Citation: Wang Baixian, Wang Qifei, Di Jiancheng, Yu Jihong. Zeolite-Coated Anti-Biofouling Mesh Film for Efficient Oil-Water Separation[J]. Acta Physico-Chimica Sinica, ;2020, 36(1): 190604. doi: 10.3866/PKU.WHXB201906044 shu

Zeolite-Coated Anti-Biofouling Mesh Film for Efficient Oil-Water Separation

  • Corresponding author: Di Jiancheng, jcdi@jlu.edu.cn Yu Jihong, jihong@jlu.edu.cn
  • Received Date: 11 June 2019
    Revised Date: 19 July 2019
    Accepted Date: 19 July 2019
    Available Online: 26 January 2019

    Fund Project: the Jilin Province/Jilin University Co-construction Project-Funds for New Materials, China SXGJSF2017-3The project was supported by the National Natural Science Foundation of China 21621001The project was supported by the National Natural Science Foundation of China 21835002the 111 Project, China B17020The project was supported by the National Natural Science Foundation of China (21621001, 21835002), the 111 Project, China (B17020) and the Jilin Province/Jilin University Co-construction Project-Funds for New Materials, China (SXGJSF2017-3)

  • The development of the global economy has been accompanied by frequent oil spills caused by accidental leaks and industrial manufacturing, which have seriously threatened the aquatic environment and human health. Traditional methods for the treatment of oily wastewater include centrifugation, skimming, flotation, oil-absorbing technology, etc., which are limited by low separation efficiency as well as secondary pollution during the post-processing of oil absorption materials. Recently, separation technologies utilizing the special wettabilities of filtration membranes have been developed to enrich and recycle oils from wastewater. Among these, the fabrication of superhydrophilic/underwater superhydrophobic membranes have attracted intensive research interest, which can selectively allow the passage of water through the membrane while blocking the oils. However, microorganisms are more likely to breed on these hydrophilic surfaces, eventually leading to the blockage of the membranes. In this study, ZSM-5 zeolite crystals (MFI topological structure) were coated onto the stainless-steel meshes by means of seeding and secondary hydrothermal growth. Then, 70% of the total Na+ ions in the zeolite channels were substituted by Ag+ ions via an ion exchange process. The resultant membranes (Ag@ZCMFs) were superamphiphilic in air, with both water contact angle and oil contact angle of approximately 0°. However, they became superoleophobic when immersed in water, and the underwater oil contact angle reached 151.27° ± 4.34°. In terms of special wettability, Ag@ZCMF achieved efficient separation for various oil-water mixtures with separation efficiencies above 99%. The water flux and intrusion pressure of Ag@ZCMF depended on the diameter of pinholes in the membrane, which could be modulated by altering the time of secondary hydrothermal growth. For instance, the average diameter of pinholes in Ag@ZCMF with optimum secondary growth time of 14 h (Ag@ZCMF-14) reached approximately 21 μm, giving rise to the water flux and intrusion pressure of 54720 L·m-2·h-1 and 4357 Pa, respectively. The anti-corrosion test and rubbing test confirmed the high chemical and mechanical stability of Ag@ZCMF-14, respectively. The separation efficiency of Ag@ZCMF-14 remained stable during ten purification-regeneration cycles, and no obvious attenuation was observed, proving the high separation stability of Ag@ZCMF-14. Furthermore, the loaded Ag+ ions afforded the membrane excellent anti-biofouling activity, which could effectively inhibit the growth of both alga and bacteria in the operating environment, thus preventing membrane blockage during the oil-water separation process. In particular, the bacteriostatic rate of Ag@ZCMF-14 to Escherichia coli reached to 99.6%. These results demonstrate that Ag@ZCMFs with anti-biofouling activity has promising potential future applications in the removal of oil slicks from oily wastewater.
  • 加载中
    1. [1]

      Kota, A. K.; Kwon, G.; Choi, W.; Mabry, J. M.; Tuteja, A. Nat. Commun. 2012, 3, 1025. doi: 10.1038/ncomms2027  doi: 10.1038/ncomms2027

    2. [2]

      Kota, A. K.; Li, Y.; Mabry, J. M.; Tuteja, A. Adv. Mater. 2012, 24 (43), 5838. doi: 10.1002/adma.201202554  doi: 10.1002/adma.201202554

    3. [3]

