Citation: Xiao Xuezhu, Cao Xiaofang, Zhao Dongbo, Rong Chunying, Liu Shubin. Quantification of Molecular Basicity for Amines: a Combined Conceptual Density Functional Theory and Information-Theoretic Approach Study[J]. Acta Physico-Chimica Sinica, ;2020, 36(11): 190603. doi: 10.3866/PKU.WHXB201906034 shu

Quantification of Molecular Basicity for Amines: a Combined Conceptual Density Functional Theory and Information-Theoretic Approach Study

  • Corresponding author: Rong Chunying, rongchunying@aliyun.com Liu Shubin, shubin@email.unc.edu
  • Received Date: 6 June 2019
    Revised Date: 1 July 2019
    Accepted Date: 12 July 2019
    Available Online: 17 July 2019

    Fund Project: the Hunan Provincial Natural Science Foundation of China 2017JJ3201the National Natural Science Foundation of China 21503076The project was supported by the National Natural Science Foundation of China (21503076) and the Hunan Provincial Natural Science Foundation of China (2017JJ3201)

  • The pair of molecular acidity and basicity is one of the most widely used chemical concepts in chemistry, biology, and other related fields. Nevertheless, quantitative determination of these intrinsic physical properties from the perspective of theory and computation is still an unresolved task at present. Earlier, we proposed to utilize the molecular electrostatic potential and natural atomic orbital from conceptual density functional theory for this purpose. Later, we also proposed utilizing quantities from the information-theoretic approach in the density functional reactivity theory such as Shannon entropy, Fisher information, and information gain to quantify electrophilicity, nucleophilicity, regioselectivity, and stereoselectivity. The latter was successfully applied later to five series of molecular systems for determining the molecular acidity, including singly and doubly substituted benzoic acids, benzenesulfonic acids, benzeneseleninic acids, phenols, and alkyl carboxylic acids, whose validity and effectiveness have been sufficiently corroborated. As a continuation of our recent efforts along this line, in this work, we generalize our previous approaches by combining these two approaches together as a new set of descriptors to quantify the molecular basicity. The applicability and usefulness of our new approach are demonstrated hereby by three types of amines, namely, primary, secondary, and tertiary amines, with a total of 179 systems. We show that this new set of descriptors, including the molecular electrostatic potential or its equivalence, the natural valence atomic orbital energy, and quantities from information-theoretic approach such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, information gain, Onicescu information energy, and relative Rényi entropy, is able to accurately predict the experimental pKa values for the three types of amines. Our findings confirm that each of these quantities possesses strong linear correlation with the experimental pKa value, though less significantly than expected. Moreover, when combined, these quantities can yield accurate and quantitative models for determining the molecular basicity of all the three types of amines. The reason behind this is that all these descriptors are simple electron density functionals. According to the basic theorem of density functional theory, they should contain adequate information for the determination of all the physio-chemical properties in the ground state of molecular systems, including molecular acidity and basicity. Our present results predict that this new approach should be readily applicable to many other molecular species, thereby providing an effective and robust approach to appreciate chemical concepts such as acidity and basicity.
  • 加载中
    1. [1]

      Lowry, T. M. J. Chem. Technol. Biotechnol. 1923, 42, 43. doi: 10.1002/jctb.5000420302  doi: 10.1002/jctb.5000420302

    2. [2]

      Lowry, T. M. J. Chem. Technol. Biotechnol. 1923, 42, 1048. doi: 10.1002/jctb.5000424402  doi: 10.1002/jctb.5000424402

    3. [3]

      Bronsted, J. N. J. Chem. Phys. 1925, 30, 777. doi: 10.1021/j150264a007  doi: 10.1021/j150264a007

    4. [4]

      Everett, D. H.; Wynne-Jones, W. F. K. Trans. Faraday Soc. 1939, 35, 1380. doi: 10.1039/TF9393501380  doi: 10.1039/TF9393501380

    5. [5]

      Lias, S. G.; Liebman, J. F.; Levin, R. D. J. Phys. Chem. Ref. Data 1984, 13, 695. doi: 10.1063/1.555719  doi: 10.1063/1.555719

    6. [6]

