Citation: Hantao Sun, Jianhui Liao, Shimin Hou. Single-Molecule Field-Effect Transistors with Graphene Electrodes and Covalent Pyrazine Linkers[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 190602. doi: 10.3866/PKU.WHXB201906027 shu

Single-Molecule Field-Effect Transistors with Graphene Electrodes and Covalent Pyrazine Linkers

  • Corresponding author: Jianhui Liao, smhou@pku.edu.cn Shimin Hou, jianhui.liao@pku.edu.cn
  • Received Date: 5 June 2019
    Revised Date: 18 June 2019
    Accepted Date: 20 June 2019
    Available Online: 1 July 2019

    Fund Project: the National Natural Science Foundation of China 21573014the National Natural Science Foundation of China 61671021the National Natural Science Foundation of China 61621061the National Key R&D Program of China 2017YFA0204903the National Key R&D Program of China 2016YFA0201901

  • In single-molecule junctions, anchoring groups that connect the central molecule to the electrodes have profound effects on the mechanical and electrical properties of devices. The mechanical strength of the anchoring groups affects the device stability, while their electronic coupling strength influences the junction conductance and the conduction polarity. To design and fabricate high-performance single-molecule devices with graphene electrodes, it is highly desirable to explore robust anchoring groups that bond the central molecule to the graphene electrodes. Condensation of ortho-phenylenediamine terminated molecules with ortho-quinone moieties at the edges of graphene generates graphene-conjugated pyrazine units that can be employed as anchoring groups for the construction of molecular junctions with graphene electrodes. In this study, we investigated the fabrication and electrical characterization of single-molecule field-effect transistors (FETs) with graphene as the electrodes, pyrazine as the anchoring groups, and a heavily doped silicon substrate as the back-gate electrode. Graphene nano-gaps were fabricated by a high-speed feedback-controlled electro-burning method, and their edges were fully oxidized; thus, there were many ortho-quinone moieties at the edges. After the deposition of phenazine molecules with ortho-phenylenediamine terminals at both ends, a large current increase was observed, indicating that molecular junctions were formed with covalent pyrazine anchoring groups. The yield of the single-molecule devices was as high as 26%, demonstrating the feasibility of pyrazine as an effective anchoring group for graphene electrodes. Our electrical measurements show that the ten fabricated devices exhibited a distinct gating effect when a back-gate voltage was applied. However, the gate dependence of the conductance varied considerably from device to device, and three types of different gate modulation behaviors, including p-type, ambipolar, and n-type conduction, were observed. Our observations can be understood using a modified single-level model that takes into account the linear dispersion of graphene near the Dirac point; the unique band structure of graphene and the coupling strength of pyrazine with the graphene electrode both crucially affect the conduction polarity of single-molecule FETs. When the coupling strength of pyrazine with the graphene electrode is weak, the highest occupied molecular orbital (HOMO) of the central molecule dominates charge transport. Depending on the gating efficiencies of the HOMO level and the graphene states, devices can exhibit p-type or ambipolar conduction. In contrast, when the coupling is strong, the redistribution of electrons around the central molecule and the graphene electrodes leads to a realignment of the molecular levels, resulting in the lowest unoccupied molecular orbital (LUMO)-dominated n-type conduction. The high yield and versatility of the pyrazine anchoring groups are beneficial for the construction of single-molecule devices with graphene electrodes.
  • 加载中
    1. [1]

      Sun, L.; Diaz-Fernandez, Y. A.; Gschneidtner, T. A.; Westerlund, F.; Lara-Avila, S.; Moth-Poulsen, K. Chem. Soc. Rev. 2014, 43 (21), 7378. doi: 10.1039/C4CS00143E  doi: 10.1039/C4CS00143E

    2. [2]

      Su, T. A.; Neupane, M.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Nat. Rev. Mater. 2016, 1, 16002. doi: 10.1038/natrevmats.2016.2  doi: 10.1038/natrevmats.2016.2

    3. [3]

      Jia, C.; Guo, X. Chem. Soc. Rev. 2013, 42, 5642. doi: 10.1039/C3CS35527F  doi: 10.1039/C3CS35527F

    4. [4]

      Xin, N.; Guan, J.; Zhou, C.; Chen, X.; Gu, C.; Li, Y.; Ratner, M. A.; Nitzan, A.; Stoddart, J. F.; Guo, X. Nat. Rev. Phys. 2019, 1, 211. doi: 10.1038/s42254-019-0022-x  doi: 10.1038/s42254-019-0022-x

    5. [5]

