Citation: Hantao Sun, Jianhui Liao, Shimin Hou. Single-Molecule Field-Effect Transistors with Graphene Electrodes and Covalent Pyrazine Linkers[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 190602. doi: 10.3866/PKU.WHXB201906027 shu

Single-Molecule Field-Effect Transistors with Graphene Electrodes and Covalent Pyrazine Linkers

  • Corresponding author: Jianhui Liao, smhou@pku.edu.cn Shimin Hou, jianhui.liao@pku.edu.cn
  • Received Date: 5 June 2019
    Revised Date: 18 June 2019
    Accepted Date: 20 June 2019
    Available Online: 1 July 2019

    Fund Project: the National Natural Science Foundation of China 21573014the National Natural Science Foundation of China 61671021the National Natural Science Foundation of China 61621061the National Key R&D Program of China 2017YFA0204903the National Key R&D Program of China 2016YFA0201901

  • In single-molecule junctions, anchoring groups that connect the central molecule to the electrodes have profound effects on the mechanical and electrical properties of devices. The mechanical strength of the anchoring groups affects the device stability, while their electronic coupling strength influences the junction conductance and the conduction polarity. To design and fabricate high-performance single-molecule devices with graphene electrodes, it is highly desirable to explore robust anchoring groups that bond the central molecule to the graphene electrodes. Condensation of ortho-phenylenediamine terminated molecules with ortho-quinone moieties at the edges of graphene generates graphene-conjugated pyrazine units that can be employed as anchoring groups for the construction of molecular junctions with graphene electrodes. In this study, we investigated the fabrication and electrical characterization of single-molecule field-effect transistors (FETs) with graphene as the electrodes, pyrazine as the anchoring groups, and a heavily doped silicon substrate as the back-gate electrode. Graphene nano-gaps were fabricated by a high-speed feedback-controlled electro-burning method, and their edges were fully oxidized; thus, there were many ortho-quinone moieties at the edges. After the deposition of phenazine molecules with ortho-phenylenediamine terminals at both ends, a large current increase was observed, indicating that molecular junctions were formed with covalent pyrazine anchoring groups. The yield of the single-molecule devices was as high as 26%, demonstrating the feasibility of pyrazine as an effective anchoring group for graphene electrodes. Our electrical measurements show that the ten fabricated devices exhibited a distinct gating effect when a back-gate voltage was applied. However, the gate dependence of the conductance varied considerably from device to device, and three types of different gate modulation behaviors, including p-type, ambipolar, and n-type conduction, were observed. Our observations can be understood using a modified single-level model that takes into account the linear dispersion of graphene near the Dirac point; the unique band structure of graphene and the coupling strength of pyrazine with the graphene electrode both crucially affect the conduction polarity of single-molecule FETs. When the coupling strength of pyrazine with the graphene electrode is weak, the highest occupied molecular orbital (HOMO) of the central molecule dominates charge transport. Depending on the gating efficiencies of the HOMO level and the graphene states, devices can exhibit p-type or ambipolar conduction. In contrast, when the coupling is strong, the redistribution of electrons around the central molecule and the graphene electrodes leads to a realignment of the molecular levels, resulting in the lowest unoccupied molecular orbital (LUMO)-dominated n-type conduction. The high yield and versatility of the pyrazine anchoring groups are beneficial for the construction of single-molecule devices with graphene electrodes.
  • 加载中
    1. [1]

      Sun, L.; Diaz-Fernandez, Y. A.; Gschneidtner, T. A.; Westerlund, F.; Lara-Avila, S.; Moth-Poulsen, K. Chem. Soc. Rev. 2014, 43 (21), 7378. doi: 10.1039/C4CS00143E  doi: 10.1039/C4CS00143E

    2. [2]

      Su, T. A.; Neupane, M.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Nat. Rev. Mater. 2016, 1, 16002. doi: 10.1038/natrevmats.2016.2  doi: 10.1038/natrevmats.2016.2

    3. [3]

      Jia, C.; Guo, X. Chem. Soc. Rev. 2013, 42, 5642. doi: 10.1039/C3CS35527F  doi: 10.1039/C3CS35527F

    4. [4]

      Xin, N.; Guan, J.; Zhou, C.; Chen, X.; Gu, C.; Li, Y.; Ratner, M. A.; Nitzan, A.; Stoddart, J. F.; Guo, X. Nat. Rev. Phys. 2019, 1, 211. doi: 10.1038/s42254-019-0022-x  doi: 10.1038/s42254-019-0022-x

    5. [5]

      Metzger, R. M. Chem. Rev. 2015, 115, 5056. doi: 10.1021/cr500459d  doi: 10.1021/cr500459d

    6. [6]

      Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Chem. Rev. 2016, 116, 4318. doi: 10.1021/acs.chemrev.5b00680  doi: 10.1021/acs.chemrev.5b00680

    7. [7]

      Strachan, D. R.; Smith, D. E.; Fischbein, M. D.; Johnston, D. E.; Guiton, B. S.; Drndić, M.; Bonnell, D. A.; Johnson, A. T. Nano Lett. 2006, 6, 441. doi: 10.1021/nl052302a  doi: 10.1021/nl052302a

    8. [8]

      O'Neill, K.; Osorio, E. A.; van der Zant, H. S. J. Appl. Phys. Lett. 2007, 90, 133109. doi: 10.1063/1.2716989  doi: 10.1063/1.2716989

    9. [9]

      Perrin, M. L.; Burzuri, E.; van der Zant, H. S. Chem. Soc. Rev. 2015, 44, 902. doi: 10.1039/C4CS00231H  doi: 10.1039/C4CS00231H

    10. [10]

      Jia, C.; Ma, B.; Xin, N.; Guo, X. Acc. Chem. Res. 2015, 48, 2565. doi: 10.1021/acs.accounts.5b00133  doi: 10.1021/acs.accounts.5b00133

    11. [11]

      Prins, F.; Barreiro, A.; Ruitenberg, J. W.; Seldenthuis, J. S.; Aliaga-Alcalde, N.; Vandersypen, L. M.; van der Zant, H. S. Nano Lett. 2011, 11, 4607. doi: 10.1021/nl202065x  doi: 10.1021/nl202065x

    12. [12]

      Island, J. O.; Holovchenko, A.; Koole, M.; Alkemade, P. F.; Menelaou, M.; Aliaga-Alcalde, N.; Burzuri, E.; van der Zant, H. S. J. Phys.: Condens. Matter 201, 26, 474205. doi: 10.1088/0953-8984/26/47/474205  doi: 10.1088/0953-8984/26/47/474205

    13. [13]

      Lau, C. S.; Mol, J. A.; Warner, J. H.; Briggs, G. A. Phys. Chem. Chem. Phys. 2014, 16, 20398. doi: 10.1039/C4CP03257H  doi: 10.1039/C4CP03257H

    14. [14]

      Sun, H.; Jiang, Z.; Xin, N.; Guo, X.; Hou, S.; Liao, J. ChemPhysChem 2018, 19, 2258. doi: 10.1002/cphc.201800220  doi: 10.1002/cphc.201800220

    15. [15]

      Cao, Y.; Dong, S.; Liu, S.; He, L.; Gan, L.; Yu, X.; Steigerwald, M. L.; Wu, X.; Liu, Z.; Guo, X. Angew. Chem. Int. Ed. 2012, 124, 12394. doi: 10.1002/anie.201205607  doi: 10.1002/anie.201205607

    16. [16]

      Mol, J. A.; Lau, C. S.; Lewis, W. J.; Sadeghi, H.; Roche, C.; Cnossen, A.; Warner, J. H.; Lambert, C. J.; Anderson, H. L.; Briggs, G. A. D. Nanoscale 2015, 7, 13181. doi: 10.1039/C5NR03294F  doi: 10.1039/C5NR03294F

    17. [17]

      Xu, Q.; Scuri, G.; Mathewson, C.; Kim, P.; Nuckolls, C.; Bouilly, D. Nano Lett. 2017, 17, 5335. doi: 10.1021/acs.nanolett.7b01745  doi: 10.1021/acs.nanolett.7b01745

    18. [18]

      Xin, N.; Li, X.; Jia, C.; Gong, Y.; Li, M.; Wang, S.; Zhang, G.; Yang, J.; Guo, X. Angew. Chem. 2018, 130, 14222. doi: 10.1002/ange.201807465  doi: 10.1002/ange.201807465

    19. [19]

      Sadeghi, H.; Sangtarash, S.; Lambert, C. Nano Lett. 2017, 17 (8), 4611. doi: 10.1021/acs.nanolett.7b01001  doi: 10.1021/acs.nanolett.7b01001

    20. [20]

      Limburg, B.; Thomas, J. O.; Holloway, G.; Sadeghi, H.; Sangtarash, S.; Hou, I. C. Y.; Cremers, J.; Narita, A.; Müllen, K.; Lambert, C. J. Adv. Funct. Mater. 2018, 28, 1803629. doi: 10.1002/adfm.201803629  doi: 10.1002/adfm.201803629

    21. [21]

      Guo, X.; Small, J. P.; Klare, J. E.; Wang, Y.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L.; O'brien, S. Science 2006, 311, 356. doi: 10.1126/science.1120986  doi: 10.1126/science.1120986

    22. [22]

