Citation: Ge Jingxuan, Hu Jun, Zhu Yingting, Zeb Zonish, Zang Dejin, Qin Zhaoxian, Huang Yichao, Zhang Jiangwei, Wei Yongge. Recent Advances in Polyoxometalates for Applications in Electrocatalytic Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190606. doi: 10.3866/PKU.WHXB201906063 shu

Recent Advances in Polyoxometalates for Applications in Electrocatalytic Hydrogen Evolution Reaction

  • Corresponding author: Huang Yichao, yichao_huang@tsinghua.edu.cn Zhang Jiangwei, jwzhang@dicp.ac.cn Wei Yongge, yonggewei@tsinghua.edu.cn
  • These authors contributed equally to this work
  • Received Date: 24 June 2019
    Revised Date: 26 July 2019
    Accepted Date: 23 September 2019
    Available Online: 29 January 2019

    Fund Project: the National Natural Science Foundation of China 21471087the National Natural Science Foundation of China 21901136the National Natural Science Foundation of China 21631007the National Natural Science Foundation of China 21225103the China Postdoctoral Science Foundation 2019TQ0169The project was supported by the China Postdoctoral Science Foundation (2019M650027, 2019TQ0169) and the National Natural Science Foundation of China (21901136, 21225103, 21471087, 21631007)the China Postdoctoral Science Foundation 2019M650027

  • Hydrogen (H2), a clean and sustainable energy carrier, is regarded as one of the most promising alternatives to carbon-based fuels. Hydrogen can be generated in a more sustainable way from renewable energy sources via electrocatalytic water splitting. However, the high cost and low abundance of the benchmarking platinum-based hydrogen evolution reaction (HER) catalysts hinder their widespread applications. Thus, developing highly efficient, stable, and low-cost electrocatalysts to replace platinum for HER is imperative, but remains a challenging task. Recently, efforts have been devoted to developing non-noble HER electrocatalysts, including transition metal carbides, oxides, phosphides, and sulfides. However, traditional synthetic strategies cannot effectively control active sites and the catalysts tend to aggregate under high temperature. Recently, polyoxometalates (POMs) have been applied as precursors for the preparation of non-noble HER electrocatalysts as they contain discrete metal-oxygen clusters with well-defined structures. POMs are typically composed of oxygen ligands and high-valent metal ions such as Ⅴ(Ⅴ), Mo(Ⅵ), and W(Ⅵ), which can serve as Ⅴ, Mo, and W sources to produce the corresponding metal carbides, oxides, phosphides, and sulfides by pyrolysis at high temperature. Some POMs may also contain a series of redox-active heteroatoms, which are usually named hetero-polyoxometalates. These can serve as precursors to electrocatalysts with uniform heteroatom doping. Moreover, direct applications of POMs as molecular catalysts in HER have, in recent years, received rapidly growing attention. This is because POMs not only serve as mediators or molecular catalysts to facilitate the HER, but can also be deposited on the electrode surface to catalyze the HER. However, the interpretation that HER catalytic activity enhancement is due to the intrinsic catalytic properties of the electrodeposited polyoxometalate or the deposition of small amounts of platinum has been highly debated. Reviewing these studies may help us understand the intrinsic active sites as well the intrinsic HER mechanism of POMs and POMs-derived catalysts, and thus design more efficient HER catalysts. This review, therefore, focuses on recent progress in the applications of POMs and their derivatives in electrocatalytic HER. Firstly, basic HER mechanisms for common metal catalysts and POMs molecular catalysts are discussed along with challenges in the field of HER. Next, applications of POMs molecular catalysts and POMs-derived catalysts in HER are summarized. Finally, some perspectives of POMs-based catalysts/pre-catalysts for electrocatalytic HER are proposed.
  • 加载中
    1. [1]

      Li, J. S.; Tang, Y. J.; Liu, C. H.; Li, S. L.; Li, R. H.; Dong, L. Z.; Dai, Z. H.; Bao, J. C. Lan, Y. Q. J. Mater. Chem. A 2016, 4, 1202. doi: 10.1039/c5ta09743f  doi: 10.1039/c5ta09743f

    2. [2]

      Chen, W. F.; Wang, C. H.; Sasaki, K.; Marinkovic, N.; Xu, W.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R. Energy Environ. Sci. 2013, 6, 943. doi: 10.1039/C2EE23891H  doi: 10.1039/C2EE23891H

    3. [3]

      Tang, Y. J.; Gao, M. R.; Liu, C. H.; Li, S. L.; Jiang, H. L.; Lan, Y. Q.; Han, M.; Yu, S. H. Angew. Chem. Int. Ed. 2015, 54, 12928. doi: 10.1002/anie.201505691  doi: 10.1002/anie.201505691

    4. [4]

      Li, J. S.; Wang, Y.; Liu, C. H.; Li, S. L.; Wang, Y. G.; Dong, L. Z.; Dai, Z. H.; Li, Y. F.; Lan, Y. Q. Nat. Commun. 2016, 7, 11204. doi: 10.1038/ncomms11204  doi: 10.1038/ncomms11204

    5. [5]

      Sun, Y.; Shen, C.; Lai, Q.; Liu, W.; Wang, D. W.; Aguey-Zinsou, K. F. Energy Storage Mater. 2018, 10, 168. doi: 10.1016/j.ensm.2017.01.010  doi: 10.1016/j.ensm.2017.01.010

    6. [6]

      Turner, J. A. Science 2004, 305, 972. doi: 10.1126/science.1103197  doi: 10.1126/science.1103197

    7. [7]

      Dresselhaus, M. S.; Thomas, I. L. Nature 2001, 414, 332. doi: 10.1038/35104599  doi: 10.1038/35104599

    8. [8]

      Corporation, T. M. Environmental Report 2017-Toward the Toyota Environmental Challenge 2050 2017. Available from: https://global.toyota/en/sustainability/report/archives/#srer.

    9. [9]

      Zou, X.; Zhang, Y. Chem. Soc. Rev. 2015, 44, 5148. doi: 10.1039/C4CS00448E  doi: 10.1039/C4CS00448E

    10. [10]

      Mallouk, T. E. Nat. Chem.2013, 5, 362. doi: 10.1038/nchem.1634  doi: 10.1038/nchem.1634

    11. [11]

      Barelli, L.; Bidini, G.; Gallorini, F.; Servili, S. Energy 2008, 33, 554. doi: 10.1016/j.energy.2007.10.018  doi: 10.1016/j.energy.2007.10.018

    12. [12]

      Xu, H.; Cheng, D.; Cao, D.; Zeng, X. C. Nat. Catal. 2018, 1, 339. doi: 10.1038/s41929-018-0063-z  doi: 10.1038/s41929-018-0063-z

    13. [13]

      Liu, K. H.; Zhong, H. X.; Li, S. J.; Duan, Y. X.; Shi, M. M.; Zhang, X. B.; Yan, J. M.; Jiang, Q. Prog. Mater. Sci. 2018, 92, 64. doi: 10.1016/j.pmatsci.2017.09.001  doi: 10.1016/j.pmatsci.2017.09.001

    14. [14]

      Di, J.; Yan, C.; Handoko, A. D.; Seh, Z. W.; Li, H.; Liu, Z. Mater. Today 2018, 21, 749. doi: 10.1016/j.mattod.2018.01.034  doi: 10.1016/j.mattod.2018.01.034

