: 10.1039/c2ee21234j

    21. [21]

      Kortlever, R.; Shen, J.; Schouten, K. J.; Calle-Vallejo, F.; Koper, M. T. J. Phys. Chem. Lett. 2015, 6, 4073. doi: 10.1021/acs.jpclett.5b01559  doi: 10.1021/acs.jpclett.5b01559

    22. [22]

      Singh, M. R.; Clark, E. L.; Bell, A. T. Phys. Chem. Chem. Phys. 2015, 17, 18924. doi: 10.1039/c5cp03283k  doi: 10.1039/c5cp03283k

    23. [23]

      Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A.; Berlinguette, C. P. Acc. Chem. Res. 2018, 51, 910. doi: 10.1021/acs.accounts.8b00010  doi: 10.1021/acs.accounts.8b00010

    24. [24]

      Chen, Y.; Lewis, N. S.; Xiang, C. Energy Environ. Sci. 2015, 8, 3663. doi: 10.1039/c5ee02908b.  doi: 10.1039/c5ee02908b

    25. [25]

      Cui, C.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Nat. Mater. 2013, 12, 765. doi: 10.1038/nmat3668  doi: 10.1038/nmat3668

    26. [26]

      Niu, Z.; Becknell, N.; Yu, Y.; Kim, D.; Chen, C.; Kornienko, N.; Somorjai, G. A.; Yang, P. Nat. Mater. 2016, 15, 1188. doi: 10.1038/nmat4724  doi: 10.1038/nmat4724

    27. [27]

      Weng, Z.; Zhang, X.; Wu, Y.; Huo, S.; Jiang, J.; Liu, W.; He, G.; Liang, Y.; Wang, H. Angew. Chem. Int. Ed. 2017, 56, 13135. doi: 10.1002/ange.201707478  doi: 10.1002/ange.201707478

    28. [28]

      Spori, C.; Kwan, J. T. H.; Bonakdarpour, A.; Wilkinson, D. P.; Strasser, P. Angew. Chem. Int. Ed. 2017, 56, 5994. doi: 10.1002/anie.201608601  doi: 10.1002/anie.201608601

    29. [29]

      Hori, Y.; Kikuchi, K.; Murata, A.; Suzuki, S. Chem. Lett. 1986, 15, 897. doi: 10.1246/cl.1986.897  doi: 10.1246/cl.1986.897

    30. [30]

      Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, J. Phys. Chem. B 1997, 101, 7075. doi: 10.1021/jp970284i  doi: 10.1021/jp970284i

    31. [31]

      Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S. J. Am. Chem. Soc. 1987, 109, 5022. doi: 10.1021/ja00250a044  doi: 10.1021/ja00250a044

    32. [32]

      Rossmeisl, J.; SkÚLason, E.; Björketun, M. E.; Tripkovic, V.; Nørskov, J. K. Chem. Phys. Lett. 2008, 466, 68. doi: 10.1016/j.cplett.2008.10.024  doi: 10.1016/j.cplett.2008.10.024

    33. [33]

      Montoya, J. H.; Peterson, A. A.; Nørskov, J. K. ChemCatChem 2013, 5, 737. doi: 10.1002/cctc.201200564  doi: 10.1002/cctc.201200564

    34. [34]

      Calle-Vallejo, F.; Koper, M. T. Angew. Chem. Int. Ed. 2013, 52, 7282. doi: 10.1002/anie.201301470  doi: 10.1002/anie.201301470

    35. [35]

      Nie, X.; Esopi, M. R.; Janik, M. J.; Asthagiri, A. Angew. Chem. Int. Ed. 2013, 52, 2459. doi: 10.1002/ange.201208320  doi: 10.1002/ange.201208320

    36. [36]

      Schouten, K.; Kwon, Y.; Van Der Ham, C.; Qin, Z.; Koper, M. Chem. Sci. 2011, 2, 1902. doi: 10.1039/c1sc00277e  doi: 10.1039/c1sc00277e

    37. [37]

