Citation: Pang Zhenfeng, Guan Hanxi, Gao Lina, Cao Weicheng, Yin Jinglin, Kong Xueqian. Fundamentals and Applications of NMR Hyperpolarization Techniques[J]. Acta Physico-Chimica Sinica, ;2020, 36(4): 190601. doi: 10.3866/PKU.WHXB201906018 shu

Fundamentals and Applications of NMR Hyperpolarization Techniques

  • Corresponding author: Kong Xueqian, kxq@zju.edu.cn
  • Received Date: 4 June 2019
    Revised Date: 2 July 2019
    Accepted Date: 9 July 2019
    Available Online: 19 April 2019

    Fund Project: The project was supported by the National Key Research and Development Program of China (YFA0203600), the Zhejiang Provincial National Nature Science Foundation, China (R19B050003), the Zhejiang University K. P. Chao's High Technology Development Foundation, China (2018RC009)the Zhejiang University K. P. Chao's High Technology Development Foundation, China 2018RC009the Zhejiang Provincial National Nature Science Foundation, China R19B050003the National Key Research and Development Program of China YFA0203600

  • Nuclear magnetic resonance (NMR) is an effective and widely adapted technique that can be used for medical diagnosis and chemical analysis. However, its application has been limited by low sensitivity originating from the extremely low polarization of nuclear spins that follow a typical Boltzmann distribution. In principal, it is possible to break this Boltzmann distribution using different physical or chemical mechanisms to generate hyperpolarization and increase NMR sensitivity by several orders of magnitude. The crucial point of hyperpolarization is to transfer the polarization from highly polarized systems to nuclear spins. For example, the unpaired electrons in organic radicals or other systems exhibit much higher polarization than that of nuclear spins (~660 times higher than 1H) under the same magnetic field. The high polarization of electrons at thermal equilibrium can be transferred to nuclear spins via microwave irradiation and hyperfine coupling. This hyperpolarization method is called dynamic nuclear polarization (DNP) and has been successfully and widely applied for the evaluation of the protein structure and the examination of nanomaterial surface chemistry. Electron spins can also be hyperpolarized using circularly polarized light (CPL) or nonpolarized light in some systems, and this polarization can be transferred to nuclear spins as well. These hyperpolarization methods are referred to as optical pumping (OP) and optical nuclear polarization (ONP), respectively. A common application of OP is the production of hyperpolarized noble gases, including hyperpolarized xenon-129, which can be used in magnetic resonance imaging of lungs or evaluation of porous structures. For ONP, the nitrogen-vacancy center in diamond is the most promising system that has demonstrated the ability to track the precession of a single spin. In addition, electrons can be polarized by certain chemical reactions as used in chemically induced dynamic nuclear polarization (CIDNP). CIDNP can be used to study the active sites of proteins and identify low-concentration intermediates that are formed during chemical processes. In addition to electrons, hydrogen molecules with unique spin state, i.e., parahydrogen, can be converted to hyperpolarized NMR signals via hydrogen addition reactions, which is known as parahydrogen induced polarization (PHIP). PHIP was originally used to understand the mechanisms of hydrogenation processes, but has recently become a promising hyperpolarization technique via the protocols of signal amplification by reversible exchange (SABRE). Herein, the basic mechanisms and potential applications of DNP, OP, CIDNP, and PHIP techniques are reviewed. These emerging hyperpolarization techniques have the potential to push the limits of NMR beyond current conceptions.
  • 加载中
    1. [1]

      Settle, F. A. Handbook of Instrumental Techniques for Analytical Chemistry; Prentice Hall: Upper Saddle River, 1997.

    2. [2]

      Carver, T. R.; Slichter, C. P. Phys. Rev. 1953, 92, 212. doi: 10.1103/PhysRev.92.212.2  doi: 10.1103/PhysRev.92.212.2

    3. [3]

      Ivanov, K. Summer School on Hyperpolarization at Windschleuba; Germany, 2018.

    4. [4]

      Meier, B. Magn. Reson. Chem. 2018, 56, 610. doi: 10.1002/mrc.4725  doi: 10.1002/mrc.4725

    5. [5]

      Overhauser, A. W. Phys. Rev. 1953, 92, 411. doi: 10.1103/PhysRev.92.411  doi: 10.1103/PhysRev.92.411

    6. [6]

      Günther, U. L. Dynamic Nuclear Hyperpolarization in Liquids. In Modern NMR Methodology; Heise, H., Matthews, S. Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; p. 23.

