Quantification of Molecular Basicity for Amines: a Combined Conceptual Density Functional Theory and Information-Theoretic Approach Study
- Corresponding author: Rong Chunying, rongchunying@aliyun.com Liu Shubin, shubin@email.unc.edu
Citation:
Xiao Xuezhu, Cao Xiaofang, Zhao Dongbo, Rong Chunying, Liu Shubin. Quantification of Molecular Basicity for Amines: a Combined Conceptual Density Functional Theory and Information-Theoretic Approach Study[J]. Acta Physico-Chimica Sinica,
;2020, 36(11): 190603.
doi:
10.3866/PKU.WHXB201906034
Lowry, T. M. J. Chem. Technol. Biotechnol. 1923, 42, 43. doi: 10.1002/jctb.5000420302
doi: 10.1002/jctb.5000420302
Lowry, T. M. J. Chem. Technol. Biotechnol. 1923, 42, 1048. doi: 10.1002/jctb.5000424402
doi: 10.1002/jctb.5000424402
Bronsted, J. N. J. Chem. Phys. 1925, 30, 777. doi: 10.1021/j150264a007
doi: 10.1021/j150264a007
Everett, D. H.; Wynne-Jones, W. F. K. Trans. Faraday Soc. 1939, 35, 1380. doi: 10.1039/TF9393501380
doi: 10.1039/TF9393501380
Lias, S. G.; Liebman, J. F.; Levin, R. D. J. Phys. Chem. Ref. Data 1984, 13, 695. doi: 10.1063/1.555719
doi: 10.1063/1.555719
Raczyńska, E. D.; Gal, J. F.; Maria, P. C. Chem. Rev. 2016, 116, 13454. doi: 10.1021/acs.chemrev.6b00224
doi: 10.1021/acs.chemrev.6b00224
Pliego, J. R. Chem. Phys. Lett. 2003, 367, 145. doi: 10.1016/S0009-2614(02)01686-X
doi: 10.1016/S0009-2614(02)01686-X
Casasnovas, R.; Ortega-Castro, J.; Frau, J.; Donoso, J.; Muñoz, F. Int. J. Quantum Chem. 2014, 114, 1350. doi: 10.1002/qua.24699
doi: 10.1002/qua.24699
Hernandez, C. J. Chil. Chem. Soc. 2016, 61, 3160. doi: 10.4067/S0717-97072016000400002
doi: 10.4067/S0717-97072016000400002
Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p
doi: 10.1021/cr990029p
Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590.
doi: 10.3866/PKU.WHXB20090332
Parr, R. G.; Yang, W. T. Density Functional Theory of Atoms and Molecules; Oxford University Press: New York, USA, 1989.
Liu, S. B.; Schauer, C. K.; Pedersen, L. G. J. Chem. Phys. 2009, 131, 164107. doi: 10.1063/1.3251124
doi: 10.1063/1.3251124
Liu, S. B.; Pedersen, L. G. J. Phys. Chem. A 2009, 113, 3648. doi: 10.1021/jp811250r
doi: 10.1021/jp811250r
Liu, S. B. J. Chem. Phys. 2014, 141, 194109.
doi: 10.1063/1.4901898
Liu, S. B.; Rong, C. Y.; Lu, T. J. Phys. Chem. A 2014, 118, 3698. doi: 10.1021/jp5032702
doi: 10.1021/jp5032702
Liu, S. B. Acta Phys. -Chim. Sin. 2016, 32, 98.