      Raczyńska, E. D.; Gal, J. F.; Maria, P. C. Chem. Rev. 2016, 116, 13454. doi: 10.1021/acs.chemrev.6b00224  doi: 10.1021/acs.chemrev.6b00224

    7. [7]

      Pliego, J. R. Chem. Phys. Lett. 2003, 367, 145. doi: 10.1016/S0009-2614(02)01686-X  doi: 10.1016/S0009-2614(02)01686-X

    8. [8]

      Casasnovas, R.; Ortega-Castro, J.; Frau, J.; Donoso, J.; Muñoz, F. Int. J. Quantum Chem. 2014, 114, 1350. doi: 10.1002/qua.24699  doi: 10.1002/qua.24699

    9. [9]

      Hernandez, C. J. Chil. Chem. Soc. 2016, 61, 3160. doi: 10.4067/S0717-97072016000400002  doi: 10.4067/S0717-97072016000400002

    10. [10]

      Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p  doi: 10.1021/cr990029p

    11. [11]

      Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590.  doi: 10.3866/PKU.WHXB20090332

    12. [12]

      Parr, R. G.; Yang, W. T. Density Functional Theory of Atoms and Molecules; Oxford University Press: New York, USA, 1989.

    13. [13]

      Liu, S. B.; Schauer, C. K.; Pedersen, L. G. J. Chem. Phys. 2009, 131, 164107. doi: 10.1063/1.3251124  doi: 10.1063/1.3251124

    14. [14]

      Liu, S. B.; Pedersen, L. G. J. Phys. Chem. A 2009, 113, 3648. doi: 10.1021/jp811250r  doi: 10.1021/jp811250r

    15. [15]

      Liu, S. B. J. Chem. Phys. 2014, 141, 194109.  doi: 10.1063/1.4901898

    16. [16]

      Liu, S. B.; Rong, C. Y.; Lu, T. J. Phys. Chem. A 2014, 118, 3698. doi: 10.1021/jp5032702  doi: 10.1021/jp5032702

    17. [17]

      Liu, S. B. Acta Phys. -Chim. Sin. 2016, 32, 98.  doi: 10.3866/PKU.WHXB201510302

    18. [18]

      Liu, S. B.; Rong, C. Y.; Lu, T. Phys. Chem. Chem. Phys. 2017, 19, 1496. doi: 10.1039/C6CP06376D  doi: 10.1039/C6CP06376D

    19. [19]

      Liu, S. B. J. Chem. Phys. 2007, 126, 191107. doi: 10.1063/1.2741244  doi: 10.1063/1.2741244

    20. [20]

      Ali, S. T.; Karamat, S.; Kóňa, J.; Fabian, W. M. F. J. Phys. Chem. A 2010, 114, 12470. doi: 10.1021/jp102266v  doi: 10.1021/jp102266v

    21. [21]

      Cao, X. F.; Rong, C. Y.; Zhong, A. G.; Lu, T.; Liu, S. B. J. Comput. Chem. 2017, 39, 117. doi: 10.1002/jcc.25090  doi: 10.1002/jcc.25090

    22. [22]

      Seiler, N.; Demisch, L.; Schneider, H. Angew. Chem. Int. Ed. 1971, 10, 51. doi: 10.1002/anie.197100511  doi: 10.1002/anie.197100511

    23. [23]

      Medina, M. Á.; Urdiales, J. L.; Rodríguez-Caso, C.; Ramírez, F. J.; Sánchez-Jiménez, F. Crit. Rev. Biochem. Mol. Biol. 2003, 38, 23. doi: 10.1080/713609209  doi: 10.1080/713609209

    24. [24]

      Huang, Y.; Liu, L.; Liu, W.; Liu, S.; Liu, S. B. J. Phys. Chem. A 2011, 115, 14697. doi: 10.1021/jp209540p  doi: 10.1021/jp209540p

    25. [25]

      Huang, Y.; Liu, L.; Liu, S. B. Chem. Phys. Lett. 2012, 527, 73. doi: 10.1016/j.cplett.2012.01.014  doi: 10.1016/j.cplett.2012.01.014

    26. [26]