    7. [7]

      Khutsishvili, G. R. Sov. Phys. Usp. 1966, 8, 743. doi: 10.1070/pu1966v008n05abeh003035  doi: 10.1070/pu1966v008n05abeh003035

    8. [8]

      Carver, T. R.; Slichter, C. P. Phys. Rev. 1956, 102, 975. doi: 10.1103/PhysRev.102.975  doi: 10.1103/PhysRev.102.975

    9. [9]

      Gao, S.; Huang, C.; Zhang, Z.; Chen, J.; He, Y.; Chen, L.; Chen, F.; Zhang, J.; Liu, C. Chin. J. Magn. Reson. 2017, 34, 421. doi: 10.11938/cjmr20172557  doi: 10.11938/cjmr20172557

    10. [10]

      Tao, Q.; He, Y.; Wang, C.; Feng, J.; Chen, F.; Liu, C. Chin. J. Magn. Reson. 2016, 33, 44. doi: 10.11938/cjmr20160104  doi: 10.11938/cjmr20160104

    11. [11]

      Matsuki, Y.; Ueda, K.; Idehara, T.; Ikeda, R.; Ogawa, I.; Nakamura, S.; Toda, M.; Anai, T.; Fujiwara, T. J. Magn. Reson. 2012, 225, 1. doi: 10.1016/j.jmr.2012.09.008  doi: 10.1016/j.jmr.2012.09.008

    12. [12]

      Loening, N. M.; Rosay, M.; Weis, V.; Griffin, R. G. J. Am. Chem. Soc. 2002, 124, 8808. doi: 10.1021/ja026660g  doi: 10.1021/ja026660g

    13. [13]

      Becerra, L. R.; Gerfen, G. J.; Temkin, R. J.; Singel, D. J.; Griffin, R. G. Phys. Rev. Lett. 1993, 71, 3561. doi: 10.1103/PhysRevLett.71.3561  doi: 10.1103/PhysRevLett.71.3561

    14. [14]

      Song, C.; Hu, K. N.; Joo, C. G.; Swager, T. M.; Griffin, R. G. J. Am. Chem. Soc. 2006, 128, 11385. doi: 10.1021/ja061284b  doi: 10.1021/ja061284b

    15. [15]

      Märker, K.; Paul, S.; Fernández-de-Alba, C.; Lee, D.; Mouesca, J. M.; Hediger, S.; De Paëpe, G. Chem. Sci. 2017, 8, 974. doi: 10.1039/C6SC02709A  doi: 10.1039/C6SC02709A

    16. [16]

      Eto, H.; Hyodo, F.; Kosem, N.; Kobayashi, R.; Yasukawa, K.; Nakao, M.; Kiniwa, M.; Utsumi, H. Free Radic. Biol. Med. 2015, 89, 1097. doi: 10.1016/j.freeradbiomed.2015.10.418  doi: 10.1016/j.freeradbiomed.2015.10.418

    17. [17]

      Otikovs, M.; Olsen, G. L.; Kupče, E. R.; Frydman, L. J. Am. Chem. Soc. 2019, 141, 1857. doi: 10.1021/jacs.8b12216  doi: 10.1021/jacs.8b12216

    18. [18]

      Märker, K.; Pingret, M.; Mouesca, J. M.; Gasparutto, D.; Hediger, S.; De Paëpe, G. J. Am. Chem. Soc. 2015, 137, 13796. doi: 10.1021/jacs.5b09964  doi: 10.1021/jacs.5b09964

    19. [19]

      Lesage, A.; Lelli, M.; Gajan, D.; Caporini, M. A.; Vitzthum, V.; Miéville, P.; Alauzun, J.; Roussey, A.; Thieuleux, C.; Mehdi, A.; et al. J. Am. Chem. Soc. 2010, 132, 15459. doi: 10.1021/ja104771z  doi: 10.1021/ja104771z

    20. [20]