      Metzger, R. M. Chem. Rev. 2015, 115, 5056. doi: 10.1021/cr500459d  doi: 10.1021/cr500459d

    6. [6]

      Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Chem. Rev. 2016, 116, 4318. doi: 10.1021/acs.chemrev.5b00680  doi: 10.1021/acs.chemrev.5b00680

    7. [7]

      Strachan, D. R.; Smith, D. E.; Fischbein, M. D.; Johnston, D. E.; Guiton, B. S.; Drndić, M.; Bonnell, D. A.; Johnson, A. T. Nano Lett. 2006, 6, 441. doi: 10.1021/nl052302a  doi: 10.1021/nl052302a

    8. [8]

      O'Neill, K.; Osorio, E. A.; van der Zant, H. S. J. Appl. Phys. Lett. 2007, 90, 133109. doi: 10.1063/1.2716989  doi: 10.1063/1.2716989

    9. [9]

      Perrin, M. L.; Burzuri, E.; van der Zant, H. S. Chem. Soc. Rev. 2015, 44, 902. doi: 10.1039/C4CS00231H  doi: 10.1039/C4CS00231H

    10. [10]

      Jia, C.; Ma, B.; Xin, N.; Guo, X. Acc. Chem. Res. 2015, 48, 2565. doi: 10.1021/acs.accounts.5b00133  doi: 10.1021/acs.accounts.5b00133

    11. [11]

      Prins, F.; Barreiro, A.; Ruitenberg, J. W.; Seldenthuis, J. S.; Aliaga-Alcalde, N.; Vandersypen, L. M.; van der Zant, H. S. Nano Lett. 2011, 11, 4607. doi: 10.1021/nl202065x  doi: 10.1021/nl202065x

    12. [12]

      Island, J. O.; Holovchenko, A.; Koole, M.; Alkemade, P. F.; Menelaou, M.; Aliaga-Alcalde, N.; Burzuri, E.; van der Zant, H. S. J. Phys.: Condens. Matter 201, 26, 474205. doi: 10.1088/0953-8984/26/47/474205  doi: 10.1088/0953-8984/26/47/474205

    13. [13]

      Lau, C. S.; Mol, J. A.; Warner, J. H.; Briggs, G. A. Phys. Chem. Chem. Phys. 2014, 16, 20398. doi: 10.1039/C4CP03257H  doi: 10.1039/C4CP03257H

    14. [14]

      Sun, H.; Jiang, Z.; Xin, N.; Guo, X.; Hou, S.; Liao, J. ChemPhysChem 2018, 19, 2258. doi: 10.1002/cphc.201800220  doi: 10.1002/cphc.201800220

    15. [15]

      Cao, Y.; Dong, S.; Liu, S.; He, L.; Gan, L.; Yu, X.; Steigerwald, M. L.; Wu, X.; Liu, Z.; Guo, X. Angew. Chem. Int. Ed. 2012, 124, 12394. doi: 10.1002/anie.201205607  doi: 10.1002/anie.201205607

    16. [16]

      Mol, J. A.; Lau, C. S.; Lewis, W. J.; Sadeghi, H.; Roche, C.; Cnossen, A.; Warner, J. H.; Lambert, C. J.; Anderson, H. L.; Briggs, G. A. D. Nanoscale 2015, 7, 13181. doi: 10.1039/C5NR03294F  doi: 10.1039/C5NR03294F

    17. [17]

      Xu, Q.; Scuri, G.; Mathewson, C.; Kim, P.; Nuckolls, C.; Bouilly, D. Nano Lett. 2017, 17, 5335. doi: 10.1021/acs.nanolett.7b01745  doi: 10.1021/acs.nanolett.7b01745

    18. [18]

      Xin, N.; Li, X.; Jia, C.; Gong, Y.; Li, M.; Wang, S.; Zhang, G.; Yang, J.; Guo, X. Angew. Chem. 2018, 130, 14222. doi: 10.1002/ange.201807465  doi: 10.1002/ange.201807465

    19. [19]

      Sadeghi, H.; Sangtarash, S.; Lambert, C. Nano Lett. 2017, 17 (8), 4611. doi: 10.1021/acs.nanolett.7b01001  doi: 10.1021/acs.nanolett.7b01001

    20. [20]

      Limburg, B.; Thomas, J. O.; Holloway, G.; Sadeghi, H.; Sangtarash, S.; Hou, I. C. Y.; Cremers, J.; Narita, A.; Müllen, K.; Lambert, C. J. Adv. Funct. Mater. 2018, 28, 1803629. doi: 10.1002/adfm.201803629  doi: 10.1002/adfm.201803629