      Schouten, K. J.; Qin, Z.; Perez Gallent, E.; Koper, M. T. J. Am. Chem. Soc. 2012, 134, 9864. doi: 10.1021/ja302668n  doi: 10.1021/ja302668n

    38. [38]

      Xiao, H.; Cheng, T.; Goddard, W. A.; Sundararaman, R. J. Am. Chem. Soc. 2016, 138, 483. doi: 10.1021/jacs.5b11390  doi: 10.1021/jacs.5b11390

    39. [39]

      Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. J. Mol. Catal. A-Chem. 2003, 199, 39. doi: 10.1016/s1381-1169(03)00016-5  doi: 10.1016/s1381-1169(03)00016-5

    40. [40]

      Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. J. Am. Chem. Soc. 2014, 136, 6978. doi: 10.1021/ja500328k  doi: 10.1021/ja500328k

    41. [41]

      Loiudice, A.; Lobaccaro, P.; Kamali, E. A.; Thao, T.; Huang, B. H.; Ager, J. W.; Buonsanti, R. Angew. Chem. Int. Ed. 2016, 55, 5789. doi: 10.1002/ange.201601582  doi: 10.1002/ange.201601582

    42. [42]

      Clark, E. L.; Hahn, C.; Jaramillo, T. F.; Bell, A. T. J. Am. Chem. Soc. 2017, 139, 15848. doi: 10.1021/jacs.7b08607  doi: 10.1021/jacs.7b08607

    43. [43]

      Mori, K.; Sano, T.; Kobayashi, H.; Yamashita, H. J. Am. Chem. Soc. 2018, 140, 8902. doi: 10.1021/jacs.8b04852  doi: 10.1021/jacs.8b04852

    44. [44]

      Lee, C. W.; Yang, K. D.; Nam, D. H.; Jang, J. H.; Cho, N. H.; Im, S. W.; Nam, K. T. Adv. Mater. 2018, 30, 1704717. doi: 10.1002/adma.201704717  doi: 10.1002/adma.201704717

    45. [45]

      Lee, S. Y.; Jung, H.; Kim, N. K.; Oh, H. S.; Min, B. K.; Hwang, Y. J. J. Am. Chem. Soc. 2018, 140, 8681. doi: 10.1021/jacs.8b02173  doi: 10.1021/jacs.8b02173

    46. [46]

      Mandal, L.; Yang, K. R.; Motapothula, M. R.; Ren, D.; Lobaccaro, P.; Patra, A.; Sherburne, M.; Batista, V. S.; Yeo, B. S.; Ager, J. W.; et al. ACS Appl. Mater. Interfaces 2018, 10, 8574. doi: 10.1038/ncomms15167  doi: 10.1038/ncomms15167

    47. [47]

      Zhuang, T. T.; Liang, Z. Q.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F.; Meng, F.; Min, Y.; Quintero-Bermudez, R.; et al. Nat. Catal. 2018, 1, 421. doi: 10.1038/s41929-018-0084-7  doi: 10.1038/s41929-018-0084-7

    48. [48]

      Song, Y.; Chen, W.; Zhao, C.; Li, S.; Wei, W.; Sun, Y. Angew. Chem. Int. Ed. 2017, 56, 10840. doi: 10.1002/anie.201706777  doi: 10.1002/anie.201706777

    49. [49]

      Ma, S.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. J. Am. Chem. Soc. 2017, 139, 47. doi: 10.1021/jacs.6b10740  doi: 10.1021/jacs.6b10740

    50. [50]

      Chang, Z.; Huo, S.; Zhang, W.; Fang, J.; Wang, H. J. Phys. Chem. C 2017, 121, 11368. doi: 10.1021/acs.jpcc.7b01586  doi: 10.1021/acs.jpcc.7b01586

    51. [51]

      Kas, R.; Kortlever, R.; Milbrat, A.; Koper, M. T.; Mul, G.; Baltrusaitis, J. Phys. Chem. Chem. Phys. 2014, 16, 12194. doi: 10.1039/c4cp01520g  doi: 10.1039/c4cp01520g

    52. [52]