      Zhao, D. B.; Rong, C. Y.; Yin, D. L.; Liu, S. B. J. Theor. Comput. Chem. 2013, 12, 1350034. doi: 10.1142/S021963361350034X  doi: 10.1142/S021963361350034X

    27. [27]

      Liu, S. B. J. Phys. Chem. A 2015, 119, 3107. doi: 10.1021/acs.jpca.5b00443  doi: 10.1021/acs.jpca.5b00443

    28. [28]

      Liu, S. B. J. Chem. Phys. 2007, 126, 244103. doi: 10.1063/1.2747247  doi: 10.1063/1.2747247

    29. [29]

      Shannon, C. E. J. Bell Syst. Tech. 1948, 27, 379. doi: 10.1002/j.1538-7305.1948.tb01338.x  doi: 10.1002/j.1538-7305.1948.tb01338.x

    30. [30]

      Stephen, B.; Sears Robert, G.; Dinur, P. U. Isr. J. Chem. 1980, 19, 165. doi: 10.1002/ijch.198000018  doi: 10.1002/ijch.198000018

    31. [31]

      Sears, S. B.; Gadre, S. R. J. Chem. Phys. 1981, 75, 4626. doi: 10.1063/1.442578  doi: 10.1063/1.442578

    32. [32]

      Fisher, R. A. Math. Proc. Camb. Phil. 1925, 22, 700. doi: 10.1017/S0305004100009580  doi: 10.1017/S0305004100009580

    33. [33]

      Rong, C. Y.; Lu, T.; Chattaraj, P. K.; Liu, S. B. Indian J. Chem. A 2014, 53A, 970.

    34. [34]

      Ghosh, S. K.; Berkowitz, M.; Parr, R. G. Proc. Natl. Acad. Sci. USA 1984, 81, 8028. doi: 10.1073/pnas.81.24.8028  doi: 10.1073/pnas.81.24.8028

    35. [35]

      Nalewajski, R. F.; Parr, R. G. Proc. Natl. Acad. Sci. USA 2000, 97, 8879. doi: 10.1073/pnas.97.16.8879  doi: 10.1073/pnas.97.16.8879

    36. [36]

      Nalewajski, R. F.; Parr, R. G. J. Phys. Chem. A 2001, 105, 7391. doi: 10.1021/jp004414q  doi: 10.1021/jp004414q

    37. [37]

      Parr, R. G.; Ayers, P. W.; Nalewajski, R. F. J. Phys. Chem. A 2005, 109, 3957. doi: 10.1021/jp0404596  doi: 10.1021/jp0404596

    38. [38]

      Ayers, P. W. Theor. Chem. Acc. 2006, 115, 370. doi: 10.1007/s00214-006-0121-5  doi: 10.1007/s00214-006-0121-5

    39. [39]

      Rong, C. Y.; Lu, T.; Liu, S. B. J. Chem. Phys. 2014, 140, 024109. doi: 10.1063/1.4860969  doi: 10.1063/1.4860969

    40. [40]

      Nagy, Á.; Romera, E. Europhys. Lett. 2015, 109, 60002. doi: 10.1209/0295-5075/109/60002  doi: 10.1209/0295-5075/109/60002

    41. [41]

      Liu, S. B.; Rong, C. Y.; Wu, Z. M.; Lu, T. Acta Phys. -Chim. Sin. 2015, 31, 2057.  doi: 10.3866/PKU.WHXB201509183

    42. [42]

      Nagy, Á.; Romera, E. Europhys. Lett. 2015, 109, 60002. doi: 10.1209/0295-5075/109/60002  doi: 10.1209/0295-5075/109/60002

    43. [43]

      Tsallis, C. J. Statis. Phys. 1988, 52, 479. doi: 10.1007/BF01016429  doi: 10.1007/BF01016429

    44. [44]

      Onicescu, O. C. R. Acad. Sci., Paris, Serie A 1966, 263, 841.