      Kwon, G.; Kota, A. K.; Li, Y.; Sohani, A.; Mabry, J. M.; Tuteja, A. Adv. Mater. 2012, 24 (27), 3666. doi: 10.1002/adma.201201364  doi: 10.1002/adma.201201364

    4. [4]

      Wang, Y.; Di, J.; Wang, L.; Li, X.; Wang, N.; Wang, B.; Tian, Y.; Jiang, L.; Yu, J. Nat. Commun. 2017, 8 (1), 575. doi: 10.1038/s41467-017-00474-y  doi: 10.1038/s41467-017-00474-y

    5. [5]

      Zhao, Y. H.; Zhang, M.; Wang, Z. K. Adv. Mater. Interfaces 2016, 3 (13), 1500664. doi: 10.1002/admi.201500664  doi: 10.1002/admi.201500664

    6. [6]

      Field, R. W. Nature 2012, 489 (7414), 41. doi: 10.1038/489041a  doi: 10.1038/489041a

    7. [7]

      Ge, J.; Ye, Y. D.; Yao, H. B.; Zhu, X.; Wang, X.; Wu, L.; Wang, J. L.; Ding, H.; Yong, N.; He, L. H.; et al. Angew. Chem. Int. Edit. 2014, 53 (14), 3612. doi: 10.1002/anie.201310151  doi: 10.1002/anie.201310151

    8. [8]

      Li, J.; Zhao, Z. H.; Shen, Y. Q.; Feng, H.; Yang, Y. X.; Zha, F. Adv. Mater. Interfaces 2017, 4 (16), 1700364. doi: 10.1002/admi.201700364  doi: 10.1002/admi.201700364

    9. [9]

      Ge, J.; Jin, Q.; Zong, D.; Yu, J.; Ding, B. ACS Appl. Mater. Inter. 2018, 10 (18), 16183. doi: 10.1021/acsami.8b01952  doi: 10.1021/acsami.8b01952

    10. [10]

      Zhang, Z.; Zhang, Y.; Fan, H.; Wang, Y.; Zhou, C.; Ren, F.; Wu, S.; Li, G.; Hu, Y.; Li, J.; Wu, D.; Chu, J. Nanoscale 2017, 9 (41), 15796. doi: 10.1039/c7nr03829a  doi: 10.1039/c7nr03829a

    11. [11]

      Mousavi, S. H.; Ghadiri, M.; Buckley, M. Chem. Eng. Sci. 2014, 120, 130. doi: 10.1016/j.ces.2014.08.055  doi: 10.1016/j.ces.2014.08.055

    12. [12]

      Zhang, X.; Zhao, Y.; Mu, S.; Jiang, C.; Song, M.; Fang, Q.; Xue, M.; Qiu, S.; Chen, B. ACS Appl. Mater. Inter. 2018, 10 (20), 17301. doi: 10.1021/acsami.8b05137  doi: 10.1021/acsami.8b05137

    13. [13]

      Zhou, W.; Li, S.; Liu, Y.; Xu, Z.; Wei, S.; Wang, G.; Lian, J.; Jiang, Q. ACS Appl. Mater. Inter. 2018, 10 (11), 9841. doi: 10.1021/acsami.7b19853  doi: 10.1021/acsami.7b19853

    14. [14]

      Ge, J. L.; Zong, D. D.; Jin, Q.; Yu, J. Y.; Ding, B. Adv. Funct. Mater. 2018, 28 (10), 1705051. doi: 10.1002/adfm.201705051  doi: 10.1002/adfm.201705051

    15. [15]

      Lv, W. Y.; Mei, Q. Q.; Xiao, J. L.; Du, M.; Zheng, Q. Adv. Funct. Mater. 2017, 27 (48), 1704293. doi: 10.1002/adfm.201704293  doi: 10.1002/adfm.201704293

    16. [16]

      Li, W.; Yong, J.; Yang, Q.; Chen, F.; Fang, Y.; Hou, X. Acta Phys. -Chim. Sin. 2018, 34 (5), 456.  doi: 10.3866/PKU.WHXB201709211

    17. [17]

      Zhu, Q.; Chu, Y.; Wang, Z. K.; Chen, N.; Lin, L.; Liu, F. T.; Pan, Q. M. J. Mater. Chem. A 2013, 1 (17), 5386. doi: 10.1039/c3ta00125c  doi: 10.1039/c3ta00125c

    18. [18]

