Citation: Chen Xing, Tian He, Zhang Ze. Periodic Misfit Dislocation and Electron Aggregation at (010) PbTiO3/SrTiO3 Heterointerface[J]. Acta Physico-Chimica Sinica, ;2020, 36(11): 190601. doi: 10.3866/PKU.WHXB201906019 shu

Periodic Misfit Dislocation and Electron Aggregation at (010) PbTiO3/SrTiO3 Heterointerface

  • Corresponding author: Tian He, hetian@zju.edu.cn
  • Received Date: 4 June 2019
    Revised Date: 27 June 2019
    Accepted Date: 28 June 2019
    Available Online: 5 July 2019

    Fund Project: the National Key Basic Research Development Program of China (973) 2015CB654900The project was supported by the National Key Basic Research Development Program of China (973) (2015CB654900)

  • It is important to determine the effects of misfit dislocations and other defects on the domain structure, ferroelectricity, conductivity, and other physical properties of ferroelectric thin films to understand their ferroelectric and piezoelectric behaviors. Much attention has been given to ferroelectric PbTiO3/SrTiO3 or PbZr0.2Ti0.8O3/SrTiO3 heterointerfaces, at which improper ferroelectricity, a spin-polarized two-dimensional electron gas, and other physical phenomena have been found. However, those heterointerfaces were all (001) planes, and there has been no experimental studies on the growth of (010) PbTiO3/SrTiO3 heterointerface due to the 6.4% misfit between two materials. In this study, we selected an atomically flat (010) PbTiO3/SrTiO3 heterointerface grown using a two-step hydrothermal method as the research subject, and this is the first experimental report on that interface. Interfacial dislocations can play a significant role in causing dramatic changes in the Curie temperature and polarization distribution near the dislocation cores, especially when the size of a ferroelectric thin film is scaled down to the nanoscale. The results of previous studies on the effects of interfacial dislocations on the physical properties of ferroelectric thin films have been contradictory. Thus, this issue needs to be explored more deeply in the future. This study used aberration corrected scanning transmission electron microscopy (STEM) to study the atomic structure of a (010) PbTiO3/SrTiO3 heterointerface and found periodic misfit dislocations with a Burgers vector of a[001]. The extra planes at the dislocation cores could relieve the misfit strain between the two materials in the [001] direction and thus allowed the growth of such an atomically sharp heterointerface. Moreover, monochromated electron energy-loss spectroscopy with an atomic scale spatial resolution and high energy resolution was used to explore the charge distribution near the periodic misfit dislocation cores. The fine structure of the Ti L edge was quantitatively analyzed by linearly fitting the experimental spectra recorded at various locations near and at the misfit dislocation cores with the Ti3+ and Ti4+ reference spectra. Therefore, the accurate valence change of Ti could be determined, which corresponded to the charge distribution. The probable existence of an aggregation of electrons was found near the a[001] dislocation cores, and the density of the electrons calculated from the valence change was 0.26 electrons per unit cell. Based on an analysis of the fine structure of the oxygen K edge, it could be argued that the electrons aggregating at the dislocation cores came from the oxygen vacancies in the interior regions of the PbTiO3. This aggregation of electrons will probably increase the electron conductivity along the dislocation line. The physics of two-dimensional charge distributions at oxide interfaces have been intensively studied, however, little attention had been given to the one-dimensional charge distribution. Therefore, the results of this study can stimulate research interest in exploring the influence of the interfacial dislocations on the physics of ferroelectric heterointerfaces.
  • 加载中
    1. [1]

      Ohtomo, A.; Muller, D.; Grazul, J.; Hwang, H. Y. Nature 2002, 419, 378. doi: 10.1038/nature00977  doi: 10.1038/nature00977

    2. [2]

      Ohtomo, A.; Hwang, H. Y. Nature 2004, 427, 423. doi: 10.1038/nature02308  doi: 10.1038/nature02308

    3. [3]

      Reyren, N.; Thiel, S.; Caviglia, A. D.; Kourkoutis, L. F.; Hammerl, G.; Richter, C.; Schneider, C. W.; Kopp, T.; Ruetschi, A. S.; Jaccard, D.; et al. Science 2007, 317, 1196. doi: 10.1126/science.1146006  doi: 10.1126/science.1146006

    4. [4]

      Brinkman, A.; Huijben, M.; Van Zalk, M.; Huijben, J.; Zeitler, U.; Maan, J. C.; Van der Wiel, W. G.; Rijnders, G.; Blank, D. H. A.; Hilgenkamp, H. Nat. Mater. 2007, 6, 493. doi: 10.1038/nmat1931  doi: 10.1038/nmat1931