doi: 10.3866/PKU.WHXB201510302
Liu, S. B.; Rong, C. Y.; Lu, T. Phys. Chem. Chem. Phys. 2017, 19, 1496. doi: 10.1039/C6CP06376D
doi: 10.1039/C6CP06376D
Liu, S. B. J. Chem. Phys. 2007, 126, 191107. doi: 10.1063/1.2741244
doi: 10.1063/1.2741244
Ali, S. T.; Karamat, S.; Kóňa, J.; Fabian, W. M. F. J. Phys. Chem. A 2010, 114, 12470. doi: 10.1021/jp102266v
doi: 10.1021/jp102266v
Cao, X. F.; Rong, C. Y.; Zhong, A. G.; Lu, T.; Liu, S. B. J. Comput. Chem. 2017, 39, 117. doi: 10.1002/jcc.25090
doi: 10.1002/jcc.25090
Seiler, N.; Demisch, L.; Schneider, H. Angew. Chem. Int. Ed. 1971, 10, 51. doi: 10.1002/anie.197100511
doi: 10.1002/anie.197100511
Medina, M. Á.; Urdiales, J. L.; Rodríguez-Caso, C.; Ramírez, F. J.; Sánchez-Jiménez, F. Crit. Rev. Biochem. Mol. Biol. 2003, 38, 23. doi: 10.1080/713609209
doi: 10.1080/713609209
Huang, Y.; Liu, L.; Liu, W.; Liu, S.; Liu, S. B. J. Phys. Chem. A 2011, 115, 14697. doi: 10.1021/jp209540p
doi: 10.1021/jp209540p
Huang, Y.; Liu, L.; Liu, S. B. Chem. Phys. Lett. 2012, 527, 73. doi: 10.1016/j.cplett.2012.01.014
doi: 10.1016/j.cplett.2012.01.014
Zhao, D. B.; Rong, C. Y.; Yin, D. L.; Liu, S. B. J. Theor. Comput. Chem. 2013, 12, 1350034. doi: 10.1142/S021963361350034X
doi: 10.1142/S021963361350034X
Liu, S. B. J. Phys. Chem. A 2015, 119, 3107. doi: 10.1021/acs.jpca.5b00443
doi: 10.1021/acs.jpca.5b00443
Liu, S. B. J. Chem. Phys. 2007, 126, 244103. doi: 10.1063/1.2747247
doi: 10.1063/1.2747247
Shannon, C. E. J. Bell Syst. Tech. 1948, 27, 379. doi: 10.1002/j.1538-7305.1948.tb01338.x
doi: 10.1002/j.1538-7305.1948.tb01338.x
Stephen, B.; Sears Robert, G.; Dinur, P. U. Isr. J. Chem. 1980, 19, 165. doi: 10.1002/ijch.198000018
doi: 10.1002/ijch.198000018
Sears, S. B.; Gadre, S. R. J. Chem. Phys. 1981, 75, 4626. doi: 10.1063/1.442578
doi: 10.1063/1.442578
Fisher, R. A. Math. Proc. Camb. Phil. 1925, 22, 700. doi: 10.1017/S0305004100009580
doi: 10.1017/S0305004100009580
Rong, C. Y.; Lu, T.; Chattaraj, P. K.; Liu, S. B. Indian J. Chem. A 2014, 53A, 970.
Ghosh, S. K.; Berkowitz, M.; Parr, R. G. Proc. Natl. Acad. Sci. USA 1984, 81, 8028. doi: 10.1073/pnas.81.24.8028
doi: 10.1073/pnas.81.24.8028
Nalewajski, R. F.; Parr, R. G. Proc. Natl. Acad. Sci. USA 2000, 97, 8879. doi: 10.1073/pnas.97.16.8879
doi: 10.1073/pnas.97.16.8879
Nalewajski, R. F.; Parr, R. G. J. Phys. Chem. A 2001, 105, 7391. doi: 10.1021/jp004414q
doi: 10.1021/jp004414q
Parr, R. G.; Ayers, P. W.; Nalewajski, R. F. J. Phys. Chem. A 2005, 109, 3957. doi: 10.1021/jp0404596
doi: 10.1021/jp0404596
Ayers, P. W. Theor. Chem. Acc. 2006, 115, 370. doi: 10.1007/s00214-006-0121-5
doi: 10.1007/s00214-006-0121-5
Rong, C. Y.; Lu, T.; Liu, S. B. J. Chem. Phys. 2014, 140, 024109. doi: 10.1063/1.4860969
doi: 10.1063/1.4860969
Nagy, Á.; Romera, E. Europhys. Lett. 2015, 109, 60002. doi: 10.1209/0295-5075/109/60002
doi: 10.1209/0295-5075/109/60002
Liu, S. B.; Rong, C. Y.; Wu, Z. M.; Lu, T. Acta Phys. -Chim. Sin. 2015, 31, 2057.
doi: 10.3866/PKU.WHXB201509183
Nagy, Á.; Romera, E. Europhys. Lett. 2015, 109, 60002. doi: 10.1209/0295-5075/109/60002
doi: 10.1209/0295-5075/109/60002
Tsallis, C. J. Statis. Phys. 1988, 52, 479. doi: 10.1007/BF01016429
doi: 10.1007/BF01016429
Onicescu, O. C. R. Acad. Sci., Paris, Serie A 1966, 263, 841.
