Citation: Liu Danye, Chen Dong, Liu Hui, Yang Jun. Inside-Out Migration of Noble Metals in Ag2S Nanoparticles[J]. Acta Physico-Chimica Sinica, ;2020, 36(7): 190606. doi: 10.3866/PKU.WHXB201906069 shu

Inside-Out Migration of Noble Metals in Ag2S Nanoparticles

  • Corresponding author: Liu Hui, liuhui@ipe.ac.cn Yang Jun, jyang@ipe.ac.cn
  • Received Date: 24 June 2019
    Revised Date: 25 July 2019
    Accepted Date: 26 July 2019
    Available Online: 31 July 2019

    Fund Project: the National Natural Science Foundation of China 21573240The project was supported by the National Natural Science Foundation of China (21506225, 21573240, 21706265)the National Natural Science Foundation of China 21506225the National Natural Science Foundation of China 21706265

  • Materials such as metals, semiconductors, and oxides are attractive at nanometer scales due to the physical and chemical property differences with their bulk counterparts as induced by the quantum confinement effect and large surface-to-volume ratios. In particular, heterogeneous nanostructures consisting of semiconductors and noble metals are extremely important because of the synergistic effects occurring at the interfaces between their noble metal and semiconductor domains; these often equip the heterogeneous nanostructures with improved properties compared to those of isolated individual components. Thus far, heterogeneous nanostructures have garnered a considerable research interest, and tremendous development in achieving high degree control over these nanostructures with respect to their domain size, morphology, and composition has been realized. Their immense application potential in optics, catalysis, imaging, and biomedicine render them a field full of original innovation possibilities. Herein, we demonstrate a phenomenon observed in core-shell nanostructures composed of noble metals and silver sulfide (Ag2S): the inside-out migration of noble metals in Ag2S nanoparticles. We prepare core-shell nanostructures with noble metals and Ag2S residing at the core and shell regions, respectively, through various synthetic strategies including seed-mediated growth and galvanic replacement reactions followed by sulfidation. We then characterize the core-shell nanostructures before and after aging them in toluene at room temperature (e.g. 25 ℃) for a period of time up to 72 h. In contrast to the reported diffusion of Au from the outside to the inside of InAs or PbTe nanoparticles, which results in an Au core encapsulated by an amorphous InAs or PbTe shell, the noble metals (Au, Ag, Pd, or Pt) in core-shell nanostructures with noble metals and Ag2S residing at the core and shell regions, respectively, are found to diffuse from the inside to the outside through the Ag2S shell. Thus, heterogeneous nanodimers consisting of the corresponding noble metal and Ag2S are formed. Observations using an electron transmission microscope confirm that the inside-out migration of noble metals in Ag2S is carried out in a holistic manner. Due to the apparent interface mismatch between face-centered cubic noble metals and monoclinic Ag2S crystal phases, defects such as vacancies must exist at these interfaces. This makes the migration of noble metals in Ag2S possible by either a vacancy/substitutional mechanism or by the self-purification mechanism that occurs intrinsically in nanoscale semiconductors. As the migration rate of noble metals in Ag2S increases with the decrease in the size of the noble metal core and the radius of noble metal atoms, the inside-out migration rates of Ag, Pd, and Pt in Ag2S are found to be much higher than that of Au because of their smaller particle sizes or atom radii. This scientific phenomenon can be effective in the development of synthetic routes for heterogeneous nanostructures that might not be obtained by conventional methods.
  • 加载中
    1. [1]

      He, P.; Yuan, F. L.; Wang, Z. F.; Tan, Z. A.; Fan, L. Z. Acta Phys. -Chim. Sin. 2018, 34, 1250.  doi: 10.3866/PKU.WHXB201804041

    2. [2]

      Soltani, S.; Diep, V. M.; Zeto, R.; Armani, A. M. ACS Photonics 2018, 5, 3550. doi: 10.1021/acsphonotics.8b00296  doi: 10.1021/acsphonotics.8b00296

    3. [3]

      Hashiyada, S.; Narushima, T.; Okamoto, H. ACS Photonics 2019, 6, 677. doi: 10.1021/acsphonotics.8b01500  doi: 10.1021/acsphonotics.8b01500

    4. [4]

      Zhao, Q.; Ji, M.; Qian, H.; Dai, B.; Weng, L.; Cui, J.; Zhang, J.; Ouyang, M.; Zhu, H. Adv. Mater. 2014, 26, 1387. doi: 10.1002/adma.201304652  doi: 10.1002/adma.201304652

    5. [5]

      Sun, Y.; Duan, J.; Zhu, J.; Chen, S.; Antonietti, M. ACS Appl. Nano Mater. 2018, 1, 6649. doi: 10.1021/acsanm.8b01470  doi: 10.1021/acsanm.8b01470

    6. [6]

      Liu, Y. F.; Hu, B.; Yin, Y. Z.; Liu, G. L.; Hong, X. L. Acta Phys. -Chim. Sin. 2019, 35, 223.  doi: 10.3866/PKU.WHXB201802263

    7. [7]

      Munir, A.; Joya, K. S.; Ulhaq, T.; Babar, N. U. A.; Hussain, S. Z.; Qurashi, A.; Ullah, N.; Hussain, I. ChemSusChem 2019, 12, 1517. doi: 10.1002/cssc.201802069  doi: 10.1002/cssc.201802069

    8. [8]

      Yang, J. Noble Metal-based Nanocomposites: Preparation and Applications. Wiley-VCH: Weinheim, German, 2019; pp. 1-33.