      Kobayashi, T.; Perras, F. A.; Goh, T. W.; Metz, T. L.; Huang, W.; Pruski, M. J. Phys. Chem. Lett. 2016, 7, 2322. doi: 10.1021/acs.jpclett.6b00860  doi: 10.1021/acs.jpclett.6b00860

    21. [21]

      Vitzthum, V.; Miéville, P.; Carnevale, D.; Caporini, M. A.; Gajan, D.; Copéret, C.; Lelli, M.; Zagdoun, A.; Rossini, A. J.; Lesage, A.; et al. Chem. Comm. 2012, 48, 1988. doi: 10.1039/C2CC15905H  doi: 10.1039/C2CC15905H

    22. [22]

      Bayro, M. J.; Debelouchina, G. T.; Eddy, M. T.; Birkett, N. R.; MacPhee, C. E.; Rosay, M.; Maas, W. E.; Dobson, C. M.; Griffin, R. G. J. Am. Chem. Soc. 2011, 133, 13967. doi: 10.1021/ja203756x  doi: 10.1021/ja203756x

    23. [23]

      Bajaj, V. S.; Mak-Jurkauskas, M. L.; Belenky, M.; Herzfeld, J.; Griffin, R. G. J. Magn. Reson. 2010, 202, 9. doi: 10.1016/j.jmr.2009.09.005  doi: 10.1016/j.jmr.2009.09.005

    24. [24]

      Gallagher, F. A.; Kettunen, M. I.; Brindle, K. M. Prog. Nucl. Magn. Reson. Spectrosc. 2009, 55, 285. doi: 10.1016/j.pnmrs.2009.06.001  doi: 10.1016/j.pnmrs.2009.06.001

    25. [25]

      Brunner, E. Summer School on Hyperpolarization at Windschleuba; Germany, 2018.

    26. [26]

      Happer, W. Rev. Mod. Phys. 1972, 44, 169. doi: 10.1103/RevModPhys.44.169  doi: 10.1103/RevModPhys.44.169

    27. [27]

      Norquay, G. Spin-Exchange Optical Pumping and Nuclear Magnetic Resonance of 129Xe. Ph.D. Dissertation, University of Sheffield, Sheffield, 2014.

    28. [28]

      Walker, T. G.; Happer, W. Rev. Mod. Phys. 1997, 69, 629. doi: 10.1103/RevModPhys.69.629  doi: 10.1103/RevModPhys.69.629

    29. [29]

      Beth, R. A. Phys. Rev. 1936, 50, 115. doi: 10.1103/PhysRev.50.115  doi: 10.1103/PhysRev.50.115

    30. [30]

      Sieradzan, A.; Franz, F. A. Phys. Rev. A 1982, 25, 2985. doi: 10.1103/PhysRevA.25.2985  doi: 10.1103/PhysRevA.25.2985

    31. [31]

      Cates, G. D.; Fitzgerald, R. J.; Barton, A. S.; Bogorad, P.; Gatzke, M.; Newbury, N. R.; Saam, B. Phys. Rev. A 1992, 45, 4631. doi: 10.1103/PhysRevA.45.4631  doi: 10.1103/PhysRevA.45.4631

    32. [32]

      Driehuys, B.; Cates, G. D.; Happer, W. Phys. Rev. Lett. 1995, 74, 4943. doi: 10.1103/PhysRevLett.74.4943  doi: 10.1103/PhysRevLett.74.4943

    33. [33]

      Jau, Y. Y.; Kuzma, N. N.; Happer, W. Phys. Rev. A 2002, 66, 052710. doi: 10.1103/PhysRevA.66.052710  doi: 10.1103/PhysRevA.66.052710

    34. [34]

      Jau, Y. Y.; Kuzma, N. N.; Happer, W. Phys. Rev. A 2003, 67, 022720. doi: 10.1103/PhysRevA.67.022720  doi: 10.1103/PhysRevA.67.022720

    35. [35]

      Colegrove, F. D.; Schearer, L. D.; Walters, G. K. Phys. Rev. 1963, 132, 2561. doi: 10.1103/PhysRev.132.2561  doi: 10.1103/PhysRev.132.2561

    36. [36]

      Greenhow, R. C. Phys. Rev. 1964, 136, A660. doi: 10.1103/PhysRev.136.A660  doi: 10.1103/PhysRev.136.A660

