Citation: Lu Xiaoxia, Dong Shengyang, Chen Zhijie, Wu Langyuan, Zhang Xiaogang. Preparation of Carbon Coated Ti2Nb2O9 Nanosheets and Its Sodium Ion Storage Properties[J]. Acta Physico-Chimica Sinica, ;2020, 36(5): 190602. doi: 10.3866/PKU.WHXB201906024 shu

Preparation of Carbon Coated Ti2Nb2O9 Nanosheets and Its Sodium Ion Storage Properties

  • Corresponding author: Zhang Xiaogang, azhangxg@nuaa.edu.cn
  • Received Date: 5 June 2019
    Revised Date: 4 July 2019
    Accepted Date: 21 July 2019
    Available Online: 26 May 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (U1802256, 51672128, 21773118, 21875107), the Prospective Joint Research Project of Cooperative Innovation Fund of Jiangsu Province, China (BE2018122), the Foundation of Graduation Innovation Center in NUAA, China (kfjj20180613) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD)the National Natural Science Foundation of China 21875107the National Natural Science Foundation of China 51672128the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China PAPDthe Foundation of Graduation Innovation Center in NUAA, China kfjj20180613the National Natural Science Foundation of China U1802256the National Natural Science Foundation of China 21773118the Prospective Joint Research Project of Cooperative Innovation Fund of Jiangsu Province, China BE2018122

  • In the past few decades, new energy industries have developed rapidly due to the threat of the depletion of non-renewable resources. Among them, the lithium-ion battery has attracted significant attention of various researchers. However, lithium-ion batteries are limited by the uneven distribution of lithium resources and high cost. Sodium, which is in the same periodic group as Lithium, can help alleviate the problems related to the limited development of lithium ion batteries owing to the shortage of lithium resources. Sodium ion batteries are cheap, with varying choice of electrolytes, and have relatively stable electrochemical performances. However, the radius of a sodium ion is larger than that of a lithium ion, leading to slow ion transportation as well as changes in the volume of the host material during the charging and discharging processes. Therefore, compared with existing lithium ion batteries, sodium ion battery anode materials are very limited. Moreover, most sodium ion battery electrode materials have low specific capacities and poor cycle retention rates. Among these, ternary metal oxides, which have two different cations and can reversibly react with sodium ions are promising high-capacity anode materials for sodium ion batteries. In this study, Ti2Nb2O9 nanosheets are obtained by ion-exchange and chemical-delaminate methods. The carbon-coated Ti2Nb2O9 nanosheets are obtained after hydrothermal coating with sucrose and calcination. From the thermogravimetric analysis (TG) curve, the carbon content in the composites is calculated to be approximately 8.0%. Owing to the rich reactive sites and a short ion transport pathway, the Ti2Nb2O9/C electrode delivers a high reversible capacity of 265.2 mAh·g-1 at a current density of 50 mA·g-1. Even at a high current density of 500 mA·g-1, the electrode exhibits an excellent electrochemical performance with a reversible capacity of 160.9 mAh·g-1 after 200 cycles (capacity retention of 75.3%). Additionally, the Ti2Nb2O9/C nanosheets exhibit high reversible capacities of 251.3, 224.6, 197.4, 176.3, and 156.5 mAh·g-1 at the current densities of 100, 200, 500, 1000, and 2000 mA·g-1, respectively. It is demonstrated through the use X-ray photoelectron spectroscopy (XPS) that the following process involving the transfer of four electrons occurs: Ti4+/Ti3+, Nb5+/Nb4+, during the charging and discharging process of the Ti2Nb2O9 electrode in the voltage range of 0.01–3.0 V. The theoretical specific capacity of Ti2Nb2O9 in this process is calculated to be 252 mAh·g-1, corresponding to the electrochemical data. Overall, this study demonstrates that the Ti2Nb2O9/C anode nanosheets have an excellent charge-discharge performance, cycle stability, and rate performance in sodium ion batteries, thereby providing a feasible choice for sodium ion battery anode materials.
  • 加载中
    1. [1]

      Pan, H.; Hu, Y. S.; Chen, L. Energy Environ. Sci. 2013, 6, 2338. doi: 10.1039/C3EE40847G  doi: 10.1039/C3EE40847G