      Cao, Y.; Dong, S.; Liu, S.; Liu, Z.; Guo, X. Angew. Chem. Int. Ed. 2013, 125, 3998. doi: 10.1002/anie.201208210  doi: 10.1002/anie.201208210

    23. [23]

      Jia, C.; Migliore, A.; Xin, N.; Huang, S.; Wang, J.; Yang, Q.; Wang, S.; Chen, H.; Wang, D.; Feng, B. Science 2016, 352, 1443. doi: 10.1126/science.aaf6298  doi: 10.1126/science.aaf6298

    24. [24]

      Lörtscher, E. Nat. Nanotech. 2013, 8, 381. doi: 10.1038/nnano.2013.105  doi: 10.1038/nnano.2013.105

    25. [25]

      Ratner, M. Nat. Nanotech. 2013, 8, 378. doi: 10.1038/nnano.2013.110  doi: 10.1038/nnano.2013.110

    26. [26]

      Fukushima, T.; Drisdell, W.; Yano, J.; Surendranath, Y. J. Am. Chem. Soc. 2015, 137, 10926. doi: 10.1021/jacs.5b06737  doi: 10.1021/jacs.5b06737

    27. [27]

      Oh, S.; Gallagher, J. R.; Miller, J. T.; Surendranath, Y. J. Am. Chem. Soc. 2016, 138, 1820. doi: 10.1021/jacs.5b13080  doi: 10.1021/jacs.5b13080

    28. [28]

      Ricke, N. D.; Murray, A. T.; Shepherd, J. J.; Welborn, M. G.; Fukushima, T.; Van Voorhis, T.; Surendranath, Y. ACS Catal. 2017, 7, 7680. doi: 10.1021/acscatal.7b03086  doi: 10.1021/acscatal.7b03086

    29. [29]

      Jackson, M. N.; Oh, S.; Kaminsky, C. J.; Chu, S. B.; Zhang, G.; Miller, J. T.; Surendranath, Y. J. Am. Chem. Soc. 2018, 140, 1004. doi: 10.1021/jacs.7b10723  doi: 10.1021/jacs.7b10723

    30. [30]

      Gajiwala, H.; Zand, R. Polymer 2000, 41, 2009. doi: 10.1016/S0032-3861(99)00371-7  doi: 10.1016/S0032-3861(99)00371-7

    31. [31]

      Bindewald, E.; Lorenz, R.; Hübner, O.; Brox, D.; Herten, D.-P.; Kaifer, E.; Himmel, H. J. Dalt. Trans. 2015, 44, 3467. doi: 10.1039/C4DT03572K  doi: 10.1039/C4DT03572K

    32. [32]

      Sun, H.; Liu, X.; Su, Y.; Deng, B.; Peng, H.; Decurtins, S.; Sanvito, S.; Liu, S. X.; Hou, S.; Liao, J. Nanoscale 2019, doi: 10.1039/C9NR01551E  doi: 10.1039/C9NR01551E

    33. [33]

      Hihath, J.; Bruot, C.; Nakamura, H.; Asai, Y.; Díez-Pérez, I.; Lee, Y.; Yu, L.; Tao, N. ACS Nano 2011, 5, 8331. doi: 10.1021/nn2030644  doi: 10.1021/nn2030644

    34. [34]

      Lörtscher, E.; Gotsmann, B.; Lee, Y.; Yu, L.; Rettner, C.; Riel, H. ACS Nano 2012, 6, 4931. doi: 10.1021/nn300438h  doi: 10.1021/nn300438h

  • 加载中
    1. [1]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    2. [2]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    3. [3]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    4. [4]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    5. [5]

      Xinyi LuoKe WangYingying XueXiaobao CaoJianhua ZhouJiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924

    6. [6]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    7. [7]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    8. [8]

      Salim UllahJianliang ShenHong-Tao Xu . Innovative self-healing conductive organogel: Pioneering the future of electronics. Chinese Chemical Letters, 2025, 36(3): 110553-. doi: 10.1016/j.cclet.2024.110553

    9. [9]

      Zheyu LiHuwei LiYao LiXinyu FuHongxia YueQingxing YangJing FengXinyu WangHongjie Zhang . The effect of electron-phonon coupling on the photoluminescence properties of zinc-based halides. Chinese Chemical Letters, 2025, 36(4): 109800-. doi: 10.1016/j.cclet.2024.109800

    10. [10]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    11. [11]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    12. [12]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    13. [13]

      Ruike HuKangmin WangJunxiang LiuJingxian ZhangGuoliang YangLiqiu WanBijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113

    14. [14]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    15. [15]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    16. [16]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    17. [17]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    18. [18]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    19. [19]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    20. [20]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

Metrics
  • PDF Downloads(16)
  • Abstract views(361)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return