Citation: Tang Xiaolong, Zhang Shenghui, Yu Jing, Lü Chunxiao, Chi Yuqing, Sun Junwei, Song Yu, Yuan Ding, Ma Zhaoli, Zhang Lixue. Preparation of Platinum Catalysts on Porous Titanium Nitride Supports by Atomic Layer Deposition and Their Catalytic Performance for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinica, ;2020, 36(7): 190607. doi: 10.3866/PKU.WHXB201906070 shu

Preparation of Platinum Catalysts on Porous Titanium Nitride Supports by Atomic Layer Deposition and Their Catalytic Performance for Oxygen Reduction Reaction

  • Corresponding author: Yuan Ding, yuanding@qdu.edu.cn Zhang Lixue, zhanglx@qdu.edu.cn
  • Received Date: 24 June 2019
    Revised Date: 15 August 2019
    Available Online: 30 August 2019

    Fund Project: Postdoctoral Science Foundation of China 2018M642605the National Natural Science Foundation of China 21802079the National Natural Science Foundation of China 21775078Shandong Provincial Natural Science Foundation, China ZR2016JL007The project was supported by the National Natural Science Foundation of China (21775078, 21802079), Shandong Provincial Natural Science Foundation, China (ZR2016JL007), Postdoctoral Science Foundation of China (2018M642605)

  • The exploitation of high-performing stable oxygen reduction reaction (ORR) electrocatalysts is critical for energy storage and conversion technologies. The existing high-efficiency electrocatalysts applied to the ORR are mainly based on Pt and its alloys. Moreover, carrier catalysts are the most widely used in actual electrocatalysis. A suitable carrier not only improves the utilization rate of precious metals and the service life of the catalyst, but also serves as a co-catalyst to ameliorate the catalytic activity through a synergistic effect in the reaction. Therefore, research into Pt-based electrocatalysts mainly focuses on the precious metal Pt and the carrier. With the aim of improving the activity and durability of Pt-based catalysts for the ORR, one-dimensional porous titanium nitride (TiN) nanotubes with a large specific surface area as well as good conductivity, electrochemical stability, and corrosion resistance were prepared in this study, and then, Pt nanoparticles were deposited on the TiN-support by atomic layer deposition (ALD). ALD is a novel and simple method for the preparation of films or nanoparticles with fine control of the thickness or size, respectively. The results of X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) experiments confirmed that the Pt nanoparticles obtained by ALD (ALD-Pt/TiN) were face-centered cubic (fcc) crystals with a uniform size and were highly dispersed on the surface of TiN. X-ray spectroscopy (XPS) measurements verified that the binding energy of Pt 4f in ALD-Pt/TiN was positively shifted by 0.33 eV with respect to that of the Pt/C catalyst, indicating strong electronic interactions between the ALD-Pt nanoparticles and the TiN carriers. Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) analyses revealed that ALD-Pt/TiN possessed high activity for the ORR and favorable durability. The onset potential and diffusion-limiting current density of ALD-Pt/TiN were similar to those of commercial Pt/C, while the half-wave potential was 20 mV higher than that of commercial Pt/C, indicating better electrocatalytic performance of the designed material. Furthermore, the electrocatalytic mechanism and kinetics for ALD-Pt/TiN were investigated by rotating ring-disc electrode (RRDE) experiments. The results suggested that the electron transfer number of the ALD-Pt/TiN catalyst was about 3.93, indicating that the ORR on the electrode was dominated by an efficient four-electron pathway. At the same time, the peroxide content was only 5%. The results of accelerated durability testing (ADT) showed that ALD-Pt/TiN had better ORR stability than Pt/C. This excellent electrocatalytic performance was probably due to the high dispersibility of the Pt nanoparticles deposited by ALD, good conductivity and corrosion resistance of TiN, and strong interactions between ALD-Pt and the TiN support. This work provides a reliable strategy for the design of new electrocatalytic materials with high activity and stability. Future research will focus on the strong interactions between ALD-Pt and the TiN carriers.
  • 加载中
    1. [1]

      Lee, J. S.; Kim, S.T.; Cao, R.; Choi, N. S.; Liu, M.; Lee, K. T.; Cho, J. Adv. Energy Mater. 2011, 1, 34. doi: 10.1002/aenm. 201000010  doi: 10.1002/aenm.201000010

    2. [2]

      Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Science 2011, 332, 443. doi: 10.1126/science.1200832  doi: 10.1126/science.1200832

    3. [3]

      Dai, L.; Xue, Y.; Qu, L.; Choi, H. J.; Baek, J. B. Chem. Rev. 2015, 115, 4823. doi: 10.1021/cr5003563  doi: 10.1021/cr5003563

    4. [4]

      Van Pham, C.; Klingele, M.; Britton, B.; Vuyyuru, K. R.; Unmuessig, T.; Holdcroft, S.; Fischer, A.; Thiele, S. Adv. Sustainable Syst. 2017, 1, 1600038. doi: 10.1002/adsu.201600038  doi: 10.1002/adsu.201600038