    2. [2]

      Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947. doi: 10.1002/adfm.201200691  doi: 10.1002/adfm.201200691

    3. [3]

      Ge, Y.; Jiang, H.; Fu, K.; Zhang, C. H.; Zhu, J. D.; Chen, C.; Lu, Y.; Qiu, Y. P.; Zhang, X. W. J. Power Sources 2014, 272, 860. doi: 10.1016/j.jpowsour.2014.08.131  doi: 10.1016/j.jpowsour.2014.08.131

    4. [4]

      Xiong, H.; Slater, M. D.; Balasubramanian, M.; Johnson, C. S.; Rajh, T. J. Phys. Chem. Lett. 2011, 2, 2560. doi: 10.1021/jz2012066  doi: 10.1021/jz2012066

    5. [5]

      Sun, Q.; Ren, Q. Q.; Li, H.; Fu, Z. W. Electrochem. Commun. 2011, 13, 1462. doi: 10.1016/j.elecom.2011.09.020  doi: 10.1016/j.elecom.2011.09.020

    6. [6]

      Alcántara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L. Chem. Mater. 2002, 14, 2847. doi: 10.1021/cm025556v  doi: 10.1021/cm025556v

    7. [7]

      Osada, M.; Sasaki, T. J. Mater. Chem. 2009, 19, 2503. doi: 10.1039/B820160A  doi: 10.1039/B820160A

    8. [8]

      Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636. doi: 10.1021/cr500192f  doi: 10.1021/cr500192f

    9. [9]

      Ge, P.; Fouletier, M. Solid State Ionics 1988, 28, 1172. doi: 10.1016/0167-2738(88)90351-7  doi: 10.1016/0167-2738(88)90351-7

    10. [10]

      Luo, X. F.; Yang, C. H.; Peng, Y. Y.; Pu, N. W.; Ger, M. D.; Hsieh, C. T.; Chang, J. K. J. Mater. Chem. A 2015, 3, 10320. doi: 10.1039/C5TA00727E  doi: 10.1039/C5TA00727E

    11. [11]

      Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Nat. Commun. 2014, 5, 4033. doi: 10.1038/ncomms5033  doi: 10.1038/ncomms5033

    12. [12]

      Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X, L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Nat. Commun. 2015, 6, 6929. doi: 10.1038/ncomms7929  doi: 10.1038/ncomms7929

    13. [13]

      Sun, Y.; Zhao, L.; Pan, H. L.; Lu, X.; Gu, L.; Hu, Y. S.; Li, H.; Armand, M.; Ikuhara, Y.; Chen, L. Q.; et al. Nat. Commun. 2013, 4, 1870. doi: 10.1038/ncomms2878  doi: 10.1038/ncomms2878

    14. [14]

      Yu, H. J.; Ren, Y.; Xiao, D. D.; Guo, S. H.; Zhu, Y. B.; Qian, Y. M.; Gu, L; Zhou, H. S. Angew. Chem. Int. Ed. 2014, 53, 8963. doi: 10.1002/anie.201404549  doi: 10.1002/anie.201404549

    15. [15]

      Dong, S. Y.; Shen, L. F.; Li, H. S.; Pang, G.; Dou, H. Zhang, X. G. Adv. Funct. Mater. 2016, 26, 3703. doi: 10.1002/adfm.201600264  doi: 10.1002/adfm.201600264

    16. [16]

      Rudola, A.; Saravanan, K.; Mason, C. W.; Balaya, P. J. Mater. Chem. A 2013, 1, 2653. doi: 10.1039/C2TA01057G  doi: 10.1039/C2TA01057G

    17. [17]

      Li, H. S.; Zhu, Y.; Dong, S.Y.; Shen, L. F.; Chen, Z. J.; Zhang, X. G.; Yu, G. H. Chem. Mater. 2016, 28, 5753. doi: 10.1021/acs.chemmater.6b01988  doi: 10.1021/acs.chemmater.6b01988

    18. [18]