    15. [15]

      Zhu, Y. P.; Guo, C.; Zheng, Y.; Qiao, S. Z. Acc. Chem. Res. 2017, 50, 915. doi: 10.1021/acs.accounts.6b00635  doi: 10.1021/acs.accounts.6b00635

    16. [16]

      Wang, H.; Zhu, Q. L.; Zou, R.; Xu, Q. Chem 2017, 2, 52. doi: 10.1016/j.chempr.2016.12.002  doi: 10.1016/j.chempr.2016.12.002

    17. [17]

      Liu, Y.; Wu, J.; Hackenberg, K. P.; Zhang, J.; Wang, Y. M.; Yang, Y.; Keyshar, K.; Gu, J.; Ogitsu, T.; Vajtai, R.; et al. Nat. Energy 2017, 2, 17127. doi: 10.1038/nenergy.2017.127  doi: 10.1038/nenergy.2017.127

    18. [18]

      Morales-Guio, C. G.; Stern, L. A.; Hu, X. Chem. Soc. Rev. 2014, 43, 6555. doi: 10.1039/c3cs60468c  doi: 10.1039/c3cs60468c

    19. [19]

      Shan, J.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Adv. Mater. 2019, 31, 1900510. doi: 10.1002/adma.201900510  doi: 10.1002/adma.201900510

    20. [20]

      Lai, J.; Huang, B.; Chao, Y.; Chen, X.; Guo, S. Adv. Mater. 2019, 31, 1805541. doi: 10.1002/adma.201805541  doi: 10.1002/adma.201805541

    21. [21]

      Huang, Y.; Sun, Y.; Zheng, X.; Aoki, T.; Pattengale, B.; Huang, J.; He, X.; Bian, W.; Younan, S.; Williams, N.; et al. Nat. Commun. 2019, 10, 982. doi: 10.1038/s41467-019-08877-9  doi: 10.1038/s41467-019-08877-9

    22. [22]

      Xiong, Q.; Zhang, X.; Wang, H.; Liu, G.; Wang, G.; Zhang, H.; Zhao, H. Chem. Commun. 2018, 54, 3859. doi: 10.1039/C8CC00766G  doi: 10.1039/C8CC00766G

    23. [23]

      Shen, Y.; Zhou, Y.; Wang, D.; Wu, X.; Li, J.; Xi, J. Adv. Energy Mater. 2018, 8, 1701759. doi: 10.1002/aenm.201701759  doi: 10.1002/aenm.201701759

    24. [24]

      Dinh, C. T.; Jain, A.; de Arquer, F. P. G.; De Luna, P.; Li, J.; Wang, N.; Zheng, X.; Cai, J.; Gregory, B. Z.; Voznyy, O.; et al. Nat. Energy 2018, 4, 107. doi: 10.1038/s41560-018-0296-8  doi: 10.1038/s41560-018-0296-8

    25. [25]

      Ni, B.; He, P.; Liao, W.; Chen, S.; Gu, L.; Gong, Y.; Wang, K.; Zhuang, J.; Song, L.; Zhou, G.; Wang, X. Small2018, 1703749. doi: 10.1002/smll.201703749  doi: 10.1002/smll.201703749

    26. [26]

      Zhang, J.; Wang, T.; Liu, P.; Liao, Z.; Liu, S.; Zhuang, X.; Chen, M.; Zschech, E.; Feng, X. Nat. Commun. 2017, 8, 15437. doi: 10.1038/ncomms15437  doi: 10.1038/ncomms15437

    27. [27]

      Park, H.; Zhang, Y.; Scheifers, J. P.; Jothi, P. R.; Encinas, A.; Fokwa, B. P. T. J. Am. Chem. Soc. 2017, 139, 12915. doi: 10.1021/jacs.7b07247  doi: 10.1021/jacs.7b07247

    28. [28]

      Park, H.; Encinas, A.; Scheifers, J. P.; Zhang, Y.; Fokwa, B. P. T. Angew. Chem. Int. Ed. 2017, 56, 5575. doi: 10.1002/anie.201611756  doi: 10.1002/anie.201611756

    29. [29]

      Vrubel, H.; Hu, X. Angew. Chem. Int. Ed. 2012, 51, 12703. doi: 10.1002/anie.201207111  doi: 10.1002/anie.201207111

    30. [30]

      Yang, Y.; Luo, M.; Xing, Y.; Wang, S.; Zhang, W.; Lv, F.; Li, Y.; Zhang, Y.; Wang, W.; Guo, S. Adv. Mater. 2018, 30, 1706085. doi: 10.1002/adma.201706085  doi: 10.1002/adma.201706085

    31. [31]

      Jing, S.; Zhang, L.; Luo, L.; Lu, J.; Yin, S.; Shen, P. K.; Tsiakaras, P. Appl. Catal. B: Environ. 2018, 224, 533. doi: 10.1016/j.apcatb.2017.10.025  doi: 10.1016/j.apcatb.2017.10.025

    32. [32]

      Huang, Y. C.; Ge, J. X.; Hu, J.; Zhang, J. W.; Hao, J.; Wei, Y. G. Adv. Energy Mater. 2018, 8, 1701601. doi: 10.1002/Aenm.201701601  doi: 10.1002/Aenm.201701601

    33. [33]

      Xu, Y. T.; Xiao, X.; Ye, Z. M.; Zhao, S.; Shen, R.; He, C. T.; Zhang, J. P.; Li, Y.; Chen, X. M. J. Am. Chem. Soc.2017, 139, 5285. doi: 10.1021/jacs.7b00165  doi: 10.1021/jacs.7b00165

    34. [34]

      Wang, F.; Sun, Y.; He, Y.; Liu, L.; Xu, J.; Zhao, X.; Yin, G.; Zhang, L.; Li, S.; Mao, Q.; Huang, Y.; Zhang, T.; Liu, B. Nano Energy 2017, 37, 1. doi: 10.1016/j.nanoen.2017.04.050  doi: 10.1016/j.nanoen.2017.04.050

    35. [35]

      Shi, Z. P.; Nie, K. Q.; Shao, Z. J.; Gao, B. X.; Lin, H. L.; Zhang, H. B.; Liu, B. L.; Wang, Y. X.; Zhang, Y. H.; Sun, X. H.; et al. Energy Environ. Sci. 2017, 10, 1262. doi: 10.1039/c7ee00388a  doi: 10.1039/c7ee00388a

    36. [36]

      Miao, M.; Pan, J.; He, T.; Yan, Y.; Xia, B. Y.; Wang, X. Chem. -Eur. J. 2017, 23, 10947. doi: 10.1002/chem.201701064  doi: 10.1002/chem.201701064

    37. [37]

      Song, F.; Li, W.; Yang, J.; Han, G.; Liao, P.; Sun, Y. Nat. Commun. 2018, 9, 4531. doi: 10.1038/s41467-018-06728-7  doi: 10.1038/s41467-018-06728-7

    38. [38]

      Zhong, Y.; Xia, X.; Shi, F.; Zhan, J.; Tu, J.; Fan, H. J. Adv. Sci. 2016, 3, 1500286. doi: 10.1002/advs.201500286  doi: 10.1002/advs.201500286