      Calcagnile, P.; Fragouli, D.; Bayer, I. S.; Anyfantis, G. C.; Martiradonna, L.; Cozzoli, P. D.; Cingolani, R.; Athanassiou, A. ACS Nano 2012, 6 (6), 5413. doi: 10.1021/nn3012948  doi: 10.1021/nn3012948

    19. [19]

      Zhang, W.; Zhu, Y.; Liu, X.; Wang, D.; Li, J.; Jiang, L.; Jin, J. Angew. Chem. Int. Edit. 2014, 53 (3), 856. doi: 10.1002/anie.201308183  doi: 10.1002/anie.201308183

    20. [20]

      Liu, J.; Wang, L.; Wang, N.; Guo, F.; Hou, L.; Chen, Y.; Liu, J.; Zhao, Y.; Jiang, L. Small 2017, 13 (4), 1600499. doi: 10.1002/smll.201600499  doi: 10.1002/smll.201600499

    21. [21]

      Wen, L.; Tian, Y.; Jiang, L. Angew. Chem. Int. Edit. 2015, 54 (11), 3387. doi: 10.1002/anie.201409911  doi: 10.1002/anie.201409911

    22. [22]

      Su, B.; Tian, Y.; Jiang, L. J. Am. Chem. Soc. 2016, 138 (6), 1727. doi: 10.1021/jacs.5b12728  doi: 10.1021/jacs.5b12728

    23. [23]

      Zheng, S.; Wang, D.; Tian, Y.; Jiang, L. Adv. Funct. Mater. 2016, 26 (48), 9018. doi: 10.1002/adfm.201602843  doi: 10.1002/adfm.201602843

    24. [24]

      Li, Y.; Wang, J. D.; Fan, L. N.; Chen, D. R. Acta Phys. -Chim. Sin. 2016, 32 (4), 990.  doi: 10.3866/PKU.WHXB201601131

    25. [25]

      Xue, Z. X.; Wang, S. T.; Lin, L.; Chen, L.; Liu, M. J.; Feng, L.; Jiang, L. Adv. Mater. 2011, 23 (37), 4270. doi: 10.1002/adma.201102616  doi: 10.1002/adma.201102616

    26. [26]

      Zhang, F.; Zhang, W. B.; Shi, Z.; Wang, D.; Jin, J.; Jiang, L. Adv. Mater. 2013, 25 (30), 4192. doi: 10.1002/adma.201301480  doi: 10.1002/adma.201301480

    27. [27]

      Gao, X.; Xu, L. P.; Xue, Z.; Feng, L.; Peng, J.; Wen, Y.; Wang, S.; Zhang, X. Adv. Mater. 2014, 26 (11), 1771. doi: 10.1002/adma.201304487  doi: 10.1002/adma.201304487

    28. [28]

      Tao, M.; Xue, L.; Liu, F.; Jiang, L. Adv. Mater. 2014, 26 (18), 2943. doi: 10.1002/adma.201305112  doi: 10.1002/adma.201305112

    29. [29]

      Liu, N.; Lin, X.; Zhang, W.; Cao, Y.; Chen, Y.; Feng, L.; Wei, Y. Sci. Rep. 2015, 5, 9688. doi: 10.1038/srep09688  doi: 10.1038/srep09688

    30. [30]

      Liu, X.; Leng, C.; Yu, L.; He, K.; Brown, L. J.; Chen, Z.; Cho, J.; Wang, D. Angew. Chem. Int. Edit. 2015, 54 (16), 4851. doi: 10.1002/anie.201411992  doi: 10.1002/anie.201411992

    31. [31]

      Manna, U.; Lynn, D. M. Adv. Funct. Mater. 2015, 25 (11), 1672. doi: 10.1002/adfm.201403735  doi: 10.1002/adfm.201403735

    32. [32]

      Wen, Q.; Di, J. C.; Jiang, L.; Yu, J. H.; Xu, R. R. Chem. Sci. 2013, 4 (2), 591. doi: 10.1039/c2sc21772d  doi: 10.1039/c2sc21772d

    33. [33]

      Zeng, J. W.; Guo, Z. G. Colloid Surface. A 2014, 444, 283. doi: 10.1016/j.colsurfa.2013.12.071  doi: 10.1016/j.colsurfa.2013.12.071

    34. [34]

      Zhang, X. K.; Li, H.; Miao, W. Z.; Shen, Q.; Wang, J.; Peng, D. L.; Liu, J. D.; Zhang, Y. T. Aiche J. 2019, 65 (6), e16596. doi: 10.1002/aic.16596  doi: 10.1002/aic.16596