    37. [37]

      Walters, G. K.; Colegrove, F. D.; Schearer, L. D. Phys. Rev. Lett. 1962, 8, 439. doi: 10.1103/PhysRevLett.8.439  doi: 10.1103/PhysRevLett.8.439

    38. [38]

      Courtade, E.; Marion, F.; Nacher, P. J.; Tastevin, G.; Kiersnowski, K.; Dohnalik, T. Eur. Phys. J. D 2002, 21, 25. doi: 10.1140/epjd/e2002-00176-1  doi: 10.1140/epjd/e2002-00176-1

    39. [39]

      Barrett, S. E.; Tycko, R.; Pfeiffer, L. N.; West, K. W. Phys. Rev. Lett. 1994, 72, 1368. doi: 10.1103/PhysRevLett.72.1368  doi: 10.1103/PhysRevLett.72.1368

    40. [40]

      Hayes, S. E.; Mui, S.; Ramaswamy, K. J. Chem. Phys. 2008, 128, 052203. doi: 10.1063/1.2823131  doi: 10.1063/1.2823131

    41. [41]

      Zhao, X.; Sun, X.; Yuan, Y.; Shi, L.; Ye, C.; Zhou, X. Chin. J. Magn. Reson. 2016, 33, 458. doi: 10.11938/cjmr20160311  doi: 10.11938/cjmr20160311

    42. [42]

      Batz, M.; Nacher, P. J.; Tastevin, G. J. Phys. Conf. Ser. 2011, 294, 012002. doi: 10.1088/1742-6596/294/1/012002  doi: 10.1088/1742-6596/294/1/012002

    43. [43]

      Driehuys, B.; Möller, H. E.; Cleveland, Z. I.; Pollaro, J.; Hedlund, L. W. Radiology 2009, 252, 386. doi: 10.1148/radiol.2522081550  doi: 10.1148/radiol.2522081550

    44. [44]

      Lauterbur, P. C. Nature 1973, 242, 190. doi: 10.1038/242190a0  doi: 10.1038/242190a0

    45. [45]

      Albert, M. S.; Cates, G. D.; Driehuys, B.; Happer, W.; Saam, B.; Springer, C. S.; Wishnia, A. Nature 1994, 370, 199. doi: 10.1038/370199a0  doi: 10.1038/370199a0

    46. [46]

      Mugler, J. P., 3rd; Altes, T. A. J. Magn. Reson. Imaging 2013, 37, 313. doi: 10.1002/jmri.23844

    47. [47]

      Fain, S.; Schiebler, M. L.; McCormack, D. G.; Parraga, G. J. Magn. Reson. Imaging 2010, 32, 1398. doi: 10.1002/jmri.22375  doi: 10.1002/jmri.22375

    48. [48]

      Ruan, W.; Zhong, J.; Han, Y.; Sun, X.; Ye, C.; Zhou, X. Chin. J. Magn. Reson. 2015, 32, 261. doi: 10.11938/cjmr20150209  doi: 10.11938/cjmr20150209

    49. [49]

      Li, H.; Zhang, Z.; Zhong, J.; Ruan, W.; Han, Y.; Sun, X.; Ye, C.; Zhou, X. NMR Biomed. 2016, 29, 220. doi: 10.1002/nbm.3465  doi: 10.1002/nbm.3465

    50. [50]

      Pavlovskaya, G. E.; Cleveland, Z. I.; Stupic, K. F.; Basaraba, R. J.; Meersmann, T. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 18275. doi: 10.1073/pnas.0509419102  doi: 10.1073/pnas.0509419102

    51. [51]

      Zhang, W.; Ratcliffe, C. I.; Moudrakovski, I. L.; Mou, C. Y.; Ripmeester, J. A. Anal. Chem. 2005, 77, 3379. doi: 10.1021/ac050076j  doi: 10.1021/ac050076j

    52. [52]

      Weiland, E.; Springuel-Huet, M. A.; Nossov, A.; Gédéon, A. Microporous Mesoporous Mater. 2016, 225, 41. doi: 10.1016/j.micromeso.2015.11.025  doi: 10.1016/j.micromeso.2015.11.025

    53. [53]

      Bonardet, J. L.; Fraissard, J.; Gédéon, A.; Springuel-Huet, M. A. Catal. Rev. Sci. Eng. 1999, 41, 115. doi: 10.1080/01614949909353779  doi: 10.1080/01614949909353779

    54. [54]

      Kalevich, V.; Korenev, V.; Fedorova, O. JETP Lett. 1990, 52, 349.

