Citation: Tu Kunfang, Li Guang, Jiang Yanxia. Effect of Temperature on the Electrocatalytic Oxidation of Ethanol[J]. Acta Physico-Chimica Sinica, ;2020, 36(8): 190602. doi: 10.3866/PKU.WHXB201906026 shu

Effect of Temperature on the Electrocatalytic Oxidation of Ethanol

  • Corresponding author: Jiang Yanxia, yxjiang@xmu.edu.cn
  • Received Date: 26 June 2019
    Revised Date: 1 July 2019
    Accepted Date: 23 July 2019
    Available Online: 31 July 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21773198, 21621091) and the National Key Research and Development Program of China (2017YFA0206500)

  • The electrocatalytic activity of commercial Pt/C for ethanol oxidation is relatively low, and the C―C bond is difficult to break. Thus, the complete oxidation process is not easy, and the fuel utilization efficiency becomes considerably reduced. Increasing the temperature can increase the reaction rate and enhance the mass transport; therefore, a temperature-controlled electrode was used during our in situ FTIRS (Fourier Transform Infrared Spectroscopy) investigation. The temperature sensor was placed at a certain distance from the surface of the electrode; thus, the surface temperature needed to be corrected. The temperature was calibrated using the "potentiometric" measurement method, which was because the potential-temperature coefficient of the redox couple is constant under certain conditions, and the electrode surface temperature was obtained by potential conversion at different temperatures during the experiment. The experimental results showed that the relationship between the heating temperature, Th, and the surface temperature, TS, was TS = 0.57Th + 7.71 (30 ℃ < Th ≤ 50 ℃) and TS = 0.62Th + 5.12 (50 ℃ < Th ≤ 80 ℃), and according to error analysis, the maximum error was 1 ℃. The temperature-controlled electrode was applied to investigate the electrooxidation of ethanol using both in situ FTIRS and cyclic voltammetry using a commercial Pt/C catalyst at different temperatures. Clearly, based on the CV curve for the oxidation of ethanol, with increasing temperature, the overall oxidation current increased, and the onset potential and peak potential both negatively shifted, indicating that thermal activation allows the oxidation reaction to proceed easier. Electrooxidation of ethanol showed two positive oxidation peaks, and the ratio of the first peak current to the second peak current was used to qualitatively evaluate the selectivity of CO2. Compared with at 25 ℃, the first peak current increased by 30% at 65 ℃, indicating that the high temperature was conducive to C―C bond cleavage. Comparing the in situ FTIRS recorded at 50 ℃, 35 ℃, and 25 ℃, we found that the onset potential of CO2 on the commercial Pt/C catalyst was lower by 200 mV, indicating that Pt/C can provide oxygen-containing species at lower potentials at high temperature; however, the onset potentials of CH3CHO and CH3COOH did not change with temperature. The CO2 selectivity was semi-quantitatively calculated by the area of CO2 compared with the area of CH3COOH from the FTIRS data. It was found that CO2 had the highest selectivity at high temperature and low potential, indicating that high temperature is conducive to complete ethanol oxidation during CO2 formation, possibly because both the ethanol bridge adsorption pattern and adsorbed OH (OHad) increased with temperature, enhancing subsequent COad and OHad oxidation reactions. The low selectivity of CO2 at the high potential was due to the adsorption of oxygen-containing species that occupied the surface-active site, blocking the adsorption of ethanol.
  • 加载中
    1. [1]

      Chen, X. B.; Li, C.; Gratzel, M.; Kostecki, R.; Mao, S. S. Chem. Soc. Rev. 2012, 41, 7909. doi: 10.1039/C2CS35230C  doi: 10.1039/C2CS35230C

    2. [2]

      Antolini, E. J. Power Sources 2007, 170, 1. doi: 10.1016/j.jpowsour.2007.04.009  doi: 10.1016/j.jpowsour.2007.04.009

    3. [3]

      An, L.; Zhao, T. S.; Li, Y. S. Renew. Sust. Energ. Rev. 2015, 50, 1462. doi: 10.1016/j.rser.2015.05.074  doi: 10.1016/j.rser.2015.05.074

    4. [4]

      Yajima, T.; Uchida, H.; Watanabe, M. J. T. J. Phys. Chem. B 2004, 108 (8), 2654. doi: 10.1021/jp037215q  doi: 10.1021/jp037215q

    5. [5]

      Ye, J. Y.; Jiang, Y. X.; Sheng, T.; Sun, S. G. Nano Energy 2016, 29, 414. doi: 10.1016/j.nanoen.2016.06.023  doi: 10.1016/j.nanoen.2016.06.023

    6. [6]

      Watanabe, M.; Sato, T.; Kunimatsu, K.; Uchida, H. Electrochim. Acta 2008, 53 (23), 6928. doi: 10.1016/j.electacta.2008.02.023  doi: 10.1016/j.electacta.2008.02.023

    7. [7]