Hall, H. K. J. Am. Chem. Soc. 1957, 79, 5441. doi: 10.1021/ja01577a030
doi: 10.1021/ja01577a030
Soloway, S.; Lipschitz, A. J. Org. Chem. 1958, 23, 613. doi: 10.1021/jo01098a603
doi: 10.1021/jo01098a603
Stevenson, G. W.; Williamson, D. J. Am. Chem. Soc. 1958, 80, 5943. doi: 10.1021/ja01555a014
doi: 10.1021/ja01555a014
Bissell, E. R.; Finger, M. J. Org. Chem. 1959, 24, 1256. doi: 10.1021/jo01091a024
doi: 10.1021/jo01091a024
Tuckerman, M. M.; Mayer, J. R.; Nachod, F. C. J. Am. Chem. Soc. 1959, 81, 92. doi: 10.1021/ja01510a020
doi: 10.1021/ja01510a020
Bryson, A. J. Am. Chem. Soc. 1960, 82, 4871. doi: 10.1021/ja01503a030
doi: 10.1021/ja01503a030
Bell, R. P. Proton. Chem. 1973, 86. doi: 10.1007/978-1-4757-1592-7_6
doi: 10.1007/978-1-4757-1592-7_6
Bordwell, F. G.; Algrim, D.; Vanier, N. R. J. Org. Chem. 1977, 42, 1817. doi: 10.1021/jo00430a039
doi: 10.1021/jo00430a039
Lide, D. R. Handbook of Chemistry and Physics, 88th Ed.; CRC Press: Boca Raton, FL, London, UK, 2007.
Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724. doi: 10.1063/1.1674902
doi: 10.1063/1.1674902
Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
doi: 10.1103/PhysRevB.37.785
Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
doi: 10.1063/1.464913
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; robb, M. A.; Scalmani, J. R.; Cheeseman, G.; Barone, V.; Mennucci, B.; Peterson, G. A.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, USA. 2009.
Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.22885
doi: 10.1002/jcc.22885
Hirshfeld, F. L. Theo. Chim. Acta 1977, 44, 129. doi: 10.1007/BF00549096
doi: 10.1007/BF00549096
Rong, C. Y.; Lu, T.; Ayers, P. W.; Chattaraj, P. K.; Liu, S. B. Phys. Chem. Chem. Phys. 2015, 17, 4977. doi: 10.1039/C4CP05609D
doi: 10.1039/C4CP05609D
Becke, A. D. J. Chem. Phys. 1988, 88, 2547. doi: 10.1063/1.454033
doi: 10.1063/1.454033
Bader, R. F. W. Atoms in Molecules-A Quantum Theory; Oxford University Press: Oxford, UK. 1990.
Seybold, P. G.; Shields, G. C. 2015, 5, 290. doi: 10.1002/wcms.1218
Juranić, I. Croat. Chem. Acta 2014, 87 343. doi: org/10.5562/cca2462
Zhou, X. Y.; Rong, C. Y.; Lu, T.; Liu, S. B. Acta Phys. -Chim. Sin. 2014, 20, 2055.
doi: 10.3866/PKU.WHXB201409193
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
Minghao Hu , Tianci Xie , Yuqiang Hu , Longjie Li , Ting Wang , Tongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232
Zixi Zou , Jingyuan Wang , Yian Sun , Qian Wang , Da-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972
Wen-Jun Xia , Yong-Jiang Wang , Yun-Fei Cao , Cai Sun , Xin-Xiong Li , Yan-Qiong Sun , Shou-Tian Zheng . A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption. Chinese Chemical Letters, 2025, 36(2): 110248-. doi: 10.1016/j.cclet.2024.110248
Huijiao Fu , Peiqin Liang , Qianwen Chen , Yan Wang , Guang Li , Xuzi Cai , Shengtao Wang , Kun Chen , Shengying Shi , Zhiqiang Yu , Xuefeng Wang . COX-2 blocking therapy in cisplatin chemosensitization of ovarian cancer: An allicin-based nanomedicine approach. Chinese Chemical Letters, 2024, 35(8): 109241-. doi: 10.1016/j.cclet.2023.109241
Bohan Zhang , Bingzhe Wang , Guichuan Xing , Zikang Tang , Songnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358
Yaxian Liang , Qingyi Li , Liwei Hu , Ruohan Zhai , Fan Liu , Lin Tan , Xiaofei Wang , Huixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459
Yujia Shi , Yan Qiao , Pengfei Xie , Miaomiao Tian , Xingwei Li , Junbiao Chang , Bingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544
Yiwen Lin , Yijie Chen , Chunhui Deng , Nianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813
Zhefei Hu , Jingwen Liao , Jiawen Zhou , Lulu Zhao , Yanjuan Liu , Yuefei Zhang , Wei Chen , Sheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985
Yunfei Shen , Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321
Zhilong Xie , Guohui Zhang , Ya Meng , Yefei Tong , Jian Deng , Honghui Li , Qingqing Ma , Shisong Han , Wenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584
Qingyun Hu , Wei Wang , Junyuan Lu , He Zhu , Qi Liu , Yang Ren , Hong Wang , Jian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344
Longsheng Zhan , Yuchao Wang , Mengjie Liu , Xin Zhao , Danni Deng , Xinran Zheng , Jiabi Jiang , Xiang Xiong , Yongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Qi Li , Zi-Lu Wang , Yun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171