    9. [9]

      Lei, G.; He, Y. Acta Phys. -Chim. Sin. 2018, 34, 11.  doi: 10.3866/PKU.WHXB201706301

    10. [10]

      Zhang, Y.; Wu, M.; Wu, M.; Zhu, J.; Zhang, X. ACS Omega 2018, 3, 9126. doi: 10.1021/acsomega.8b01071  doi: 10.1021/acsomega.8b01071

    11. [11]

      Xuan, Y.; Yang, X. Q.; Song, Z. Y.; Zhang, R. Y.; Zhao, D. H.; Hou, X. L.; Song, X. L.; Liu, B.; Zhao, Y. D.; Chen, W. Adv. Funct. Mater. 2019, 29, 1900017. doi: 10.1002/adfm.201900017  doi: 10.1002/adfm.201900017

    12. [12]

      Gong, L. J.; Xie, J. N.; Zhu, S.; Gu, Z. J.; Zhao, Y. L. Acta Phys. -Chim. Sin. 2018, 34, 140.  doi: 10.3866/PKU.WHXB201707174

    13. [13]

      Bai, H. R.; Fan, H. H.; Zhang, X. B.; Chen, Z.; Tan, W. H. Acta Phys. -Chim. Sin. 2018, 34, 348.  doi: 10.3866/PKU.WHXB201708311

    14. [14]

      Liu, Y.; Jiang, Y.; Zhang, M.; Tang, Z.; He, M.; Bu, W. Acc. Chem. Res. 2018, 51, 2502. doi: 10.1021/acsaccounts.8b00214  doi: 10.1021/acsaccounts.8b00214

    15. [15]

      Jin, N.; Zhang, Q.; Yang, M.; Yang, M. Microsc. Res. Tech. 2019, 82, 670. doi: 10.1002/jemet.23213  doi: 10.1002/jemet.23213

    16. [16]

      Grouchko, M.; Popov, I.; Uvarov, V.; Magdassi, S.; Kamyshny, A. Langmuir 2009, 25, 2501. doi: 10.1021/la803843k  doi: 10.1021/la803843k

    17. [17]

      Radziuk, D. V.; Zhang, W.; Shchukin, D.; Möhwald, H. Small, 2010, 6, 545. doi: 10.1002/smll.200901623  doi: 10.1002/smll.200901623

    18. [18]

      Qu, J.; Liu, H.; Wei, Y.; Wu, X.; Yue, R.; Chen, Y.; Yang, J. J. Mater. Chem. 2011, 21, 11750. doi: 10.1039/c1jm12358k  doi: 10.1039/c1jm12358k

    19. [19]

      Mokari, T.; Aharoni, A.; Popov, I.; Banin, U. Angew. Chem. Int. Ed. 2006, 45, 8001. doi: 10.1002/anie.200602559  doi: 10.1002/anie.200602559

    20. [20]

      Franchini, I. R.; Bertoni, G.; Falqui, A.; Giannini, C.; Wang, L. W.; Manna, L. J. Mater. Chem. 2010, 20, 1357. doi: 10.1039/b915687a  doi: 10.1039/b915687a

    21. [21]

      Liu, H.; Ye, F.; Cao, H.; Ji, G.; Lee, J. Y.; Yang, J. Nanoscale 2013, 5, 6901. doi: 10.1039/c3nr01949g  doi: 10.1039/c3nr01949g

    22. [22]

      Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U. Nat. Mater. 2005, 4, 855. doi: 10.1038/nmat1505  doi: 10.1038/nmat1505

    23. [23]

      Hu, W.; Liu, H.; Ye, F.; Ding, Y.; Yang, J. CrystEngComm 2012, 14, 7049. doi: 10.1039/c2ce25594d  doi: 10.1039/c2ce25594d

    24. [24]

      Yang, J.; Ying, J. Y. J. Am. Chem. Soc. 2010, 132, 2114. doi: 10.1021/ja909078p  doi: 10.1021/ja909078p

    25. [25]

      Efros, A. L.; Rosen, M. Annu. Rev. Mater. Sci. 2000, 30, 475. doi: 10.1146/annurev.matsci.30.1.475  doi: 10.1146/annurev.matsci.30.1.475

    26. [26]

      Erwin, S. C.; Zu, L.; Haftel, M. I.; Efros, A. L.; Kennedy, T. A.; Norris, D. J. Nature 2005, 436, 91. doi: 10.1038/nature03832  doi: 10.1038/nature03832

    27. [27]

      Turnbull, D. J. Appl. Phys. 1950, 21, 1022. doi: 10.1063/1.1699435  doi: 10.1063/1.1699435

    28. [28]

      Dalpian, G. M.; Chelikowsky, J. R. Phys. Rev. Lett. 2006, 96, 226802. doi: 10.1103/PhysRevLett.96.226802  doi: 10.1103/PhysRevLett.96.226802

    29. [29]

      Yang, J.; Ying, J. Y. Angew. Chem. Int. Ed. 2011, 50, 5637. doi: 10.1002/anie.201101213  doi: 10.1002/anie.201101213

    30. [30]

      Feng, Y.; Liu, H.; Yang, J. Sci. Adv. 2017, 3, e1700580. doi: 10.1126/sciadv.1700580  doi: 10.1126/sciadv.1700580

  • 加载中
    1. [1]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    2. [2]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    3. [3]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    4. [4]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    5. [5]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    6. [6]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    7. [7]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    8. [8]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    9. [9]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    10. [10]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    11. [11]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    12. [12]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    13. [13]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    14. [14]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    15. [15]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    16. [16]

      Botao QUQian WANGXiaogang NINGYuxin ZHOURuiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416

    17. [17]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    18. [18]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    19. [19]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    20. [20]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

Metrics
  • PDF Downloads(5)
  • Abstract views(640)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return