    21. [21]

      Guo, X.; Small, J. P.; Klare, J. E.; Wang, Y.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L.; O'brien, S. Science 2006, 311, 356. doi: 10.1126/science.1120986  doi: 10.1126/science.1120986

    22. [22]

      Cao, Y.; Dong, S.; Liu, S.; Liu, Z.; Guo, X. Angew. Chem. Int. Ed. 2013, 125, 3998. doi: 10.1002/anie.201208210  doi: 10.1002/anie.201208210

    23. [23]

      Jia, C.; Migliore, A.; Xin, N.; Huang, S.; Wang, J.; Yang, Q.; Wang, S.; Chen, H.; Wang, D.; Feng, B. Science 2016, 352, 1443. doi: 10.1126/science.aaf6298  doi: 10.1126/science.aaf6298

    24. [24]

      Lörtscher, E. Nat. Nanotech. 2013, 8, 381. doi: 10.1038/nnano.2013.105  doi: 10.1038/nnano.2013.105

    25. [25]

      Ratner, M. Nat. Nanotech. 2013, 8, 378. doi: 10.1038/nnano.2013.110  doi: 10.1038/nnano.2013.110

    26. [26]

      Fukushima, T.; Drisdell, W.; Yano, J.; Surendranath, Y. J. Am. Chem. Soc. 2015, 137, 10926. doi: 10.1021/jacs.5b06737  doi: 10.1021/jacs.5b06737

    27. [27]

      Oh, S.; Gallagher, J. R.; Miller, J. T.; Surendranath, Y. J. Am. Chem. Soc. 2016, 138, 1820. doi: 10.1021/jacs.5b13080  doi: 10.1021/jacs.5b13080

    28. [28]

      Ricke, N. D.; Murray, A. T.; Shepherd, J. J.; Welborn, M. G.; Fukushima, T.; Van Voorhis, T.; Surendranath, Y. ACS Catal. 2017, 7, 7680. doi: 10.1021/acscatal.7b03086  doi: 10.1021/acscatal.7b03086

    29. [29]

      Jackson, M. N.; Oh, S.; Kaminsky, C. J.; Chu, S. B.; Zhang, G.; Miller, J. T.; Surendranath, Y. J. Am. Chem. Soc. 2018, 140, 1004. doi: 10.1021/jacs.7b10723  doi: 10.1021/jacs.7b10723

    30. [30]

      Gajiwala, H.; Zand, R. Polymer 2000, 41, 2009. doi: 10.1016/S0032-3861(99)00371-7  doi: 10.1016/S0032-3861(99)00371-7

    31. [31]

      Bindewald, E.; Lorenz, R.; Hübner, O.; Brox, D.; Herten, D.-P.; Kaifer, E.; Himmel, H. J. Dalt. Trans. 2015, 44, 3467. doi: 10.1039/C4DT03572K  doi: 10.1039/C4DT03572K

    32. [32]

      Sun, H.; Liu, X.; Su, Y.; Deng, B.; Peng, H.; Decurtins, S.; Sanvito, S.; Liu, S. X.; Hou, S.; Liao, J. Nanoscale 2019, doi: 10.1039/C9NR01551E  doi: 10.1039/C9NR01551E

    33. [33]

      Hihath, J.; Bruot, C.; Nakamura, H.; Asai, Y.; Díez-Pérez, I.; Lee, Y.; Yu, L.; Tao, N. ACS Nano 2011, 5, 8331. doi: 10.1021/nn2030644  doi: 10.1021/nn2030644

    34. [34]

      Lörtscher, E.; Gotsmann, B.; Lee, Y.; Yu, L.; Rettner, C.; Riel, H. ACS Nano 2012, 6, 4931. doi: 10.1021/nn300438h  doi: 10.1021/nn300438h

  • 加载中
    1. [1]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    2. [2]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    3. [3]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    4. [4]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    5. [5]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    6. [6]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    7. [7]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    8. [8]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    9. [9]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    10. [10]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    11. [11]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    12. [12]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    13. [13]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    14. [14]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    15. [15]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    16. [16]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    17. [17]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    18. [18]

      Hongjie GuoQiang WeiYangyang WuWei QiuHongliang LiChangyong Zhang . Enhanced nitrate removal from groundwater using a conductive spacer in flow-electrode capacitive deionization. Chinese Chemical Letters, 2024, 35(8): 109325-. doi: 10.1016/j.cclet.2023.109325

    19. [19]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    20. [20]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

Metrics
  • PDF Downloads(16)
  • Abstract views(280)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return