Citation: Lu Xiaoxia, Dong Shengyang, Chen Zhijie, Wu Langyuan, Zhang Xiaogang. Preparation of Carbon Coated Ti2Nb2O9 Nanosheets and Its Sodium Ion Storage Properties[J]. Acta Physico-Chimica Sinica, ;2020, 36(5): 190602. doi: 10.3866/PKU.WHXB201906024 shu

Preparation of Carbon Coated Ti2Nb2O9 Nanosheets and Its Sodium Ion Storage Properties

  • Corresponding author: Zhang Xiaogang, azhangxg@nuaa.edu.cn
  • Received Date: 5 June 2019
    Revised Date: 4 July 2019
    Accepted Date: 21 July 2019
    Available Online: 26 May 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (U1802256, 51672128, 21773118, 21875107), the Prospective Joint Research Project of Cooperative Innovation Fund of Jiangsu Province, China (BE2018122), the Foundation of Graduation Innovation Center in NUAA, China (kfjj20180613) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD)the National Natural Science Foundation of China 21875107the National Natural Science Foundation of China 51672128the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China PAPDthe Foundation of Graduation Innovation Center in NUAA, China kfjj20180613the National Natural Science Foundation of China U1802256the National Natural Science Foundation of China 21773118the Prospective Joint Research Project of Cooperative Innovation Fund of Jiangsu Province, China BE2018122

  • In the past few decades, new energy industries have developed rapidly due to the threat of the depletion of non-renewable resources. Among them, the lithium-ion battery has attracted significant attention of various researchers. However, lithium-ion batteries are limited by the uneven distribution of lithium resources and high cost. Sodium, which is in the same periodic group as Lithium, can help alleviate the problems related to the limited development of lithium ion batteries owing to the shortage of lithium resources. Sodium ion batteries are cheap, with varying choice of electrolytes, and have relatively stable electrochemical performances. However, the radius of a sodium ion is larger than that of a lithium ion, leading to slow ion transportation as well as changes in the volume of the host material during the charging and discharging processes. Therefore, compared with existing lithium ion batteries, sodium ion battery anode materials are very limited. Moreover, most sodium ion battery electrode materials have low specific capacities and poor cycle retention rates. Among these, ternary metal oxides, which have two different cations and can reversibly react with sodium ions are promising high-capacity anode materials for sodium ion batteries. In this study, Ti2Nb2O9 nanosheets are obtained by ion-exchange and chemical-delaminate methods. The carbon-coated Ti2Nb2O9 nanosheets are obtained after hydrothermal coating with sucrose and calcination. From the thermogravimetric analysis (TG) curve, the carbon content in the composites is calculated to be approximately 8.0%. Owing to the rich reactive sites and a short ion transport pathway, the Ti2Nb2O9/C electrode delivers a high reversible capacity of 265.2 mAh·g-1 at a current density of 50 mA·g-1. Even at a high current density of 500 mA·g-1, the electrode exhibits an excellent electrochemical performance with a reversible capacity of 160.9 mAh·g-1 after 200 cycles (capacity retention of 75.3%). Additionally, the Ti2Nb2O9/C nanosheets exhibit high reversible capacities of 251.3, 224.6, 197.4, 176.3, and 156.5 mAh·g-1 at the current densities of 100, 200, 500, 1000, and 2000 mA·g-1, respectively. It is demonstrated through the use X-ray photoelectron spectroscopy (XPS) that the following process involving the transfer of four electrons occurs: Ti4+/Ti3+, Nb5+/Nb4+, during the charging and discharging process of the Ti2Nb2O9 electrode in the voltage range of 0.01–3.0 V. The theoretical specific capacity of Ti2Nb2O9 in this process is calculated to be 252 mAh·g-1, corresponding to the electrochemical data. Overall, this study demonstrates that the Ti2Nb2O9/C anode nanosheets have an excellent charge-discharge performance, cycle stability, and rate performance in sodium ion batteries, thereby providing a feasible choice for sodium ion battery anode materials.
  • 加载中
    1. [1]

      Pan, H.; Hu, Y. S.; Chen, L. Energy Environ. Sci. 2013, 6, 2338. doi: 10.1039/C3EE40847G  doi: 10.1039/C3EE40847G