    39. [39]

      Yan, H.; Tian, C.; Wang, L.; Wu, A.; Meng, M.; Zhao, L.; Fu, H. Angew. Chem. Int. Ed. 2015, 54, 6325. doi: 10.1002/anie.201501419  doi: 10.1002/anie.201501419

    40. [40]

      Jothi, P. R.; Zhang, Y.; Scheifers, J. P.; Park, H.; Fokwa, B. P. T. Sustain. Energy Fuels 2017, 1, 1928. doi: 10.1039/C7SE00397H  doi: 10.1039/C7SE00397H

    41. [41]

      Xie, X.; Lin, L.; Liu, R. Y.; Jiang, Y. F.; Zhu, Q.; Xu, A. W. J. Mater. Chem. A 2015, 3, 8055. doi: 10.1039/C5TA00622H  doi: 10.1039/C5TA00622H

    42. [42]

      Wang, H.; Lee, H. W.; Deng, Y.; Lu, Z.; Hsu, P. C.; Liu, Y.; Lin, D.; Cui, Y. Nat. Commun. 2015, 6, 7261. doi: 10.1038/ncomms8261  doi: 10.1038/ncomms8261

    43. [43]

      Jin, H.; Wang, J.; Su, D.; Wei, Z.; Pang, Z.; Wang, Y. J. Am. Chem. Soc. 2015, 137, 2688. doi: 10.1021/ja5127165  doi: 10.1021/ja5127165

    44. [44]

      Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J.; Guan, M.; Lin, M. C.; Zhang, B.; Hu, Y.; Wang, D. Y.; Yang, J.; et al. Nat. Commun. 2014, 5. 4695. doi: 10.1038/ncomms5695  doi: 10.1038/ncomms5695

    45. [45]

      Zhang, T. Q.; Liu, J.; Huang, L. B.; Zhang, X. D.; Sun, Y. G.; Liu, X. C.; Bin, D. S.; Chen, X.; Cao, A. M.; Hu, J. S.; et al. J. Am. Chem. Soc. 2017, 139, 11248. doi: 10.1021/jacs.7b06123  doi: 10.1021/jacs.7b06123

    46. [46]

      Yang, F.; Chen, Y.; Cheng, G.; Chen, S.; Luo, W. ACS Catal. 2017, 7, 3824. doi: 10.1021/acscatal.7b00587  doi: 10.1021/acscatal.7b00587

    47. [47]

      Wu, C.; Yang, Y.; Dong, D.; Zhang, Y.; Li, J. Small 2017, 13, 1602873. doi: 10.1002/smll.201602873  doi: 10.1002/smll.201602873

    48. [48]

      Tabassum, H.; Guo, W.; Meng, W.; Mahmood, A.; Zhao, R.; Wang, Q.; Zou, R. Adv. Energy Mater. 2017, 7, 1601671. doi: 10.1002/aenm.201601671  doi: 10.1002/aenm.201601671

    49. [49]

      Sun, Y.; Hang, L.; Shen, Q.; Zhang, T.; Li, H.; Zhang, X.; Lyu, X.; Li, Y. Nanoscale 2017, 9, 16674. doi: 10.1039/C7NR03515B  doi: 10.1039/C7NR03515B

    50. [50]

      Zhu, W.; Tang, C.; Liu, D.; Wang, J.; Asiri, A. M.; Sun, X. J. Mater. Chem. A 2016, 4, 7169. doi: 10.1039/c6ta01328g  doi: 10.1039/c6ta01328g

    51. [51]

      Wu, T.; Pi, M.; Zhang, D.; Chen, S. J. Power Sources 2016, 328, 551. doi: 10.1016/j.jpowsour.2016.08.050  doi: 10.1016/j.jpowsour.2016.08.050

    52. [52]

      Wu, A.; Tian, C.; Yan, H.; Jiao, Y.; Yan, Q.; Yang, G.; Fu, H. Nanoscale 2016, 8, 11052. doi: 10.1039/c6nr02803a  doi: 10.1039/c6nr02803a

    53. [53]

      Wang, X. D.; Xu, Y. F.; Rao, H. S.; Xu, W. J.; Chen, H. Y.; Zhang, W. X.; Kuang, D. B.; Su, C. Y. Energy Environ. Sci. 2016, 9, 1468. doi: 10.1039/c5ee03801d  doi: 10.1039/c5ee03801d

    54. [54]

      Tan, Y.; Wang, H.; Liu, P.; Cheng, C.; Zhu, F.; Hirata, A.; Chen, M. Adv. Mater. 2016, 28, 2951. doi: 10.1002/adma.201505875  doi: 10.1002/adma.201505875

    55. [55]

      Pu, Z.; Amiinu, I. S.; Wang, M.; Yang, Y.; Mu, S. Nanoscale 2016, 8, 8500. doi: 10.1039/c6nr00820h  doi: 10.1039/c6nr00820h

    56. [56]

      Liang, H.; Gandi, A. N.; Anjum, D. H.; Wang, X.; Schwingenschlögl, U.; Alshareef, H. N. Nano Lett. 2016, 16, 7718. doi: 10.1021/acs.nanolett.6b03803  doi: 10.1021/acs.nanolett.6b03803

    57. [57]

      Zhao, C.; Zhang, Y.; Chen, L.; Yan, C.; Zhang, P.; Ang, J. M.; Lu, X. ACS Appl. Mater. Inter. 2018, 10, 23731. doi: 10.1021/acsami.8b04140  doi: 10.1021/acsami.8b04140

    58. [58]

      Tang, Y. J.; Zhang, A. M.; Zhu, H. J.; Dong, L. Z.; Wang, X. L.; Li, S. L.; Han, M.; Xu, X. X.; Lan, Y. Q. Nanoscale2018, 10, 8404. doi: 10.1039/c8nr00925b  doi: 10.1039/c8nr00925b

    59. [59]

      Huang, Y.; Nielsen, R. J.; Goddard, W. A. J. Am. Chem. Soc. 2018, 140, 16773. doi: 10.1021/jacs.8b10016  doi: 10.1021/jacs.8b10016

    60. [60]

      Hou, J.; Zhang, B.; Li, Z.; Cao, S.; Sun, Y.; Wu, Y.; Gao, Z.; Sun, L. ACS Catal.2018, 8, 4612. doi: 10.1021/acscatal.8b00668  doi: 10.1021/acscatal.8b00668

    61. [61]

      Zhang, B.; Liu, J.; Wang, J.; Ruan, Y.; Ji, X.; Xu, K.; Chen, C.; Wan, H.; Miao, L.; Jiang, J. Nano Energy 2017, 37, 74. doi: 10.1016/j.nanoen.2017.05.011  doi: 10.1016/j.nanoen.2017.05.011

    62. [62]

      Wu, Y.; Liu, Y.; Li, G. D.; Zou, X.; Lian, X.; Wang, D.; Sun, L.; Asefa, T.; Zou, X. Nano Energy 2017, 35, 161. doi: 10.1016/j.nanoen.2017.03.024  doi: 10.1016/j.nanoen.2017.03.024

    63. [63]

      Tan, C.; Cao, X.; Wu, X. J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G. H.; et al. Chem. Rev. 2017, 117, 6225. doi: 10.1021/acs.chemrev.6b00558  doi: 10.1021/acs.chemrev.6b00558