    55. [55]

      Krapf, M.; Denninger, G.; Pascher, H.; Weimann, G.; Schlapp, W. Solid State Commun. 1991, 78, 459. doi: 10.1016/0038-1098(91)90704-Y  doi: 10.1016/0038-1098(91)90704-Y

    56. [56]

      Maier, G.; Haeberlen, U.; Wolf, H. C.; Hausser, K. H. Phys. Lett. A 1967, 25, 384. doi: 10.1016/0375-9601(67)90712-8  doi: 10.1016/0375-9601(67)90712-8

    57. [57]

      Hausser, K. H.; Wolf, H. C., Optical Spin Polarization in Molecular Crystals. In Advances in Magnetic and Optical Resonance, Waugh, J. S. Ed. Academic Press: San Diego, 1976; Vol. 8, p. 85.

    58. [58]

      Suter, D.; Jelezko, F. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 98-99, 50. doi: 10.1016/j.pnmrs.2016.12.001  doi: 10.1016/j.pnmrs.2016.12.001

    59. [59]

      Jelezko, F.; Gaebel, T.; Popa, I.; Gruber, A.; Wrachtrup, J. Phys. Rev. Lett. 2004, 92, 076401. doi: 10.1103/PhysRevLett.92.076401  doi: 10.1103/PhysRevLett.92.076401

    60. [60]

      Wu, Y.; Jelezko, F.; Plenio, M. B.; Weil, T. Angew. Chem. Int. Ed. 2016, 55, 6586. doi: 10.1002/anie.201506556  doi: 10.1002/anie.201506556

    61. [61]

      Jacques, V.; Neumann, P.; Beck, J.; Markham, M.; Twitchen, D.; Meijer, J.; Kaiser, F.; Balasubramanian, G.; Jelezko, F.; Wrachtrup, J. Phys. Rev. Lett. 2009, 102, 057403. doi: 10.1103/PhysRevLett.102.057403  doi: 10.1103/PhysRevLett.102.057403

    62. [62]

      Wang, H. J.; Shin, C. S.; Avalos, C. E.; Seltzer, S. J.; Budker, D.; Pines, A.; Bajaj, V. S. Nat. Commun. 2013, 4, 1940. doi: 10.1038/ncomms2930  doi: 10.1038/ncomms2930

    63. [63]

      Cai, J.; Jelezko, F.; Plenio, M. B.; Retzker, A. New J. Phys. 2013, 15, 013020. doi: 10.1088/1367-2630/15/1/013020  doi: 10.1088/1367-2630/15/1/013020

    64. [64]

      Fischer, R.; Bretschneider, C. O.; London, P.; Budker, D.; Gershoni, D.; Frydman, L. Phys. Rev. Lett. 2013, 111, 057601. doi: 10.1103/PhysRevLett.111.057601  doi: 10.1103/PhysRevLett.111.057601

    65. [65]

      Zhang, Z.; He, Y.; Huang, C.; Liu, C.; Feng, J. Chin. J. Magn. Reson. 2017, 34, 231. doi: 10.11938/cjmr20170213  doi: 10.11938/cjmr20170213

    66. [66]

      Álvarez, G. A.; Bretschneider, C. O.; Fischer, R.; London, P.; Kanda, H.; Onoda, S.; Isoya, J.; Gershoni, D.; Frydman, L. Nat. Commun. 2015, 6, 8456. doi: 10.1038/ncomms9456  doi: 10.1038/ncomms9456

    67. [67]

      Scheuer, J.; Schwartz, I.; Chen, Q.; Schulze-Sünninghausen, D.; Carl, P.; Höfer, P.; Retzker, A.; Sumiya, H.; Isoya, J.; Luy, B.; et al. New J. Phys. 2016, 18, 013040. doi: 10.1088/1367-2630/18/1/013040  doi: 10.1088/1367-2630/18/1/013040

    68. [68]