    5. [5]

      Lee, J. S.; Nam, G.; Sun, J.; Higashi, S.; Lee, H. W.; Lee, S.; Chen, W.; Cui, Y.; Cho, J. Adv. Energy Mater. 2016, 6, 1601052. doi: 10.1002/aenm.201601052  doi: 10.1002/aenm.201601052

    6. [6]

      Wang, B.; Cui, X.; Huang, J.; Cao, R.; Zhang, Q. Chin. Chem. Lett. 2018, 29, 1757.doi:10.1016/j.cclet.2018.11.021  doi: 10.1016/j.cclet.2018.11.021

    7. [7]

      Cheng, N.; Li, H.; Li, G.; Lv, H.; Mu, S.; Sun, X.; Pan, M. Chem. Commun. 2011, 47, 12792. doi: 10.1039/C1CC15203C  doi: 10.1039/C1CC15203C

    8. [8]

      Stephens, I. E.; Bondarenko, A. S.; Gronbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Energy Environ. Sci. 2012, 5, 6744. doi: 10.1039/C2EE03590A  doi: 10.1039/C2EE03590A

    9. [9]

      Ramli, Z.; Kamarudin, S. K. Nanoscale Res. Lett. 2018, 13, 410. doi: 10.1186/s11671-018-2799-4  doi: 10.1186/s11671-018-2799-4

    10. [10]

      Antolini, E. Int. J. Energy Res. 2018, 42, 3747. doi:10.1002/er.4134  doi: 10.1002/er.4134

    11. [11]

      Luo, M. C.; Sun, Y. J.; Qin, Y. N.; Yang, Y.; Wu, D.; Guo, S. J. Acta Phys. -Chim. Sin. 2018, 34, 361.  doi: 10.3866/PKU.WHXB201708312

    12. [12]

      Chang, Q.W.; Xiao, F.; Xu, Y.; Shao, M. H. Acta Phys. -Chim. Sin. 2017, 33, 9.  doi: 10.3866/PKU.WHXB201609202

    13. [13]

      Sui, S.; Wang, X.; Zhou, X.; Su, Y.; Riffat, S.; Liu, C. J. J. Mater. Chem. A 2017, 5, 1808. doi:10.1039/C6TA08580F  doi: 10.1039/C6TA08580F

    14. [14]

      Khalily, M. A.; Patil, B.; Yilmaz, E.; Uyar, T. Nanoscale Adv. 2019, 55, 1225. doi: 10.1039/C8NA00330K  doi: 10.1039/C8NA00330K

    15. [15]

      Hsu, I. J.; Hansgen, D. A.; McCandless, B. E.; Willis, B. G.; Chen, J. G. J. Phys. Chem. C 2011, 115, 3709. doi: 10.1021/jp111180e  doi: 10.1021/jp111180e

    16. [16]

      Cheng, N.; Banis, M. N.; Liu, J.; Riese, A.; Mu, S.; Li, R.; Sham, T. K.; Sun, X. Energy Environ. Sci. 2015, 8, 1450. doi: 10.1039/C4EE04086D  doi: 10.1039/C4EE04086D

    17. [17]

      Shu, T.; Liao, S. J.; Hsieh, C. T.; Roy, A. K.; Liu, Y. Y.; Tzou, D. Y.; Chen, W. Y. Electrochim. Acta 2012, 75, 101. doi: 10.1016/j.electacta.2012.04.084  doi: 10.1016/j.electacta.2012.04.084

    18. [18]

      Dasgupta, N. P.; Liu, C.; Andrews, S.; Prinz, F. B.; Yang, P. J. Am. Chem. Soc. 2013, 135, 12932. doi: 10.1021/ja405680p  doi: 10.1021/ja405680p

    19. [19]

      Zhang, J.; Yu, Z.; Gao, Z.; Ge, H.; Zhao, S.; Chen, C.; Chen, S.; Tong, X.; Wang, M.; Zheng, Z.; et al. Angew. Chem. Int. Ed. 2017, 56, 816. doi: 10.1002/anie201611137  doi: 10.1002/anie201611137

    20. [20]

      Cargnello, M.; Doan Nguyen, V. V.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J. Science 2013, 341, 771. doi: 10.1126/science.1240148  doi: 10.1126/science.1240148

    21. [21]

      Tian, X. L.; Luo, J.; Nan, H.; Zou, H.; Chen, R.; Shu, T.; Li, X.; Li, Y.; Song, H.; Liao, S. J. Am. Chem. Soc. 2016, 138, 1575. doi: 10.1021/jacs.5b11364  doi: 10.1021/jacs.5b11364

    22. [22]