    64. [64]

      Song, J.; Zhao, H.; Sun, R.; Li, X.; Sun, D. Energy Environ. Sci. 2017, 10, 225. doi: 10.1039/C6EE02414A  doi: 10.1039/C6EE02414A

    65. [65]

      Li, H.; Chen, S.; Jia, X.; Xu, B.; Lin, H.; Yang, H.; Song, L.; Wang, X. Nat. Commun. 2017, 8, 15377. doi: 10.1038/ncomms15377  doi: 10.1038/ncomms15377

    66. [66]

      Chen, P.; Zhou, T.; Zhang, M.; Tong, Y.; Zhong, C.; Zhang, N.; Zhang, L.; Wu, C.; Xie, Y. Adv. Mater. 2017, 29, 1701584. doi: 10.1002/adma.201701584  doi: 10.1002/adma.201701584

    67. [67]

      Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R.; Liu, S.; Zhuang, X.; Feng, X. Angew. Chem. Int. Ed. 2016, 55, 6702. doi: 10.1002/anie.201602237  doi: 10.1002/anie.201602237

    68. [68]

      Zhang, J.; Wang, T.; Liu, P.; Liu, S.; Dong, R.; Zhuang, X.; Chen, M.; Feng, X. Energy Environ. Sci. 2016, 9, 2789. doi: 10.1039/C6EE01786J  doi: 10.1039/C6EE01786J

    69. [69]

      Yu, X. Y.; Feng, Y.; Jeon, Y.; Guan, B.; Lou, X. W.; Paik, U. Adv. Mater. 2016, 28, 9006. doi: 10.1002/adma.201601188  doi: 10.1002/adma.201601188

    70. [70]

      Ye, R.; del Angel-Vicente, P.; Liu, Y.; Arellano-Jimenez, M. J.; Peng, Z.; Wang, T.; Li, Y.; Yakobson, B. I.; Wei, S. H.; Yacaman, M. J.; et al. Adv. Mater. 2016, 28, 1427. doi: 10.1002/adma.201504866  doi: 10.1002/adma.201504866

    71. [71]

      Voiry, D.; Fullon, R.; Yang, J.; de Carvalho Castro, E. S. C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G.; et al. Nat. Mater. 2016, 15, 1003. doi: 10.1038/nmat4660  doi: 10.1038/nmat4660

    72. [72]

      Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H. Adv. Mater. 2016, 28, 1917. doi: 10.1002/adma.201503270  doi: 10.1002/adma.201503270

    73. [73]

      Li, H.; Tsai, C.; Koh, A. L.; Cai, L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F.; et al. Nat. Mater. 2016, 15, 364. doi: 10.1038/nmat4564  doi: 10.1038/nmat4564

    74. [74]

      Li, G.; Zhang, D.; Qiao, Q.; Yu, Y.; Peterson, D.; Zafar, A.; Kumar, R.; Curtarolo, S.; Hunte, F.; Shannon, S.; et al. J. Am. Chem. Soc. 2016, 138, 16632. doi: 10.1021/jacs.6b05940  doi: 10.1021/jacs.6b05940

    75. [75]

      Jiang, J.; Gao, M.; Sheng, W.; Yan, Y. Angew. Chem. Int. Ed. 2016, 55, 15240. doi: 10.1002/anie.201607651  doi: 10.1002/anie.201607651

    76. [76]

      Geng, X.; Sun, W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H.; Watanabe, F.; Cui, J.; Chen, T. P. Nat. Commun. 2016, 7, 10672. doi: 10.1038/ncomms10672  doi: 10.1038/ncomms10672

    77. [77]

      Staszak, J. J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G.; et al. Nat. Mater. 2015, 15, 197. doi: 10.1038/nmat4481  doi: 10.1038/nmat4481

    78. [78]

      Miao, J.; Xiao, F. X.; Yang, H. B.; Khoo, S. Y.; Chen, J.; Fan, Z.; Hsu, Y. Y.; Chen, H. M.; Zhang, H.; Liu, B. Sci. Adv. 2015, 1, e1500259. doi: 10.1126/sciadv.1500259  doi: 10.1126/sciadv.1500259

    79. [79]

      Gao, M. R.; Liang, J. X.; Zheng, Y. R.; Xu, Y. F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S. H. Nat. Commun. 2015, 6, 5982. doi: 10.1038/ncomms6982  doi: 10.1038/ncomms6982

    80. [80]

      Pan, Y.; Liu, S.; Sun, K.; Chen, X.; Wang, B.; Wu, K.; Cao, X.; Cheong, W. C.; Shen, R.; Han, A.; et al. Angew. Chem. Int. Ed. 2018, 57, 8614. doi: 10.1002/anie.201804349  doi: 10.1002/anie.201804349

    81. [81]

      Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C.; et al. Angew. Chem. Int. Ed. 2017, 56, 16086. doi: 10.1002/anie.201710599  doi: 10.1002/anie.201710599

    82. [82]

      Zhang, J.; Huang, Y.; Li, G.; Wei, Y. Coordin. Chem. Rev. 2019, 378, 395. doi: 10.1016/j.ccr.2017.10.025  doi: 10.1016/j.ccr.2017.10.025

    83. [83]

      Wang, S. S.; Yang, G. Y. Chem. Rev. 2015, 115, 4893. doi: 10.1021/cr500390v  doi: 10.1021/cr500390v

    84. [84]

      Su, Z. M. Chinese Sci. Bull. 2011, 56, 623.  doi: 10.1360/csb2011-56-9-623

    85. [85]

      Wang E. B.; Li, Y. G.; Lu, H.; Wang, X. L. Introduction to Polyoxometalates Chemistry; Northeast Normal Univerisity Press: Changchun, China, 2009; pp. 1–18.

    86. [86]

      Wang, E. B.; Hu, C. W.; Xu, L. Introduction to Polyoxometalates Chemistry; Chemical Industry Press: Beijing, China, 1998; pp. 1–40.

    87. [87]

      Li, J.; Chen, Z.; Zhou, M.; Jing, J.; Li, W.; Wang, Y.; Wu, L.; Wang, L.; Wang, Y.; Lee, M. Angew. Chem. Int. Ed. 2016, 55, 2592. doi: 10.1002/anie.201511276  doi: 10.1002/anie.201511276

    88. [88]

      Blazevic, A.; Rompel, A. Coordin. Chem. Rev. 2016, 307, 42. doi: 10.1016/j.ccr.2015.07.001  doi: 10.1016/j.ccr.2015.07.001

    89. [89]

      Gao, N.; Sun, H.; Dong, K.; Ren, J.; Duan, T.; Xu, C.; Qu, X. Nat. Commun. 2014, 5, 3422. doi: 10.1038/ncomms4422  doi: 10.1038/ncomms4422

    90. [90]

      She, S.; Bian, S.; Hao, J.; Zhang, J.; Zhang, J.; Wei, Y. Chem. -Eur. J. 2014, 20, 16987. doi: 10.1002/chem.201404317  doi: 10.1002/chem.201404317

    91. [91]