    5. [5]

      Bousquet, E.; Dawber, M.; Stucki, N.; Lichtensteiger, C.; Hermet, P.; Gariglio, S.; Triscone, J. M.; Ghosez, P. Nature 2008, 452, 732. doi: 10.1038/nature06817  doi: 10.1038/nature06817

    6. [6]

      Zubko, P.; Stucki, N.; Lichtensteiger, C.; Triscone, J. M. Phys. Rev. Lett. 2010, 104, 187601. doi: 10.1103/PhysRevLett.104.187601  doi: 10.1103/PhysRevLett.104.187601

    7. [7]

      Zhang, Y.; Xie, L.; Kim, J.; Stern, A.; Wang, H.; Zhang, K.; Yan, X.; Li, L.; Liu, H.; Zhao, G.; et al. Nat. Commun. 2018, 9, 685. doi: 10.1038/s41467-018-02914-9  doi: 10.1038/s41467-018-02914-9

    8. [8]

      Zheng, Y.; Wang, B.; Woo, C. H. J. Mech. Phys. Solids 2007, 55, 1661. doi: 10.1016/j.jmps.2007.01.011  doi: 10.1016/j.jmps.2007.01.011

    9. [9]

      Zheng, Y.; Wang, B.; Woo, C. H. Appl. Phys. Lett. 2006, 88, 3. doi: 10.1063/1.2177365  doi: 10.1063/1.2177365

    10. [10]

      Alpay, S. P.; Misirlioglu, I. B.; Nagarajan, V.; Ramesh, R. Appl. Phys. Lett. 2004, 85, 2044. doi: 10.1063/1.1788894  doi: 10.1063/1.1788894

    11. [11]

      Jia, C. L.; Mi, S. B.; Urban, K.; Vrejoiu, I.; Alexe, M.; Hesse, D. Phys. Rev. Lett. 2009, 102, 4. doi: 10.1103/PhysRevLett.102.117601  doi: 10.1103/PhysRevLett.102.117601

    12. [12]

      Chu, M. W.; Szafraniak, I.; Scholz, R.; Harnagea, C.; Hesse, D.; Alexe, M.; Gösele, U. Nat. Mater. 2004, 3, 87. doi: 10.1038/nmat1057  doi: 10.1038/nmat1057

    13. [13]

      Wu, H. H.; Wang, J.; Cao, S. G.; Zhang, T. Y. Appl. Phys. Lett. 2013, 102, 232904. doi: 10.1063/1.4809945.  doi: 10.1063/1.4809945

    14. [14]

      Huang, W.; Wu, C. Y.; Zeng, Y. W.; Jin, C. H.; Zhang, Z. Acta Phys. -Chim. Sin. 2016, 32, 2287.  doi: 10.3866/PKU.WHXB201605164

    15. [15]

      Lu, D. H.; Zhu, D. C.; Jin, C. H. Acta Phys. -Chim. Sin. 2017, 33, 1514.  doi: 10.3866/PKU.WHXB201705123

    16. [16]

      Chang, C. P.; Chu, M. W.; Jeng, H. T.; Cheng, S. L.; Lin, J. G.; Yang, J. R.; Chen, C. H. Nat. Commun. 2014, 5, 8. doi: 10.1038/ncomms4522  doi: 10.1038/ncomms4522

    17. [17]

      Chao, C.; Ren, Z.; Zhu, Y.; Xiao, Z.; Liu, Z.; Xu, G.; Mai, J.; Li, X.; Shen, G.; Han, G. Angew. Chem. Int. Ed. 2012, 51, 9283. doi: 10.1002/anie.201204792  doi: 10.1002/anie.201204792

    18. [18]

      Ren, Z. H.; Wu, M. J.; Chen, X.; Li, W.; Li, M.; Wang, F.; Tian, H.; Chen, J. Z.; Xie, Y. W.; Mai, J. Q.; et al. Adv. Mater. 2018, 30, 1707017. doi: 10.1002/adma.201707017  doi: 10.1002/adma.201707017

    19. [19]

      Verbeeck, J.; Van Aert, S. Ultramicroscopy 2004, 101, 207. doi: 10.1016/j.ultramic.2004.06.004  doi: 10.1016/j.ultramic.2004.06.004

    20. [20]

      Verbeeck, J.; Van Aert, S.; Bertoni, G. Ultramicroscopy 2006, 106, 976. doi: 10.1016/j.ultramic.2006.05.006  doi: 10.1016/j.ultramic.2006.05.006