    2. [2]

      Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947. doi: 10.1002/adfm.201200691  doi: 10.1002/adfm.201200691

    3. [3]

      Ge, Y.; Jiang, H.; Fu, K.; Zhang, C. H.; Zhu, J. D.; Chen, C.; Lu, Y.; Qiu, Y. P.; Zhang, X. W. J. Power Sources 2014, 272, 860. doi: 10.1016/j.jpowsour.2014.08.131  doi: 10.1016/j.jpowsour.2014.08.131

    4. [4]

      Xiong, H.; Slater, M. D.; Balasubramanian, M.; Johnson, C. S.; Rajh, T. J. Phys. Chem. Lett. 2011, 2, 2560. doi: 10.1021/jz2012066  doi: 10.1021/jz2012066

    5. [5]

      Sun, Q.; Ren, Q. Q.; Li, H.; Fu, Z. W. Electrochem. Commun. 2011, 13, 1462. doi: 10.1016/j.elecom.2011.09.020  doi: 10.1016/j.elecom.2011.09.020

    6. [6]

      Alcántara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L. Chem. Mater. 2002, 14, 2847. doi: 10.1021/cm025556v  doi: 10.1021/cm025556v

    7. [7]

      Osada, M.; Sasaki, T. J. Mater. Chem. 2009, 19, 2503. doi: 10.1039/B820160A  doi: 10.1039/B820160A

    8. [8]

      Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636. doi: 10.1021/cr500192f  doi: 10.1021/cr500192f

    9. [9]

      Ge, P.; Fouletier, M. Solid State Ionics 1988, 28, 1172. doi: 10.1016/0167-2738(88)90351-7  doi: 10.1016/0167-2738(88)90351-7

    10. [10]

      Luo, X. F.; Yang, C. H.; Peng, Y. Y.; Pu, N. W.; Ger, M. D.; Hsieh, C. T.; Chang, J. K. J. Mater. Chem. A 2015, 3, 10320. doi: 10.1039/C5TA00727E  doi: 10.1039/C5TA00727E

    11. [11]

      Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Nat. Commun. 2014, 5, 4033. doi: 10.1038/ncomms5033  doi: 10.1038/ncomms5033

    12. [12]

      Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X, L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Nat. Commun. 2015, 6, 6929. doi: 10.1038/ncomms7929  doi: 10.1038/ncomms7929

    13. [13]

      Sun, Y.; Zhao, L.; Pan, H. L.; Lu, X.; Gu, L.; Hu, Y. S.; Li, H.; Armand, M.; Ikuhara, Y.; Chen, L. Q.; et al. Nat. Commun. 2013, 4, 1870. doi: 10.1038/ncomms2878  doi: 10.1038/ncomms2878

    14. [14]

      Yu, H. J.; Ren, Y.; Xiao, D. D.; Guo, S. H.; Zhu, Y. B.; Qian, Y. M.; Gu, L; Zhou, H. S. Angew. Chem. Int. Ed. 2014, 53, 8963. doi: 10.1002/anie.201404549  doi: 10.1002/anie.201404549

    15. [15]

      Dong, S. Y.; Shen, L. F.; Li, H. S.; Pang, G.; Dou, H. Zhang, X. G. Adv. Funct. Mater. 2016, 26, 3703. doi: 10.1002/adfm.201600264  doi: 10.1002/adfm.201600264

    16. [16]

      Rudola, A.; Saravanan, K.; Mason, C. W.; Balaya, P. J. Mater. Chem. A 2013, 1, 2653. doi: 10.1039/C2TA01057G  doi: 10.1039/C2TA01057G

    17. [17]

      Li, H. S.; Zhu, Y.; Dong, S.Y.; Shen, L. F.; Chen, Z. J.; Zhang, X. G.; Yu, G. H. Chem. Mater. 2016, 28, 5753. doi: 10.1021/acs.chemmater.6b01988  doi: 10.1021/acs.chemmater.6b01988

    18. [18]

      Lim, E.; Jo, C.; Kim, M. S.; Kim, M.; Chun, J.; Kim, H.; Park, J.; Roh, K. C.; Kang, K.; Yoon, S.; et al. Adv. Funct. Mater. 2016, 26, 3711. doi: 10.1002/adfm.201505548  doi: 10.1002/adfm.201505548