      Martin-Sabi, M.; Soriano-López, J.; Winter, R. S.; Chen, J. J.; Vilà-Nadal, L.; Long, D. L.; Galán-Mascarós, J. R.; Cronin, L. Nat. Catal. 2018, 1, 208. doi: 10.1038/s41929-018-0037-1  doi: 10.1038/s41929-018-0037-1

    92. [92]

      Luo, J.; Huang, Y.; Ding, B.; Wang, P.; Geng, X.; Zhang, J.; Wei, Y. Catalysts 2018, 8, 121. doi: 10.3390/catal8030121  doi: 10.3390/catal8030121

    93. [93]

      Yu, H.; Ru, S.; Dai, G.; Zhai, Y.; Lin, H.; Han, S.; Wei, Y. Angew. Chem. Int. Ed. 2017, 56, 3867. doi: 10.1002/anie.201612225  doi: 10.1002/anie.201612225

    94. [94]

      Blasco-Ahicart, M.; Soriano-López, J.; Carbó, J. J.; Poblet, J. M.; Galan-Mascaros, J. R. Nat. Chem. 2017, 10, 24. doi: 10.1038/nchem.2874  doi: 10.1038/nchem.2874

    95. [95]

      Liu, Y.; Zhao, S. F.; Guo, S. X.; Bond, A. M.; Zhang, J.; Zhu, G.; Hill, C. L.; Geletii, Y. V. J. Am. Chem. Soc. 2016, 138, 2617. doi: 10.1021/jacs.5b11408  doi: 10.1021/jacs.5b11408

    96. [96]

      Ishiba, K.; Noguchi, T.; Iguchi, H.; Morikawa, M. A.; Kaneko, K.; Kimizuka, N. Angew. Chem. Int. Ed. 2017, 56, 2974. doi: 10.1002/anie.201612473  doi: 10.1002/anie.201612473

    97. [97]

      Vasilopoulou, M.; Douvas, A. M.; Palilis, L. C.; Kennou, S.; Argitis, P. J. Am. Chem. Soc. 2015, 137, 6844. doi: 10.1021/jacs.5b01889  doi: 10.1021/jacs.5b01889

    98. [98]

      Herrmann, S.; Kostrzewa, M.; Wierschem, A.; Streb, C. Angew. Chem. Int. Ed. 2014, 53, 13596. doi: 10.1002/anie.201408171  doi: 10.1002/anie.201408171

    99. [99]

      Herrmann, S.; Aydemir, N.; Nägele, F.; Fantauzzi, D.; Jacob, T.; Travas-Sejdic, J.; Streb, C. Adv. Funct. Mater. 2017, 27, 1700881. doi: 10.1002/adfm.201700881  doi: 10.1002/adfm.201700881

    100. [100]

      Huang, L.; Hu, J.; Ji, Y.; Streb, C.; Song, Y. F. Chem. -Eur. J. 2015, 21, 18799. doi: 10.1002/chem.201501907  doi: 10.1002/chem.201501907

    101. [101]

      Ni, E.; Uematsu, S.; Sonoyama, N. J. Power Sources 2014, 267, 673. doi: 10.1016/j.jpowsour.2014.05.141  doi: 10.1016/j.jpowsour.2014.05.141

    102. [102]

      Ma, D.; Liang, L.; Chen, W.; Liu, H.; Song, Y. F. Adv. Funct. Mater. 2013, 23, 6100. doi: 10.1002/adfm.201301624  doi: 10.1002/adfm.201301624

    103. [103]

      Luo, W.; Hu J.; Diao, H.; Schwarz, B.; Streb, C.; Song, Y. F. Angew. Chem. Int. Ed. 2017, 56, 4941. doi: 10.1002/anie.201612232  doi: 10.1002/anie.201612232

    104. [104]

      Ji, Y.; Huang, L.; Hu, J.; Streb, C.; Song, Y. F. Energy Environ. Sci. 2015, 8, 776. doi: 10.1039/c4ee03749a  doi: 10.1039/c4ee03749a

    105. [105]

      Huang, Y. C.; Hu, J.; Xu, H. X.; Bian, W.; Ge, J. X.; Zang, D. J.; Cheng, D. J.; Lv, Y. K.; Zhang, C.; Gu, J.; Wei, Y. G. Adv. Energy Mater. 2018, 8, 1800789. doi: 10.1002/Aenm.201800789  doi: 10.1002/Aenm.201800789

    106. [106]

      Ma, Y. Y.; Wu, C. X.; Feng, X. J.; Tan, H. Q.; Yan, L. K.; Liu, Y.; Kang, Z. H.; Wang, E. B.; Li, Y. G. Energy Environ. Sci. 2017, 10, 788. doi: 10.1039/C6EE03768B  doi: 10.1039/C6EE03768B

    107. [107]

      Wu, H. B.; Lou, X. W. Sci. Adv. 2017, 3, eaap9252. doi: 10.1126/sciadv.aap9252  doi: 10.1126/sciadv.aap9252

    108. [108]

      Wang, W.; Xu, X.; Zhou, W.; Shao, Z. Adv. Sci. 2017, 4, 1600371. doi: 10.1002/advs.201600371  doi: 10.1002/advs.201600371

    109. [109]

      Exner, K. S.; Over, H. Acc. Chem. Res. 2017, 50, 1240. doi: 10.1021/acs.accounts.7b00077  doi: 10.1021/acs.accounts.7b00077

    110. [110]

      Cao, X.; Tan, C.; Sindoro, M.; Zhang, H. Chem. Soc. Rev. 2017, 46, 2660. doi: 10.1039/c6cs00426a  doi: 10.1039/c6cs00426a

    111. [111]

      Tafel, J. Zeitschrift Fur Physikalische Chemie-Stochiometrie Und Verwandtschaftslehre 1905, 50, 641-712.

    112. [112]

      Conway, B. E.; Tilak, B. V. Electrochim. Acta 2002, 47, 3571. doi: Pii S0013-4686(02)00329-8  doi: 10.1016/S0013-4686(02)00329-8

    113. [113]

      Millet, P.; Ngameni, R.; Grigoriev, S. A.; Mbemba, N.; Brisset, F.; Ranjbari, A.; Etievant, C. Int. J. Hydrogen Energy 2010, 35, 5043. doi: 10.1016/j.ijhydene.2009.09.015  doi: 10.1016/j.ijhydene.2009.09.015

    114. [114]

      Xiao, P.; Chen, W.; Wang, X. Adv. Energy Mater. 2015, 5, 1500985. doi: 10.1002/aenm.201500985  doi: 10.1002/aenm.201500985

    115. [115]

      Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. J. Am. Chem. Soc. 2011, 133, 7296. doi: 10.1021/ja201269b  doi: 10.1021/ja201269b

    116. [116]

      Michalsky, R.; Zhang, Y. J.; Peterson, A. A. ACS Catal. 2014, 4, 1274. doi: 10.1021/cs500056u  doi: 10.1021/cs500056u

    117. [117]

      Quaino, P.; Juarez, F.; Santos, E.; Schmickler, W. Beilstein J. Nanotechnol. 2014 5, 846. doi: 10.3762/bjnano.5.96  doi: 10.3762/bjnano.5.96

    118. [118]

      Sadakane, M.; Steckhan, E. Chem. Rev. 1998, 98, 219. doi: 10.1021/cr960403a  doi: 10.1021/cr960403a

    119. [119]