      Chen, C. S.; Handoko, A. D.; Wan, J. H.; Ma, L.; Ren, D.; Yeo, B. S. Catal. Sci. Technol. 2015, 5, 161. doi: 10.1039/c4cy00906a  doi: 10.1039/c4cy00906a

    53. [53]

      Ma, M.; Djanashvili, K.; Smith, W. A. Angew. Chem. Int. Ed. 2016, 55, 6680. doi: 10.1002/anie.201601282  doi: 10.1002/anie.201601282

    54. [54]

      Lee, S.; Park, G.; Lee, J. ACS Catal. 2017, 7, 8594. doi: 10.1021/acscatal.7b02822  doi: 10.1021/acscatal.7b02822

    55. [55]

      Jeon, H. S.; Kunze, S.; Scholten, F.; Roldan Cuenya, B. ACS Catal. 2018, 8, 531. doi: 10.1021/acscatal.7b02959  doi: 10.1021/acscatal.7b02959

    56. [56]

      Tang, W.; Peterson, A. A.; Varela, A. S.; Jovanov, Z. P.; Bech, L.; Durand, W. J.; Dahl, S.; Norskov, J. K.; Chorkendorff, I. Phys. Chem. Chem. Phys. 2012, 14, 76. doi: 10.1039/c1cp22700a  doi: 10.1039/c1cp22700a

    57. [57]

      Kim, D.; Kley, C. S.; Li, Y.; Yang, P. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 10560. doi: 10.1073/pnas.1711493114  doi: 10.1073/pnas.1711493114

    58. [58]

      Ren, D.; Deng, Y.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. ACS Catal. 2015, 5, 2814. doi: 10.1021/cs502128q  doi: 10.1021/cs502128q

    59. [59]

      Ren, D.; Ang, B. S. H.; Yeo, B. S. ACS Catal. 2016, 6, 8239. doi: 10.1021/acscatal.6b02162  doi: 10.1021/acscatal.6b02162

    60. [60]

      Ishimaru, S.; Shiratsuchi, R.; Nogami, G. J. Electrochem. Soc. 2000, 147, 1864. doi: 10.1149/1.1393448  doi: 10.1149/1.1393448

    61. [61]

      Dutta, A.; Rahaman, M.; Luedi, N. C.; Mohos, M.; Broekmann, P. ACS Catal. 2016, 6, 3804. doi: 10.1021/acscatal.6b00770  doi: 10.1021/acscatal.6b00770

    62. [62]

      Handoko, A. D.; Ong, C. W.; Huang, Y.; Lee, Z. G.; Lin, L.; Panetti, G. B.; Yeo, B. S. J. Phys. Chem. C 2016, 120, 20058. doi: 10.1021/acs.jpcc.6b07128  doi: 10.1021/acs.jpcc.6b07128

    63. [63]

      Hahn, C.; Hatsukade, T.; Kim, Y. G.; Vailionis, A.; Baricuatro, J. H.; Higgins, D. C.; Nitopi, S. A.; Soriaga, M. P.; Jaramillo, T. F. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 5918. doi: 10.1073/pnas.1618935114  doi: 10.1073/pnas.1618935114

    64. [64]

      Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H. Nat. Catal. 2018, 1, 111. doi: 10.1038/s41929-017-0009-x  doi: 10.1038/s41929-017-0009-x

    65. [65]

      Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P.; et al. Nat. Commun. 2016, 7, 12123. doi: 10.1038/ncomms12123  doi: 10.1038/ncomms12123

    66. [66]

      Lv, J. J.; Jouny, M.; Luc, W.; Zhu, W.; Zhu, J. J.; Jiao, F. Adv. Mater. 2018, 30, 1803111. doi: 10.1002/adma.201803111  doi: 10.1002/adma.201803111

    67. [67]

      Gu, Z.; Yang, N.; Han, P.; Kuang, M.; Mei, B.; Jiang, Z.; Zhong, J.; Li, L.; Zheng, G. Small Methods 2019, 3, 1800449. doi: 10.1002/smtd.201800449  doi: 10.1002/smtd.201800449