      Wang, J. Anal. Chim. Acta 1999, 396, 33. doi: 10.1016/S0003-2670(99)00355-4  doi: 10.1016/S0003-2670(99)00355-4

    8. [8]

      Zhou, Z. Y.; Wang, Q.; Lin, J. L.; Tian, N.; Sun, S. G. Electrochim. Acta 2010, 55 (27), 7995. doi: 10.1016/j.electacta.2010.02.071  doi: 10.1016/j.electacta.2010.02.071

    9. [9]

      Jenkins, D. M.; Song, C. Y.; Fares, S.; Cheng, H.; Barrettino, D. Sens Actu B: Chem. 2009, 137, 222. doi: 10.1016/j.snb.2008.09.046  doi: 10.1016/j.snb.2008.09.046

    10. [10]

      Compton, R. G.; Coles, B. A.; Marken, F. Chem. Commun. 1998, 2595. doi: 10.1039/A806511J  doi: 10.1039/A806511J

    11. [11]

      Yuan, Q.; Zhou, Z. Y.; Zhuang, J.; Wang, X. Chem. Mater. 2010, 22, 2395. doi: 10.1021/cm903844t  doi: 10.1021/cm903844t

    12. [12]

      Hitmi, H.; Belgsir, E. M.; Léger, J. M.; Lamy, C.; Lezna, R. O. Electrochim. Acta 1994, 39, 407. doi: 10.1016/0013-4686(94)80080-4  doi: 10.1016/0013-4686(94)80080-4

    13. [13]

      Rao, L.; Jiang, Y. X.; Zhang, B. W.; Cai, Y. R.; Sun, S. G. Phys. Chem. Chem. Phys. 2014, 16, 13662. doi: 10.1039/C3CP55059A  doi: 10.1039/C3CP55059A

    14. [14]

      Iwasita, T.; Pastor, E. Electrochim. Acta 1994, 39, 531. doi: 10.1016/0013-4686(94)80097-9  doi: 10.1016/0013-4686(94)80097-9

    15. [15]

      Rasch, B.; Iwasita, T. Electrochim. Acta 1990, 35, 989. doi: 10.1016/0013-4686(90)90032-U  doi: 10.1016/0013-4686(90)90032-U

    16. [16]

      Colmati, F.; Tremiliosi-Filho, G.; Gonzalez, E. R.; Berná, A.; Herrero, E.; Feliu, J, M. Faraday Discuss. 2008, 140, 379. doi: 10.1039/B802160K  doi: 10.1039/B802160K

    17. [17]

      Liu, H. X.; Tian, N.; Brandon, M. P.; Zhou, Z. Y.; Lin, J. L.; Hardacre, C.; Lin, W. F.; Sun, S. G. ACS Catal. 2012, 2, 708. doi: 10.1021/cs200686a  doi: 10.1021/cs200686a

    18. [18]

      Lu, G. Q.; Sun, S. G.; Cai, L. R.; Chen, S. P.; Tian, Z. W. Langmuir 2000, 16, 778. doi: 10.1021/la990282k  doi: 10.1021/la990282k

    19. [19]

      Tian, N.; Xiao, J.; Zhou, Z. Y.; Liu, H. X.; Xu, B. B.; Sun, S. G. Faraday Discuss. 2013, 162, 77. doi: 10.1039/C3FD20146E  doi: 10.1039/C3FD20146E

    20. [20]

      Ghumman, A.; Pickup, P. G. J. Power Sources.2008, 179, 280. doi: 10.1016/j.jpowsour.2007.12.071  doi: 10.1016/j.jpowsour.2007.12.071

    21. [21]

      Rao, V.; Cremers, C.; Stimming, U. J. Eletrochem. Soc. 2007, 154, 1138. doi: 10.1149/1.2777108  doi: 10.1149/1.2777108

    22. [22]

      Camara, G.A.; Iwasita, T. J. Eletrochem. Soc. 2005, 578, 315. doi: 10.1016/j.jelechem.2005.01.013  doi: 10.1016/j.jelechem.2005.01.013

    23. [23]

      Severson, M. W.; Stuhlmann, C.; Villegas, I.; Weaver, M. J. J. Chem Phys. 1995, 103, 9832. doi: 10.1063/1.469950  doi: 10.1063/1.469950

    24. [24]

      Zhang, B. W.; Sheng, T.; Wang, Y. X. ACS Catal. 2017, 7 (1), 892. doi: 10.1021/acscatal.6b03021  doi: 10.1021/acscatal.6b03021

    25. [25]

      Wang, H. F; Liu, Z. P. J. Am. Chem. Soc. 2008, 130 (33), 10996. doi: 10.1021/ja801648h  doi: 10.1021/ja801648h

  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    5. [5]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    6. [6]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    7. [7]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    8. [8]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    9. [9]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    10. [10]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    11. [11]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    12. [12]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    13. [13]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    14. [14]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    15. [15]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    19. [19]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    20. [20]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

Metrics
  • PDF Downloads(13)
  • Abstract views(2301)
  • HTML views(691)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return