      Savinov, E. N.; Saidkhanov, S. S.; Parmon, V. N.; Zamaraev, K. I. React. Kinet. Catal. L. 1981, 17, 407. doi: 10.1007/bf02065856  doi: 10.1007/bf02065856

    120. [120]

      Akid, R.; Darwent, J. R. J. Chem. Soc., Dalton Trans. 1985, 395. doi: 10.1039/DT9850000395  doi: 10.1039/DT9850000395

    121. [121]

      Keita, B.; Nadjo, L. J. Electroanal. Chem. 1985, 191, 441. doi: 10.1016/S0022-0728(85)80038-3  doi: 10.1016/S0022-0728(85)80038-3

    122. [122]

      Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446. doi: 10.1021/cr1002326  doi: 10.1021/cr1002326

    123. [123]

      Qian, X.; Xu, C.; Jiang, Y. Q.; Zhang, J.; Guan, G. X.; Huang, Y. X. Chem. Eng. J. 2019, 368, 202. doi: 10.1016/j.cej.2019.02.179  doi: 10.1016/j.cej.2019.02.179

    124. [124]

      Patel, A.; Narkhede, N. Energy Fuel. 2012, 26, 6025. doi: 10.1021/ef301126e  doi: 10.1021/ef301126e

    125. [125]

      Symes, M. D.; Cronin, L. Nat. Chem. 2013, 5, 403. doi: 10.1038/nchem.1621  doi: 10.1038/nchem.1621

    126. [126]

      Rausch, B.; Symes, M. D.; Chisholm, G.; Cronin, L. Science 2014, 345, 1326. doi: 10.1126/science.1257443  doi: 10.1126/science.1257443

    127. [127]

      Strong, J. B.; Yap, G. P. A.; Ostrander, R.; Liable-Sands, L. M.; Rheingold, A. L.; Thouvenot, R.; Gouzerh, P.; Maatta, E. A. J. Am. Chem. Soc. 2000, 122, 639. doi: Doi10.1021/Ja9927974  doi: 10.1021/ja9927974

    128. [128]

      Xue, S. J.; Chai, A.; Cai, Z. J.; Wei, Y. G.; Xiang, C. S.; Bian, W. D.; Shen, J. Dalton Trans. 2008, 4770. doi: 10.1039/b719388b  doi: 10.1039/b719388b

    129. [129]

      Liu, R. J.; Zhang, G. J.; Cao, H. B.; Zhang, S. J.; Xie, Y. B.; Haider, A.; Kortz, U.; Chen, B. H.; Dalal, N. S.; Zhao, Y. S.; et al. Energy Environ. Sci. 2016, 9, 1012. doi: 10.1039/c5ee03503a  doi: 10.1039/c5ee03503a

    130. [130]

      Keita, B.; Kortz, U.; Holzle, L. R. B.; Brown, S.; Nadjo, L. Langmuir 2007, 23, 9531. doi: 10.1021/1a7016853  doi: 10.1021/1a7016853

    131. [131]

      Biboum, R. N.; Keita, B.; Franger, S.; Njiki, C. P. N.; Zhang, G. J.; Zhang, J.; Liu, T. B.; Mbomekalle, I. M.; Nadjo, L. Materials 2010, 3, 741. doi: 10.3390/ma3010741  doi: 10.3390/ma3010741

    132. [132]

      Barsukova-Stuckart, M.; Izarova, N. V.; Jameson, G. B.; Ramachandran, V.; Wang, Z. X.; van Tol, J.; Dalal, N. S.; Biboum, R. N.; Keita, B.; Nadjo, L.; et al. Angew. Chem. Int. Ed. 2011, 50, 2639. doi: 10.1002/anie.201006734  doi: 10.1002/anie.201006734

    133. [133]

      Zhang, C.; Hong, Y.; Dai, R.; Lin, X.; Long, L. S.; Wang, C.; Lin, W. ACS Appl. Mater. Inter. 2015, 7, 11648. doi: 10.1021/acsami.5b02899  doi: 10.1021/acsami.5b02899

    134. [134]

      Zhang, L.; Li, S. B. B.; Gomez-Garcia, C. J.; Ma, H. Y.; Zhang, C. J.; Pang, H. J.; Li, B. N. ACS Appl. Mater. Inter. 2018, 10, 31498. doi: 10.1021/acsami.8b10447  doi: 10.1021/acsami.8b10447

    135. [135]

      Shen, Q.; Zhang, C.; Wang, M.; Pang, H.; Ma, H.; Wang, X.; Tan, L.; Chai, D.; Hou, Y.; Li, B. Inorg. Chem. Commun. 2019, 99, 64. doi: 10.1016/j.inoche.2018.11.013  doi: 10.1016/j.inoche.2018.11.013

    136. [136]

      Zang, D. J.; Huang, Y. C.; Li, Q.; Tang, Y. J.; Wei, Y. G. Appl. Catal. B Environ. 2019, 249, 163. doi: 10.1016/j.apcatb.2019.02.039  doi: 10.1016/j.apcatb.2019.02.039

    137. [137]

      Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M. Chem. Rev. 2014, 114, 7150. doi: 10.1021/cr500023c  doi: 10.1021/cr500023c

    138. [138]

      Fernandes, D. M.; Araujo, M. P.; Haider, A.; Mougharbel, A. S.; Fernandes, A. J. S.; Kortz, U.; Freire, C. ChemElectroChem. 2018, 5, 273. doi: 10.1002/celc.201701210  doi: 10.1002/celc.201701210

    139. [139]

      Fashapoyeh, M. A.; Mirzaei, M.; Eshtiagh-Hosseini, H.; Rajagopal, A.; Lechner, M.; Liu, R. J.; Streb, C. Chem. Commun. 2018, 54, 10427. doi: 10.1039/c8cc06334f  doi: 10.1039/c8cc06334f

    140. [140]

      Ensafi, A. A.; Heydari-Soureshjani, E.; Jafari-Asl, M.; Rezaei, B. Carbon 2016, 99, 398. doi: 10.1016/j.carbon.2015.12.045  doi: 10.1016/j.carbon.2015.12.045

    141. [141]

      Ensafi, A. A.; Heydari-Soureshjani, E.; Rezaei, B. Chem. Eng. J. 2017, 330, 1109. doi: 10.1016/j.cej.2017.08.062  doi: 10.1016/j.cej.2017.08.062

    142. [142]

      Ensafi, A. A.; Heydari-Soureshjani, E.; Rezaei, B. Inter. J. Hydrogen Energy 2017, 42, 5026. doi: 10.1016/j.ijhydene.2017.01.207  doi: 10.1016/j.ijhydene.2017.01.207

    143. [143]

      Qin, J. S.; Du, D. Y.; Guan, W.; Bo, X. J.; Li, Y. F.; Guo, L. P.; Su, Z. M.; Wang, Y. Y.; Lan, Y. Q.; Zhou, H. C. J. Am. Chem. Soc. 2015, 137, 7169. doi: 10.1021/jacs.5b02688  doi: 10.1021/jacs.5b02688

    144. [144]

      Jahan, M.; Liu, Z. L.; Loh, K. P. Adv. Funct. Mater. 2013, 23, 5363. doi: 10.1002/adfm.201300510  doi: 10.1002/adfm.201300510