    68. [68]

      Wu, J.; Ma, S.; Sun, J.; Gold, J. I.; Tiwary, C.; Kim, B.; Zhu, L.; Chopra, N.; Odeh, I. N.; Vajtai, R.; et al. Nat. Commun. 2016, 7, 13869. doi: 10.1038/ncomms13869  doi: 10.1038/ncomms13869

    69. [69]

      Hoang, T. T. H.; Ma, S.; Gold, J. I.; Kenis, P. J. A.; Gewirth, A. A. ACS Catal. 2017, 7, 3313. doi: 10.1021/acscatal.6b03613  doi: 10.1021/acscatal.6b03613

    70. [70]

      Kibria, M. G.; Dinh, C. T.; Seifitokaldani, A.; De Luna, P.; Burdyny, T.; Quintero-Bermudez, R.; Ross, M. B.; Bushuyev, O. S.; Garcia de Arquer, F. P.; Yang, P.; et al. Adv. Mater. 2018, 30, 1804867. doi: 10.1002/adma.201804867  doi: 10.1002/adma.201804867

    71. [71]

      Gao, D.; Zegkinoglou, I.; Divins, N. J.; Scholten, F.; Sinev, I.; Grosse, P.; Roldan Cuenya, B. ACS Nano 2017, 11, 4825. doi: 10.1021/acsnano.7b01257  doi: 10.1021/acsnano.7b01257

    72. [72]

      Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; GarcÍA De Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S.; et al. Science 2018, 360, 783. doi: 10.1126/science.aas9100  doi: 10.1126/science.aas9100

    73. [73]

      Hoang, T. T. H.; Verma, S.; Ma, S.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. J. Am. Chem. Soc. 2018, 140, 5791. doi: 10.1021/jacs.8b01868  doi: 10.1021/jacs.8b01868

    74. [74]

      Huang, Z. F.; Wang, J.; Peng, Y.; Jung, C. Y.; Fisher, A.; Wang, X. Adv. Energy Mater. 2017, 7, 1700544. doi: 10.1002/aenm.201700544  doi: 10.1002/aenm.201700544

    75. [75]

      Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453, 638. doi: 10.1038/nature06964  doi: 10.1038/nature06964

    76. [76]

      Janssens, T. V. W.; Clausen, B. S.; Hvolbæk, B.; Falsig, H.; Christensen, C. H.; Bligaard, T.; Nørskov, J. K. Top. Catal. 2007, 44, 15. doi: 10.1007/s11244-007-0335-3  doi: 10.1007/s11244-007-0335-3

    77. [77]

      Somorjai, G. A.; Blakely, D. W. Nature 1975, 258, 580. doi: 10.1038/258580a0  doi: 10.1038/258580a0

    78. [78]

      Tian, N.; Zhou, Z. Y.; Sun, S. G. J. Phys. Chem. C 2008, 112, 19801. doi: 10.1021/jp804051e  doi: 10.1021/jp804051e

    79. [79]

      Wang, Y.; Han, P.; Lv, X.; Zhang, L.; Zheng, G. Joule 2018, 2, 2551. doi: 10.1016/j.joule.2018.09.021  doi: 10.1016/j.joule.2018.09.021

    80. [80]

      Pei, D. N.; Gong, L.; Zhang, A. Y.; Zhang, X.; Chen, J. J.; Mu, Yg.; Yu, H. Q. Nat. Commun. 2015, 6, 8696. doi: 10.1038/ncomms9696  doi: 10.1038/ncomms9696

    81. [81]

      Huang, H.; Jia, H.; Liu, Z.; Gao, P.; Zhao, J.; Luo, Z.; Yang, J.; Zeng, J. Angew. Chem. Int. Ed. 2017, 56, 3594. doi: 10.1002/anie.201612617  doi: 10.1002/anie.201612617

    82. [82]

      Cheng, F.; Zhang, T.; Zhang, Y.; Du, J.; Han, X.; Chen, J. Angew. Chem. Int. Ed. 2013, 52, 2474. doi: 10.1002/anie.201208582  doi: 10.1002/anie.201208582