    35. [35]

      He, K.; Duan, H.; Chen, G. Y.; Liu, X.; Yang, W.; Wang, D. ACS Nano 2015, 9 (9), 9188. doi: 10.1021/acsnano.5b03791  doi: 10.1021/acsnano.5b03791

    36. [36]

      Chu, Z.; Feng, Y.; Seeger, S. Angew. Chem. Int. Edit. 2015, 54 (8), 2328. doi: 10.1002/anie.201405785  doi: 10.1002/anie.201405785

    37. [37]

      Muthukumar, K.; Kaleekkal, N. J.; Lakshmi, D. S.; Srivastava, S.; Bajaj, H. J. Appl. Polym. Sci. 2019, 136 (24), 47641. doi: 10.1002/app.47641  doi: 10.1002/app.47641

    38. [38]

      Lin, X.; Yang, M.; Jeong, H.; Chang, M.; Hong, J. J. Membrane. Sci. 2016, 506, 22. doi: 10.1016/j.memsci.2016.01.035  doi: 10.1016/j.memsci.2016.01.035

    39. [39]

      Zhang, Q.; Chen, G. R.; Wang, Y. Y.; Chen, M. Y.; Guo, G. Q.; Shi, J.; Luo, J.; Yu, J. H. Chem. Mater. 2018, 30 (8), 2750. doi: 10.1021/acs.chemmater.8b00527  doi: 10.1021/acs.chemmater.8b00527

    40. [40]

      Wang, N.; Sun, Q.; Bai, R.; Li, X.; Guo, G.; Yu, J. J. Am. Chem. Soc. 2016, 138 (24), 7484. doi: 10.1021/jacs.6b03518  doi: 10.1021/jacs.6b03518

    41. [41]

      Zhang, Q.; Mayoral, A.; Terasaki, O.; Zhang, Q.; Ma, B.; Zhao, C.; Yang, G.; Yu, J. J. Am. Chem. Soc. 2019, 141 (9), 3772. doi: 10.1021/jacs.8b11734  doi: 10.1021/jacs.8b11734

    42. [42]

      Wang, Z.; Yu, J.; Xu, R. Chem. Soc. Rev. 2012, 41 (5), 1729. doi: 10.1039/c1cs15150a  doi: 10.1039/c1cs15150a

    43. [43]

      Li, Y.; Li, X.; Liu, J.; Duan, F.; Yu, J. Nat. Commun. 2015, 6, 8328. doi: 10.1038/ncomms9328  doi: 10.1038/ncomms9328

    44. [44]

      Feng, G.; Cheng, P.; Yan, W.; Boronat, M.; Li, X.; Su, J. H.; Wang, J.; Li, Y.; Corma, A.; Xu, R.; et al. Science 2016, 351 (6278), 1188. doi: 10.1126/science.aaf1559  doi: 10.1126/science.aaf1559

    45. [45]

      Li, Y.; Li, L.; Yu, J. H. Chem 2017, 3 (6), 928. doi: 10.1016/j.chempr.2017.10.009  doi: 10.1016/j.chempr.2017.10.009

    46. [46]

      Wang, S.; Li, R. Y.; Li, D. D.; Zhang, Z. Y.; Liu, G. C.; Liang, H. J.; Qin, Y. G.; Yu, J. H.; Li, Y. Y. J. Mater. Chem. B 2018, 6 (20), 3254. doi: 10.1039/c8tb00328a  doi: 10.1039/c8tb00328a

    47. [47]

      Singh, V. V.; Jurado-Sanchez, B.; Sattayasamitsathit, S.; Orozco, J.; Li, J. X.; Galarnyk, M.; Fedorak, Y.; Wang, J. Adv. Funct. Mater. 2015, 25 (14), 2147. doi: 10.1002/adfm.201500033  doi: 10.1002/adfm.201500033

    48. [48]

      Wang, J. C.; Wang, Z. P.; Guo, S.; Zhang, J. Y.; Song, Y.; Dong, X. M.; Wang, X. N.; Yu, J. H. Micropor. Mesopor. Mat. 2011, 146 (1–3), 216. doi: 10.1016/j.micromeso.2011.04.005  doi: 10.1016/j.micromeso.2011.04.005

    49. [49]

      Tekin, R.; Bac, N. Micropor. Mesopor. Mat. 2016, 234, 55. doi: 10.1016/j.micromeso.2016.07.006  doi: 10.1016/j.micromeso.2016.07.006