    145. [145]

      Pen, g H. Y.; Yang, X. J.; Ma, Y. Y.; Liu, J. N.; Wang, Y. H.; Tan, H. Q.; Li, Y. G. CrystEngComm 2018, 20, 5387. doi: 10.1039/c8ce01151f  doi: 10.1039/c8ce01151f

    146. [146]

      Ito, Y.; Cong, W.; Fujita, T.; Tang, Z.; Chen, M. Angew. Chem. Int. Ed. 2015, 54, 2131. doi: 10.1002/anie.201410050  doi: 10.1002/anie.201410050

    147. [147]

      Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. J. Am. Chem. Soc. 2014, 136, 10053. doi: 10.1021/ja504099w  doi: 10.1021/ja504099w

    148. [148]

      Xie, J.; Zhang, J.; Li, S.; Grote, F.; Zhang, X.; Zhang, H.; Wang, R.; Lei, Y.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2013, 135, 17881. doi: 10.1021/ja408329q  doi: 10.1021/ja408329q

    149. [149]

      Wang, H.; Lub, Z.; Xu, S.; Kong, D.; Cha, J. J.; Zheng, G.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B.; et al. Proc. Natl Acad. Sci. U.S.A. 2013, 110, 19701. doi: 10.1073/pnas.1316792110  doi: 10.1073/pnas.1316792110

    150. [150]

      Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Nat Mater 2013, 12, 850. doi: 10.1038/nmat3700  doi: 10.1038/nmat3700

    151. [151]

      Sun, Y.; Liu, C.; Grauer, D. C.; Yano, J.; Long, J. R.; Yang, P.; Chang, C. J. J. Am. Chem. Soc. 2013, 135, 17699. doi: 10.1021/ja4094764  doi: 10.1021/ja4094764

    152. [152]

      Vrubel, H.; Merki, D.; Hu, X. Energy Environ. Sci. 2012, 5, 6136. doi: 10.1039/C2EE02835B  doi: 10.1039/C2EE02835B

    153. [153]

      Kibsgaard, J.; Chen, Z.; Reinecke, B. N.; Jaramillo, T. F. Nat. Mater. 2012, 11, 963. doi: 10.1038/nmat3439  doi: 10.1038/nmat3439

    154. [154]

      Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. J. Am. Chem. Soc. 2011, 133, 7296. doi: 10.1021/ja201269b  doi: 10.1021/ja201269b

    155. [155]

      Jaramillo, T. F.; Jørgensen, K. P.; Bonde J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Science 2007, 317, 100. doi: 10.1126/science.1141483  doi: 10.1126/science.1141483

    156. [156]

      Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Nat. Commun. 2015, 6, 6512. doi: 10.1038/ncomms7512  doi: 10.1038/ncomms7512

    157. [157]

      Wan, C.; Regmi, Y. N.; Leonard, B. M. Angew. Chem. Int. Ed. 2014, 53, 6407. doi: 10.1002/anie.201402998  doi: 10.1002/anie.201402998

    158. [158]

      Liao, L.; Wang, S.; Xiao, J.; Bian, X.; Zhang, Y.; Scanlon, M. D.; Hu, X.; Tang, Y.; Liu, B.; Girault, H. H. Energy Environ. Sci. 2014, 7, 387. doi: 10.1039/C3EE42441C  doi: 10.1039/C3EE42441C

    159. [159]

      Cui, W.; Cheng, N.; Liu, Q.; Ge, C.; Asiri, A. M.; Sun, X. ACS Catal. 2014, 4, 2658. doi: 10.1021/cs5005294  doi: 10.1021/cs5005294

    160. [160]

      Chen, W. F.; Muckerman, J. T.; Fujita, E. Chem. Commun. 2013, 49, 8896. doi: 10.1039/C3CC44076A  doi: 10.1039/C3CC44076A

    161. [161]

      Gao, Q.; Zhang, C.; Xie, S.; Hua, W.; Zhang, Y.; Ren, N.; Xu, H.; Tang, Y. Chem. Mater. 2009, 21, 5560. doi: 10.1021/cm9014578  doi: 10.1021/cm9014578

    162. [162]

      Li, J. S.; Li, S. L.; Tang, Y. J.; Han, M.; Dai, Z. H.; Bao, J. C.; Lan, Y. Q. Chem. Commun. 2015, 51, 2710. doi: 10.1039/C4CC09062D  doi: 10.1039/C4CC09062D

    163. [163]

      Cao, B.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. J. Am. Chem. Soc. 2013, 135, 19186. doi: 10.1021/ja4081056  doi: 10.1021/ja4081056

    164. [164]

      Wang, T.; Du, K.; Liu, W.; Zhu, Z.; Shao, Y.; Li, M. J. Mater. Chem. A 2015, 3, 4368. doi: 10.1039/C4TA06651K  doi: 10.1039/C4TA06651K

    165. [165]

      Hao, J.; Yang, W.; Zhang, Z.; Tang, J. Nanoscale 2015, 7, 11055. doi: 10.1039/C5NR01955A  doi: 10.1039/C5NR01955A

    166. [166]

      Cui, W.; Liu, Q.; Xing, Z.; Asiri, A. M.; Alamry, K. A.; Sun, X. Appl. Catal. B: Environ. 2015, 164, 144. doi: 10.1016/j.apcatb.2014.09.016  doi: 10.1016/j.apcatb.2014.09.016

    167. [167]

      Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X. Adv. Mater. 2014, 26, 5702. doi: 10.1002/adma.201401692  doi: 10.1002/adma.201401692

    168. [168]

      Xiao, P.; Sk, M. A.; Thia, L.; Ge, X.; Lim, R. J.; Wang, J. Y.; Lim, K. H.; Wang, X. Energy Environ. Sci. 2014, 7, 2624. doi: 10.1039/C4EE00957F  doi: 10.1039/C4EE00957F

    169. [169]

      Kibsgaard, J.; Jaramillo, T. F. Angew. Chem. Int. Ed. 2014, 53, 14433. doi: 10.1002/anie.201408222  doi: 10.1002/anie.201408222

    170. [170]

      Xu, Y.; Wu, R.; Zhang, J.; Shi, Y.; Zhang, B. Chem. Commun. 2013, 49, 6656. doi: 10.1039/C3CC43107J  doi: 10.1039/C3CC43107J

    171. [171]

      Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. J. Am. Chem. Soc. 2013, 135, 9267. doi: 10.1021/ja403440e  doi: 10.1021/ja403440e

    172. [172]

      Nagai, M.; Zahidul, A. M.; Matsuda, K. Appl. Catal. A: Gen. 2006, 313, 137. doi: 10.1016/j.apcata.2006.07.006  doi: 10.1016/j.apcata.2006.07.006

    173. [173]

      Lightstone, J. M.; Mann, H. A.; Wu, M.; Johnson, P. M.; White, M. G. J. Physic. Chem. B 2003, 107, 10359. doi: 10.1021/jp027674b  doi: 10.1021/jp027674b

    174. [174]

      Kolel-Veetil, M. K.; Qadri, S. B.; Osofsky, M.; Keller, T. M. Chem. Mater. 2005, 17, 6101. doi: 10.1021/cm051765e  doi: 10.1021/cm051765e

    175. [175]