    83. [83]

      Zhang, T.; Cheng, F.; Du, J.; Hu, Y.; Chen, J. Adv. Energy Mater. 2014, 5, 1400654. doi: 10.1002/aenm.201400654  doi: 10.1002/aenm.201400654

    84. [84]

      Huang, Z. F.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J. J. Adv. Mater. 2015, 27, 5309. doi: 10.1002/adma.201501217  doi: 10.1002/adma.201501217

    85. [85]

      Pei, D. N.; Gong, L.; Zhang, A. Y.; Zhang, X.; Chen, J. J.; Mu, Y.; Yu, H. Q. Nat. Commun. 2015, 6, 8696. doi: 10.1038/ncomms9696  doi: 10.1038/ncomms9696

    86. [86]

      Genovese, C.; Schuster, M. E.; Gibson, E. K.; Gianolio, D.; Posligua, V.; Grau-Crespo, R.; Cibin, G.; Wells, P. P.; Garai, D.; Solokha, V.; et al. Nat. Commun. 2018, 9, 935. doi: 10.1038/s41467-018-03138-7  doi: 10.1038/s41467-018-03138-7

    87. [87]

      Cao, Y.; Geng, Z.; Chen, W.; Cai, F.; Wang, G.; Wang, Z.; Zeng, J. Chem. Commun. 2018, 54, 3367. doi: 10.1039/C8CC00644J  doi: 10.1039/C8CC00644J

    88. [88]

      Sharma, P. P.; Wu, J.; Yadav, R. M.; Liu, M.; Wright, C. J.; Tiwary, C. S.; Yakobson, B. I.; Lou, J.; Ajayan, P. M.; Zhou, X. D. Angew. Chem. Int. Ed. 2015, 54, 13701. doi: 10.1002/anie.201506062  doi: 10.1002/anie.201506062

    89. [89]

      Cui, X.; Pan, Z.; Zhang, L.; Peng, H.; Zheng, G. Adv. Energy Mater. 2017, 7, 1701456. doi: 10.1002/aenm.201701456  doi: 10.1002/aenm.201701456

    90. [90]

      Lei, F.; Liu, W.; Sun, Y.; Xu, J.; Liu, K.; Liang, L.; Yao, T.; Pan, B.; Wei, S.; Xie, Y. Nat. Commun. 2016, 7, 12697. doi: 10.1038/ncomms12697  doi: 10.1038/ncomms12697

    91. [91]

      Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. Nat. Commun. 2014, 5, 4948. doi: 10.1038/ncomms5948  doi: 10.1038/ncomms5948

    92. [92]

      Sun, K.; Cheng, T.; Wu, L.; Hu, Y.; Zhou, J.; Maclennan, A.; Jiang, Z.; Gao, Y.; Goddard, W. A.; Wang, Z. J. Am. Chem. Soc. 2017, 139, 15608. doi: 10.1021/jacs.7b09251  doi: 10.1021/jacs.7b09251

    93. [93]

      Mistry, H.; Choi, Y. W.; Bagger, A.; Scholten, F.; Bonifacio, C. S.; Sinev, I.; Divins, N. J.; Zegkinoglou, I.; Jeon, H. S.; Kisslinger, K.; et al. Angew. Chem. Int. Ed. 2017, 56, 11394. doi: 10.1002/anie.201704613  doi: 10.1002/anie.201704613

    94. [94]

      Li, L.; Larsen, A. H.; Romero, N. A.; Morozov, V. A.; Glinsvad, C.; Abild-Pedersen, F.; Greeley, J.; Jacobsen, K. W.; Norskov, J. K. J. Phys. Chem. Lett. 2013, 4, 222. doi: 10.1021/jz3018286  doi: 10.1021/jz3018286

    95. [95]

      Tritsaris, G.; Greeley, J.; Rossmeisl, J.; Nørskov, J. Catal. Lett. 2011, 141, 909. doi: 10.1007/s10562-011-0637-8  doi: 10.1007/s10562-011-0637-8