      Ottakam Thotiyl, M.O.; Ravikumar, T.; Sampath, S. J. Mater. Chem. 2010, 20, 10643. doi: 10.1039/C0JM01600D  doi: 10.1039/C0JM01600D

    23. [23]

      Yang, M.; Cui, Z.; Di Salvo, F. J. Phys. Chem. Chem. Phys. 2013, 15, 1088. doi: 10.1039/C2CP44215A  doi: 10.1039/C2CP44215A

    24. [24]

      Wang, Y. J.; Wilkinson, D. P.; Zhang, J. Chem. Rev. 2011, 111, 7625. doi: 10.1021/cr100060r  doi: 10.1021/cr100060r

    25. [25]

      Xiao, Y.; Zhan, G.; Fu, Z.; Pan, Z.; Xiao, C.; Wu, S.; Chen, C.; Hu, G.; Wei, Z. J. Power Sources 2015, 284, 296. doi: 10.1016/j.jpowsour.2015.03.001  doi: 10.1016/j.jpowsour.2015.03.001

    26. [26]

      Luo, J.; Tang, H.; Tian, X.; Hou, S.; Li, X.; Du, L.; Liao, S. ACS Appl. Mater. Interface 2018, 10, 3530. doi: 10.1021/acsami.7b15159  doi: 10.1021/acsami.7b15159

    27. [27]

      Shin, H.; Kim, H. I.; Chung, D. Y.; Yoo, J. M.; Weon, S.; Choi, W.; Sung, Y. E. ACS Catal. 2016, 6, 3914. doi: 10.1021/acscatal.6b00384  doi: 10.1021/acscatal.6b00384

    28. [28]

      Zhu, X.; Yang, X.; Lv, C.; Guo, S.; Li, J.; Zheng, Z.; Zhu, H.; Yang, D. ACS Appl. Mater. Interfaces 2016, 8, 18815. doi: 10.1021/acsami.6b04588  doi: 10.1021/acsami.6b04588

    29. [29]

      Li, C.; Tan, H.; Lin, J.; Luo, X.; Wang, S.; You, J.; Kang, Y. -M.; Bando, Y.; Yamauchi, Y.; Kim, J. Nano Today 2018, 21, 91. doi: 10.1016/j.nantod.2018.06.005  doi: 10.1016/j.nantod.2018.06.005

    30. [30]

      Zhang, N.; Zhang, S.; Du, C.; Wang, Z.; Shao, Y.; Kong, F.; Lin, Y.; Yin, G. Electrochim. Acta 2014, 117, 413. doi: 10.1016/j.electacta.2013.11.139  doi: 10.1016/j.electacta.2013.11.139

    31. [31]

      Seifitokaldani, A.; Savadogo, O.; Perrier, M. Electrochim. Acta 2014, 141, 25. doi:10.1016/j.electacta.2014.07.027  doi: 10.1016/j.electacta.2014.07.027

    32. [32]

      Nie, Y.; Li, L.; Wei, Z. Chem. Soc. Rev. 2015, 44, 2168. doi: 10.1039/C4CS00484A  doi: 10.1039/C4CS00484A

    33. [33]

      Bai, Q.; Shen, F. C.; Li, S. L.; Liu, J.; Dong, L. Z.; Wang, Z. M.; Lan, Y. Q. Small Methods 2018, 2, 1800049. doi: 10.1002/smtd.201800049  doi: 10.1002/smtd.201800049

    34. [34]

      Liu, C.; Wang, J.; Li, J.; Liu, J.; Wang, C.; Sun, X.; Shen, J.; Han, W.; Wang, L. J. Mater. Chem. A 2017, 5, 1211. doi:10.1039/C6TA09193H  doi: 10.1039/C6TA09193H

    35. [35]

      Marković, N. M.; Schmidt, T. J.; Stamenković, V.; Ross, P. N. Fuel Cells 2001, 1, 105. doi: 10.1002/1615-6854[200107]  doi: 10.1002/1615-6854[200107

    36. [36]

      Zhao, Y.; Lai, Q.; Zhu, J.; Zhong, J.; Tang, Z.; Luo, Y.; Liang, Y. Small 2018, 14, 1704207. doi: 10.1002/smtd.201800049  doi: 10.1002/smtd.201800049

    37. [37]

      Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Chem. Rev. 2018, 118, 2302. doi: 10.1021/acs.chemrev.7b00488  doi: 10.1021/acs.chemrev.7b00488

    38. [38]

      Cui, Z.; Yang, M.; Chen, H.; Zhao, M.; DiSalvo, F. J. ChemSusChem 2014, 7, 3356. doi: 10.1002/cssc.201402726  doi: 10.1002/cssc.201402726

  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    3. [3]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    4. [4]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    5. [5]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    6. [6]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    12. [12]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    13. [13]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    14. [14]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    15. [15]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    16. [16]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    17. [17]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(24)
  • Abstract views(1371)
  • HTML views(317)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return