    19. [19]

      Wu, L. M.; Bresser, D.; Buchholz, D.; Giffin, G. A.; Castro, C. R.; Ochel, A.; Passerini, S. Adv. Energy Mater. 2015, 5, 1401142. doi: 10.1002/aenm.201401142  doi: 10.1002/aenm.201401142

    20. [20]

      Chen, C. C.; Zhang, N.; Liu, Y. C.; Wang, Y. J.; Chen, J. Acta Phys. -Chim. Sin. 2016, 32, 349.  doi: 10.3866/PKU.WHXB201512073

    21. [21]

      Shen, L. F.; Yu, L.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. Angew. Chem. Int. Ed. 2015, 54, 1868. doi: 10.1002/anie.201409776  doi: 10.1002/anie.201409776

    22. [22]

      Zhao, M. Y.; Zhu, L.; Fu, B. W.; Jiang, S. H.; Zhou, Y. N.; Song, Y. Acta Phys. -Chim. Sin. 2019, 35, 193.  doi: 10.3866/PKU.WHXB201801241

    23. [23]

      Hasegawa, G.; Kanamori, K.; Kiyomura, T.; Kurata, H.; Nakaishi, K.; Abe, T. Adv. Energy Mater. 2015, 5, 1400730. doi: 10.1002/aenm.201400730  doi: 10.1002/aenm.201400730

    24. [24]

      Han, J. T.; Goodenough, J. B. Chem. Mater. 2011, 23, 3404. doi: 10.1021/cm201515g  doi: 10.1021/cm201515g

    25. [25]

      Tang, K.; Mu, X. K.; Aken, P. A. V.; Yu, Y.; Maier, J. Adv. Energy Mater. 2013, 3, 49. doi: 10.1002/aenm.201200396  doi: 10.1002/aenm.201200396

    26. [26]

      Shang, B.; Peng, Q. M.; Jiao, X.; Xi, G. C.; Hu, X. B. Ionics 2018, 1, 10. doi: 10.1007/s11581-018-2784-z  doi: 10.1007/s11581-018-2784-z

    27. [27]

      Li, S.; Cao, X.; Schmidt, C. N.; Xu, Q.; Uchaker, E.; Pei, Y.; Cao, G. Z. J. Mater. Chem. A2016, 4, 4242. doi: 10.1039/c5ta10510b  doi: 10.1039/c5ta10510b

    28. [28]

      Colin, J. F.; Pralong, V.; Hervieu, M.; Caignaert, V.; Raveau, B. Chem. Mater. 2008, 20, 1534. doi: 10.1021/cm702978g  doi: 10.1021/cm702978g

    29. [29]

      Shen, L. F.; Wang, Y.; Lv, H. F.; Chen, S. Q.; Aken, P. A.; Wu, X. J.; Maier, J.; Yu, Y. Adv. Mater. 2018, 30, 1804378. doi: 10.1002/adma.201804378  doi: 10.1002/adma.201804378

    30. [30]

      Xing, L. D.; Yu, Q. Y.; Jiang, B.; Chu, J. H.; Lao, C. Y.; Wang, M.; Han, K.; Liu, Z. W.; Bao, Y. P.; Wang, W. J. Mater. Chem. A 2019, 7, 5760. doi: 10.1039/C8TA12497C  doi: 10.1039/C8TA12497C

    31. [31]

      Park, H.; Song, T.; Paik, U. J. Mater. Chem. A 2015, 3, 8590. doi: 10.1039/C5TA00467E  doi: 10.1039/C5TA00467E

    32. [32]

      Rebbah, H.; Desgardin, G.; Raveau, B. Mater. Research Bulletin 1979, 14, 1125. doi: 10.1016/0025-5408(79)90206-X  doi: 10.1016/0025-5408(79)90206-X

  • 加载中
    1. [1]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    2. [2]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    3. [3]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    4. [4]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    5. [5]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    6. [6]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    7. [7]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    8. [8]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    11. [11]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    13. [13]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    16. [16]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    17. [17]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(14)
  • Abstract views(979)
  • HTML views(189)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return