    21. [21]

      Verbeeck, J.; Bertoni, G. Microchim. Acta 2008, 161, 439. doi: 10.1007/s00604-008-0948-7  doi: 10.1007/s00604-008-0948-7

    22. [22]

      Leapman, R.; Grunes, L. Phys. Rev. Lett. 1980, 45, 397. doi: 10.1103/PhysRevLett.45.397  doi: 10.1103/PhysRevLett.45.397

    23. [23]

      Muller, D. A.; Nakagawa, N.; Ohtomo, A.; Grazul, J. L.; Hwang, H. Y. Nature 2004, 430, 657. doi: 10.1038/nature02756  doi: 10.1038/nature02756

    24. [24]

      Kalabukhov, A.; Gunnarsson, R.; Börjesson, J.; Olsson, E.; Claeson, T.; Winkler, D. Phys. Rev. B 2007, 75, 121404. doi: 10.1103/PhysRevB.75.121404  doi: 10.1103/PhysRevB.75.121404

    25. [25]

      Siemons, W.; Koster, G.; Yamamoto, H.; Harrison, W. A.; Lucovsky, G.; Geballe, T. H.; Blank, D. H.; Beasley, M. R. Phys. Rev. Lett. 2007, 98, 196802. doi: 10.1103/PhysRevLett.98.196802  doi: 10.1103/PhysRevLett.98.196802

    26. [26]

      Basletic, M.; Maurice, J. -L.; Carrétéro, C.; Herranz, G.; Copie, O.; Bibes, M.; Jacquet, É.; Bouzehouane, K.; Fusil, S.; Barthélémy, A. Nat. Mater. 2008, 7, 621. doi: 10.1038/nmat2223  doi: 10.1038/nmat2223

    27. [27]

      Ryu, J.; Han, G.; Song, T. K.; Welsh, A.; Trolier-McKinstry, S.; Choi, H.; Lee, J. P.; Kim, J. W.; Yoon, W. H.; Choi, J. J.; et al. ACS Appl. Mater. Inter. 2014, 6, 11980. doi: 10.1021/am5000307  doi: 10.1021/am5000307

    28. [28]

      Kiguchi, T.; Aoyagi, K.; Ehara, Y.; Funakubo, H.; Yamada, T.; Usami, N.; Konno, T. J. Sci. Technol. Adv. Mat. 2011, 12, 9. doi: 10.1088/1468-6996/12/3/034413  doi: 10.1088/1468-6996/12/3/034413

    29. [29]

      Su, D.; Meng, Q.; Vaz, C. A. F.; Han, M. G.; Segal, Y.; Walker, F. J.; Sawicki, M.; Broadbridge, C.; Ahn, C. H. Appl. Phys. Lett. 2011, 99, 102902. doi: 10.1063/1.3634028  doi: 10.1063/1.3634028

    30. [30]

      Kavokin, A. V.; Shelykh, I. A.; Malpuech, G. Phys. Rev. B 2005, 72, 4. doi: 10.1103/PhysRevB.72.233102  doi: 10.1103/PhysRevB.72.233102

    31. [31]

      Gao, P.; Ishikawa, R.; Feng, B.; Kumamoto, A.; Shibata, N.; Ikuhara, Y. Ultramicroscopy 2018, 184, 217. doi: 10.1016/j.ultramic.2017.09.006  doi: 10.1016/j.ultramic.2017.09.006

    32. [32]

      Szot, K.; Bihlmayer, G.; Speier, W. Nature of the Resistive Switching Phenomena in TiO2 and SrTiO3: Origin of the Reversible Insulator-Metal Transition. In Solid State Physics; Camley, R. E.; Stamps, R. L., Eds.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2014; Vol. 65, pp. 353-559. doi: 10.1016/B978-0-12-800175-2.00004-2

    33. [33]

      Kemp, W. R. G.; Klemens, P. G.; Sreedhar, A. K.; White, G. K. Proc. Roy. Soc. London A-Mat. Phys. Sci. 1956, 233, 480. doi: 10.1098/rspa.1956.0005  doi: 10.1098/rspa.1956.0005

  • 加载中
    1. [1]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    2. [2]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    3. [3]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    11. [11]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    12. [12]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    13. [13]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    15. [15]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    16. [16]

      . . University Chemistry, 2024, 39(3): 0-0.

    17. [17]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    18. [18]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    19. [19]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    20. [20]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

Metrics
  • PDF Downloads(11)
  • Abstract views(1195)
  • HTML views(358)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return