    96. [96]

      Kleis, J.; Greeley, J.; Romero, N. A.; Morozov, V. A.; Falsig, H.; Larsen, A. H.; Lu, J.; Mortensen, J. J.; Dulak, M.; Thygesen, K. S.; et al. Catal. Lett. 2011, 141, 1067. doi: 10.1007/s10562-011-0632-0  doi: 10.1007/s10562-011-0632-0

    97. [97]

      Zhu, W.; Michalsky, R.; Metin, Ö.; Lv, H.; Guo, S.; Wright, C. J.; Sun, X.; Peter, A. A.; Sun, S. J. Am. Chem. Soc. 2013, 135, 16833. doi: 10.1021/ja409445p  doi: 10.1021/ja409445p

    98. [98]

      Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. J. Am. Chem. Soc. 2014, 136, 6978. doi: 10.1021/ja500328k  doi: 10.1021/ja500328k

    99. [99]

      Mistry, H.; Reske, R.; Zeng, Z.; Zhao, Z. J.; Greeley, J.; Strasser, P.; Cuenya, B. R. J. Am. Chem. Soc. 2014, 136, 16473. doi: 10.1021/ja508879j  doi: 10.1021/ja508879j

    100. [100]

      Manthiram, K.; Beberwyck, B. J.; Alivisatos, A. P. J. Am. Chem. Soc. 2014, 136, 13319. doi: 10.1021/ja5065284  doi: 10.1021/ja5065284

    101. [101]

      Mistry, H.; Behafarid, F.; Reske, R.; Varela, A. S.; Strasser, P.; Roldan Cuenya, B. ACS Catal. 2016, 6, 1075. doi: 10.1021/acscatal.5b02202  doi: 10.1021/acscatal.5b02202

    102. [102]

      Yang, K. D.; Ko, W. R.; Lee, J. H.; Kim, S. J.; Lee, H.; Lee, M. H.; Nam, K. T. Angew. Chem. Int. Ed. 2016, 56, 796. doi: 10.1002/anie.201610432  doi: 10.1002/anie.201610432

    103. [103]

      Zhuang, T. T.; Pang, Y.; Liang, Z. Q.; Wang, Z.; Li, Y.; Tan, C. S.; Li, J.; Dinh, C. T.; De Luna, P.; Hsieh, P. L.; et al. Nat. Catal. 2018, 1, 946. doi: 10.1038/s41929-018-0168-4  doi: 10.1038/s41929-018-0168-4

    104. [104]

      Chen, C.; Khosrowabadi Kotyk, J. F.; Sheehan, S. W. Chem 2018, 4, 2571. doi: 10.1016/j.chempr.2018.08.019  doi: 10.1016/j.chempr.2018.08.019

    105. [105]

      Gupta, N.; Gattrell, M.; Macdougall, B. J. Appl. Electrochem. 2006, 36, 161. doi: 10.1007/s10800-005-9058-y  doi: 10.1007/s10800-005-9058-y

    106. [106]

      Le Duff, C. S.; Lawrence, M. J.; Rodriguez, P. Angew. Chem. Int. Ed. 2017, 129, 13099. doi: 10.1002/ange.201706463  doi: 10.1002/ange.201706463

    107. [107]

      Schouten, K. J. P.; PÉRez Gallent, E.; Koper, M. T. M. J. Electroanal. Chem. 2014, 716, 53. doi: 10.1002/ange.201706463  doi: 10.1002/ange.201706463

  • 加载中
    1. [1]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    2. [2]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    3. [3]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    4. [4]

      Sajid MahmoodHaiyan WangFang ChenYijun ZhongYong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550

    5. [5]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    6. [6]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    7. [7]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    8. [8]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    9. [9]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    10. [10]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    11. [11]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    12. [12]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    13. [13]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    14. [14]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    15. [15]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    16. [16]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    17. [17]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    18. [18]

      Feng WuXuemin KongYixuan LiuShuli WangZhong ChenXu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754

    19. [19]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(12)
  • Abstract views(262)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return