    50. [50]

      Yuan, Z.; Zhu, X.; Li, M.; Lu, W.; Li, X.; Zhang, H. Angew. Chem. Int. Edit. 2016, 55 (9), 3058. doi: 10.1002/anie.201510849  doi: 10.1002/anie.201510849

    51. [51]

      Wang, C. Y.; Wu, S. Y.; Jian, M. Q.; Xie, J. R.; Xu, L. P.; Yang, X. D.; Zheng, Q. S.; Zhang, Y. Y. Nano Res. 2016, 9 (9), 2597. doi: 10.1007/s12274-016-1145-3  doi: 10.1007/s12274-016-1145-3

    52. [52]

      Xiong, Z. -C.; Yang, R. -L.; Zhu, Y. -J.; Chen, F. -F.; Dong, L. -Y. J. Mater. Chem. A 2017, 5 (33), 17482. doi: 10.1039/c7ta03870d  doi: 10.1039/c7ta03870d

    53. [53]

      Du, X.; You, S.; Wang, X.; Wang, Q.; Lu, J. Chem. Eng. J. 2017, 313, 398. doi: 10.1016/j.cej.2016.12.092  doi: 10.1016/j.cej.2016.12.092

    54. [54]

      Dong, Y.; Li, J.; Shi, L.; Wang, X.; Guo, Z.; Liu, W. Chem. Commun. 2014, 50 (42), 5586. doi: 10.1039/c4cc01408a  doi: 10.1039/c4cc01408a

    55. [55]

      Li, J.; Cheng, H. M.; Chan, C. Y.; Ng, P. F.; Chen, L.; Fei, B.; Xin, J. H. RSC Adv. 2015, 5 (64), 51537. doi: 10.1039/c5ra06118k  doi: 10.1039/c5ra06118k

    56. [56]

      Ma, Q.; Cheng, H.; Yu, Y.; Huang, Y.; Lu, Q.; Han, S.; Chen, J.; Wang, R.; Fane, A. G.; Zhang, H. Small 2017, 13 (19), 1700391. doi: 10.1002/smll.201700391  doi: 10.1002/smll.201700391

    57. [57]

      Yu, Z.; Yun, F. F.; Gong, Z.; Yao, Q.; Dou, S.; Liu, K.; Jiang, L.; Wang, X. J. Mater. Chem. A 2017, 5 (22), 10821. doi: 10.1039/c7ta01987d  doi: 10.1039/c7ta01987d

    58. [58]

      Wang, K.; Han, D. S.; Yiming, W.; Ahzi, S.; Abdel-Wahab, A.; Liu, Z. Sci. Rep. 2017, 7, 16081. doi: 10.1038/s41598-017-16402-5  doi: 10.1038/s41598-017-16402-5

    59. [59]

      Xu, Z.; Zhu, Z.; Li, N.; Tian, Y.; Jiang, L. ACS Nano 2018, 12 (10), 10000. doi: 10.1021/acsnano.8b04328  doi: 10.1021/acsnano.8b04328

    60. [60]

      Liu, J.; Sonshine, D. A.; Shervani, S.; Hurt, R. H. ACS Nano 2010, 4 (11), 6903. doi: 10.1021/nn102272n  doi: 10.1021/nn102272n

    61. [61]

      AshaRani, P. V.; Mun, G. L. K.; Hande, M. P.; Valiyaveettil, S. ACS Nano 2009, 3 (2), 279. doi: 10.1021/nn800596w  doi: 10.1021/nn800596w

    62. [62]

      Carlson, C.; Hussain, S. M.; Schrand, A. M.; Braydich-Stolle, L. K.; Hess, K. L.; Jones, R. L.; Schlager, J. J. J. Phys. Chem. B 2008, 112 (43), 13608. doi: 10.1021/jp712087m  doi: 10.1021/jp712087m

  • 加载中
    1. [1]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    2. [2]

      Yixuan WangJiexin LiZhihao ShangChengcheng FengJianmin GuMaosheng YeRan ZhaoDanna LiuJingxin MengShutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623

    3. [3]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    4. [4]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    5. [5]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    6. [6]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    7. [7]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    8. [8]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    9. [9]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    10. [10]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    11. [11]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    12. [12]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    13. [13]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    14. [14]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    15. [15]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    16. [16]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    17. [17]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    18. [18]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    19. [19]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    20. [20]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

Metrics
  • PDF Downloads(9)
  • Abstract views(189)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return