    45. [45]

      Hall, H. K. J. Am. Chem. Soc. 1957, 79, 5441. doi: 10.1021/ja01577a030  doi: 10.1021/ja01577a030

    46. [46]

      Soloway, S.; Lipschitz, A. J. Org. Chem. 1958, 23, 613. doi: 10.1021/jo01098a603  doi: 10.1021/jo01098a603

    47. [47]

      Stevenson, G. W.; Williamson, D. J. Am. Chem. Soc. 1958, 80, 5943. doi: 10.1021/ja01555a014  doi: 10.1021/ja01555a014

    48. [48]

      Bissell, E. R.; Finger, M. J. Org. Chem. 1959, 24, 1256. doi: 10.1021/jo01091a024  doi: 10.1021/jo01091a024

    49. [49]

      Tuckerman, M. M.; Mayer, J. R.; Nachod, F. C. J. Am. Chem. Soc. 1959, 81, 92. doi: 10.1021/ja01510a020  doi: 10.1021/ja01510a020

    50. [50]

      Bryson, A. J. Am. Chem. Soc. 1960, 82, 4871. doi: 10.1021/ja01503a030  doi: 10.1021/ja01503a030

    51. [51]

      Bell, R. P. Proton. Chem. 1973, 86. doi: 10.1007/978-1-4757-1592-7_6  doi: 10.1007/978-1-4757-1592-7_6

    52. [52]

      Bordwell, F. G.; Algrim, D.; Vanier, N. R. J. Org. Chem. 1977, 42, 1817. doi: 10.1021/jo00430a039  doi: 10.1021/jo00430a039

    53. [53]

      Lide, D. R. Handbook of Chemistry and Physics, 88th Ed.; CRC Press: Boca Raton, FL, London, UK, 2007.

    54. [54]

      Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724. doi: 10.1063/1.1674902  doi: 10.1063/1.1674902

    55. [55]

      Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785  doi: 10.1103/PhysRevB.37.785

    56. [56]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913  doi: 10.1063/1.464913

    57. [57]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; robb, M. A.; Scalmani, J. R.; Cheeseman, G.; Barone, V.; Mennucci, B.; Peterson, G. A.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, USA. 2009.

    58. [58]

      Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.22885  doi: 10.1002/jcc.22885

    59. [59]

      Hirshfeld, F. L. Theo. Chim. Acta 1977, 44, 129. doi: 10.1007/BF00549096  doi: 10.1007/BF00549096

    60. [60]

      Rong, C. Y.; Lu, T.; Ayers, P. W.; Chattaraj, P. K.; Liu, S. B. Phys. Chem. Chem. Phys. 2015, 17, 4977. doi: 10.1039/C4CP05609D  doi: 10.1039/C4CP05609D

    61. [61]

      Becke, A. D. J. Chem. Phys. 1988, 88, 2547. doi: 10.1063/1.454033  doi: 10.1063/1.454033

    62. [62]

      Bader, R. F. W. Atoms in Molecules-A Quantum Theory; Oxford University Press: Oxford, UK. 1990.

    63. [63]

      Seybold, P. G.; Shields, G. C. 2015, 5, 290. doi: 10.1002/wcms.1218

    64. [64]

      Juranić, I. Croat. Chem. Acta 2014, 87 343. doi: org/10.5562/cca2462

    65. [65]

      Zhou, X. Y.; Rong, C. Y.; Lu, T.; Liu, S. B. Acta Phys. -Chim. Sin. 2014, 20, 2055.  doi: 10.3866/PKU.WHXB201409193

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    3. [3]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    4. [4]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    5. [5]

      Huijiao FuPeiqin LiangQianwen ChenYan WangGuang LiXuzi CaiShengtao WangKun ChenShengying ShiZhiqiang YuXuefeng Wang . COX-2 blocking therapy in cisplatin chemosensitization of ovarian cancer: An allicin-based nanomedicine approach. Chinese Chemical Letters, 2024, 35(8): 109241-. doi: 10.1016/j.cclet.2023.109241

    6. [6]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    7. [7]

      Yaxian LiangQingyi LiLiwei HuRuohan ZhaiFan LiuLin TanXiaofei WangHuixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459

    8. [8]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    9. [9]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    10. [10]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    11. [11]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    12. [12]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    13. [13]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    14. [14]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    15. [15]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    16. [16]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    17. [17]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    18. [18]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    19. [19]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    20. [20]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

Metrics
  • PDF Downloads(9)
  • Abstract views(665)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return