      Lim, E.; Jo, C.; Kim, M. S.; Kim, M.; Chun, J.; Kim, H.; Park, J.; Roh, K. C.; Kang, K.; Yoon, S.; et al. Adv. Funct. Mater. 2016, 26, 3711. doi: 10.1002/adfm.201505548  doi: 10.1002/adfm.201505548

    19. [19]

      Wu, L. M.; Bresser, D.; Buchholz, D.; Giffin, G. A.; Castro, C. R.; Ochel, A.; Passerini, S. Adv. Energy Mater. 2015, 5, 1401142. doi: 10.1002/aenm.201401142  doi: 10.1002/aenm.201401142

    20. [20]

      Chen, C. C.; Zhang, N.; Liu, Y. C.; Wang, Y. J.; Chen, J. Acta Phys. -Chim. Sin. 2016, 32, 349.  doi: 10.3866/PKU.WHXB201512073

    21. [21]

      Shen, L. F.; Yu, L.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. Angew. Chem. Int. Ed. 2015, 54, 1868. doi: 10.1002/anie.201409776  doi: 10.1002/anie.201409776

    22. [22]

      Zhao, M. Y.; Zhu, L.; Fu, B. W.; Jiang, S. H.; Zhou, Y. N.; Song, Y. Acta Phys. -Chim. Sin. 2019, 35, 193.  doi: 10.3866/PKU.WHXB201801241

    23. [23]

      Hasegawa, G.; Kanamori, K.; Kiyomura, T.; Kurata, H.; Nakaishi, K.; Abe, T. Adv. Energy Mater. 2015, 5, 1400730. doi: 10.1002/aenm.201400730  doi: 10.1002/aenm.201400730

    24. [24]

      Han, J. T.; Goodenough, J. B. Chem. Mater. 2011, 23, 3404. doi: 10.1021/cm201515g  doi: 10.1021/cm201515g

    25. [25]

      Tang, K.; Mu, X. K.; Aken, P. A. V.; Yu, Y.; Maier, J. Adv. Energy Mater. 2013, 3, 49. doi: 10.1002/aenm.201200396  doi: 10.1002/aenm.201200396

    26. [26]

      Shang, B.; Peng, Q. M.; Jiao, X.; Xi, G. C.; Hu, X. B. Ionics 2018, 1, 10. doi: 10.1007/s11581-018-2784-z  doi: 10.1007/s11581-018-2784-z

    27. [27]

      Li, S.; Cao, X.; Schmidt, C. N.; Xu, Q.; Uchaker, E.; Pei, Y.; Cao, G. Z. J. Mater. Chem. A2016, 4, 4242. doi: 10.1039/c5ta10510b  doi: 10.1039/c5ta10510b

    28. [28]

      Colin, J. F.; Pralong, V.; Hervieu, M.; Caignaert, V.; Raveau, B. Chem. Mater. 2008, 20, 1534. doi: 10.1021/cm702978g  doi: 10.1021/cm702978g

    29. [29]

      Shen, L. F.; Wang, Y.; Lv, H. F.; Chen, S. Q.; Aken, P. A.; Wu, X. J.; Maier, J.; Yu, Y. Adv. Mater. 2018, 30, 1804378. doi: 10.1002/adma.201804378  doi: 10.1002/adma.201804378

    30. [30]

      Xing, L. D.; Yu, Q. Y.; Jiang, B.; Chu, J. H.; Lao, C. Y.; Wang, M.; Han, K.; Liu, Z. W.; Bao, Y. P.; Wang, W. J. Mater. Chem. A 2019, 7, 5760. doi: 10.1039/C8TA12497C  doi: 10.1039/C8TA12497C

    31. [31]

      Park, H.; Song, T.; Paik, U. J. Mater. Chem. A 2015, 3, 8590. doi: 10.1039/C5TA00467E  doi: 10.1039/C5TA00467E

    32. [32]

      Rebbah, H.; Desgardin, G.; Raveau, B. Mater. Research Bulletin 1979, 14, 1125. doi: 10.1016/0025-5408(79)90206-X  doi: 10.1016/0025-5408(79)90206-X

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    5. [5]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    8. [8]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    14. [14]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    17. [17]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    18. [18]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    19. [19]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(14)
  • Abstract views(885)
  • HTML views(171)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return