      Pang, M.; Li, C.; Ding, L.; Zhang, J.; Su, D.; Li, W.; Liang, C. Ind. Eng. Chem. Res. 2010, 49, 4169. doi: 10.1021/ie901741c  doi: 10.1021/ie901741c

    176. [176]

      Hanif, A.; Xiao, T.; York, A. P. E.; Sloan, J.; Green, M. L. H. Chem. Mater. 2002, 14, 1009. doi: 10.1021/cm011096e  doi: 10.1021/cm011096e

    177. [177]

      Youn, D. H.; Han, S.; Kim, J. Y.; Kim, J. Y.; Park, H.; Choi, S. H.; Lee, J. S. ACS Nano 2014, 8, 5164. doi: 10.1021/nn5012144  doi: 10.1021/nn5012144

    178. [178]

      Tang, Y. J.; Gao, M. R.; Liu, C. H.; Li, S. L.; Jiang, H. L.; Lan, Y. Q.; Han, M.; Yu, S. H. Angew. Chem. Int. Ed. 2015, 54, 12928. doi: 10.1002/anie.201505691  doi: 10.1002/anie.201505691

    179. [179]

      Tang, Y. J.; Chen, Y. F.; Zhu, H. J.; Zhang, A. M.; Wang, X. L.; Dong, L. Z.; Li, S. L.; Xu, Q.; Lan, Y. Q. J. Mater. Chem. A 2018, 6, 21969. doi: 10.1039/c8ta02219d  doi: 10.1039/c8ta02219d

    180. [180]

      Li, J. S.; Li, J. Y.; Wang, X. R.; Zhang, S.; Sha, J. Q.; Liu, G. D. ACS Sustain. Chem. Eng. 2018, 6, 10252. doi: 10.1021/acssuschemeng.8b01575  doi: 10.1021/acssuschemeng.8b01575

    181. [181]

      Yang, X. J.; Feng, X. J.; Tan, H. Q.; Zang, H. Y.; Wang, X. L.; Wang, Y. H.; Wang, E. B.; Li, Y. G. J. Mater. Chem. A 2016, 4, 3947. doi: 10.1039/c5ta09507g  doi: 10.1039/c5ta09507g

    182. [182]

      Yan, G.; Wu, C. X.; Tan, H. Q.; Feng, X. J.; Yan, L. K.; Zang, H. Y.; Li, Y. G. J. Mater. Chem. A 2017, 5, 765. doi: 10.1039/c6ta09052d  doi: 10.1039/c6ta09052d

    183. [183]

      Zhang, L. N.; Li, S. H.; Tan, H. Q.; Khan, S. U.; Ma, Y. Y.; Zang, H. Y.; Wang, Y. H.; Li, Y. G. ACS Appl. Mater. Inter. 2017, 9, 16270. doi: 10.1021/acsami.7b03823  doi: 10.1021/acsami.7b03823

    184. [184]

      Gao, Y.; Lang, Z. L.; Yu, F. Y.; Tan, H. Q.; Yan, G.; Wang, Y. H.; Ma, Y. Y.; Li, Y. G. ChemSusChem 2018, 11, 1082. doi: 10.1002/cssc.201702328  doi: 10.1002/cssc.201702328

    185. [185]

      Yan, G.; Feng, X. J.; Khan, S. U.; Xiao, L. G.; Xi, W. G.; Tan, H. Q.; Ma, Y. Y.; Zhang, L. N.; Li, Y. G. Chem-Asian J. 2018, 13, 158. doi: 10.1002/asia.201701400  doi: 10.1002/asia.201701400

    186. [186]

      Yu, F. Y.; Gao, Y.; Lang, Z. L.; Ma, Y. Y.; Yin, L. Y.; Du, J.; Tan, H. Q.; Wang, Y. H.; Li, Y. G. Nanoscale 2018, 10, 6080. doi: 10.1039/c8nr00908b  doi: 10.1039/c8nr00908b

    187. [187]

      Hao, J.; Zhang, J.; Yin, P. C.; Xiao, Z. C.; Xiao, F. P.; Wei, Y. G. Chem. -Eur. J. 2012, 18, 2503. doi: 10.1002/chem.201103830  doi: 10.1002/chem.201103830

    188. [188]

      Hao, J.; Xia, Y.; Wang, L. S.; Ruhlmann, L.; Zhu, Y. L.; Li, Q.; Yin, P. C.; Wei, Y. G.; Guo, H. Y. Angew. Chem. Int. Ed. 2008, 47, 2626. doi: 10.1002/anie.200704546  doi: 10.1002/anie.200704546

    189. [189]

      Singh, V.; Ma, P. T.; Drew, M. G. B.; Wang, J. P.; Niu, J. Y. Dalton Trans. 2018, 47, 13870. doi: 10.1039/c8dt03227k  doi: 10.1039/c8dt03227k

    190. [190]

      Zhang, L. J.; Yang, Y. M.; Ziaee, M. A.; Lu, K. L.; Wang, R. H. ACS Appl. Mater. Inter. 2018, 10, 9460. doi: 10.1021/acsami.8b00211  doi: 10.1021/acsami.8b00211

    191. [191]

      Tang, Y. J.; Wang, Y.; Wang, X. L.; Li, S. L.; Huang, W.; Dong, L. Z.; Liu, C. H.; Li Y. F.; Lan, Y. Q. Adv. Energy Mater. 2016, 6, 1600116. doi: 10.1002/aenm.201600116  doi: 10.1002/aenm.201600116

    192. [192]

      Ghosh, S.; Azad, U. P.; Singh, A. K.; Singh, A. K.; Prakash, R. Chemistryselect 2017, 2, 11590. doi: 10.1002/slct.201702737  doi: 10.1002/slct.201702737

    193. [193]

      Sun, H. H.; Ji, X. Y.; Qiu, Y. F.; Zhang, Y. Y.; Ma, Z.; Gao, G. G.; Hu, P. A. J. Alloy. Compd. 2019, 777, 514. doi: 10.1016/j.jallcom.2018.10.364  doi: 10.1016/j.jallcom.2018.10.364

    194. [194]

      Liu, Q.; Li, X.; He, Q.; Khalil, A.; Liu, D.; Xiang, T.; Wu, X.; Song, L. Small 2015, 11, 5556. doi: 10.1002/smll.201501822  doi: 10.1002/smll.201501822

    195. [195]

      Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. J. Am. Chem. Soc. 2013, 135, 10274. doi: 10.1021/ja404523s  doi: 10.1021/ja404523s

    196. [196]

      Calandra, M. Phys. Rev. B 2013, 88, 245428. doi: 10.1103/PhysRevB.88.245428  doi: 10.1103/PhysRevB.88.245428

    197. [197]

      Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. Nat. Chem. 2013, 5, 263. doi: 10.1038/nchem.1589  doi: 10.1038/nchem.1589

    198. [198]

      Nomiya, K.; Takahashi, T.; Shirai, T.; Miwa, M. Polyhedron 1987, 6, 213. doi: 10.1016/S0277-5387(00)80791-3  doi: 10.1016/S0277-5387(00)80791-3

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    6. [6]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    7. [7]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    8. [8]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    13. [13]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    18. [18]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

Metrics
  • PDF Downloads(15)
  • Abstract views(923)
  • HTML views(303)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return