      Childress, L.; Gurudev Dutt, M. V.; Taylor, J. M.; Zibrov, A. S.; Jelezko, F.; Wrachtrup, J.; Hemmer, P. R.; Lukin, M. D. Science 2006, 314, 281. doi: 10.1126/science.1131871  doi: 10.1126/science.1131871

    69. [69]

      Dutt, M. V. G.; Childress, L.; Jiang, L.; Togan, E.; Maze, J.; Jelezko, F.; Zibrov, A. S.; Hemmer, P. R.; Lukin, M. D. Science 2007, 316, 1312. doi: 10.1126/science.1139831  doi: 10.1126/science.1139831

    70. [70]

      London, P.; Scheuer, J.; Cai, J. M.; Schwarz, I.; Retzker, A.; Plenio, M. B.; Katagiri, M.; Teraji, T.; Koizumi, S.; Isoya, J.; et al. Phys. Rev. Lett. 2013, 111, 067601. doi: 10.1103/PhysRevLett.111.067601  doi: 10.1103/PhysRevLett.111.067601

    71. [71]

      Müller, C.; Kong, X.; Cai, J. M.; Melentijević, K.; Stacey, A.; Markham, M.; Twitchen, D.; Isoya, J.; Pezzagna, S.; Meijer, J.; et al. Nat. Commun. 2014, 5, 4703. doi: 10.1038/ncomms5703  doi: 10.1038/ncomms5703

    72. [72]

      Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B. Phys. Rev. B 2015, 92, 184420. doi: 10.1103/PhysRevB.92.184420  doi: 10.1103/PhysRevB.92.184420

    73. [73]

      Dutta, P.; Martinez, G. V.; Gillies, R. J. J. Phys. Chem. Lett. 2014, 5, 597. doi: 10.1021/jz402659t  doi: 10.1021/jz402659t

    74. [74]

      Bargon, J.; Fischer, H.; Johnsen, U. Z. Naturforsch A 1967, 22, 1551. doi: 10.1515/zna-1967-1015  doi: 10.1515/zna-1967-1015

    75. [75]

      Ward, H. R.; Lawler, R. G. J. Am. Chem. Soc. 1967, 89, 5518. doi: 10.1021/ja00997a078  doi: 10.1021/ja00997a078

    76. [76]

      Closs, G. L. J. Am. Chem. Soc. 1969, 91, 4552. doi: 10.1021/ja01044a043  doi: 10.1021/ja01044a043

    77. [77]

      Ivanov, K. L.; Pravdivtsev, A. N.; Yurkovskaya, A. V.; Vieth, H. M.; Kaptein, R. Prog. Nucl. Magn. Reson. Spectrosc. 2014, 81, 1. doi: 10.1016/j.pnmrs.2014.06.001  doi: 10.1016/j.pnmrs.2014.06.001

    78. [78]

      Kaptein, R.; Den Hollander, J. A. J. Am. Chem. Soc. 1972, 94, 6269. doi: 10.1021/ja00773a003  doi: 10.1021/ja00773a003

    79. [79]

      Goez, M., Elucidating Organic Reaction Mechanisms Using Photo-Cidnp Spectroscopy. In Hyperpolarization Methods in NMR Spectroscopy, Kuhn, L. T. Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; p. 1.

    80. [80]

      Kaptein, R. J. Chem. Soc. D 1971, 732. doi: 10.1039/C29710000732  doi: 10.1039/C29710000732

    81. [81]

      Goez, M., Photo-Cidnp Spectroscopy. In Annual Reports on NMR Spectroscopy; Academic Press: London, 2009; Vol. 66, p. 77.

    82. [82]

      Goez, M.; Mok, K. H.; Hore, P. J. J. Magn. Reson. 2005, 177, 236. doi: 10.1016/j.jmr.2005.06.015  doi: 10.1016/j.jmr.2005.06.015

    83. [83]

      Goez, M.; Kuprov, I.; Hun Mok, K.; Hore, P. J. Mol. Phys. 2006, 104, 1675. doi: 10.1080/00268970600634431  doi: 10.1080/00268970600634431

    84. [84]

      Gugger, A.; Batra, R.; Rzadek, P.; Rist, G.; Giese, B. J. Am. Chem. Soc. 1997, 119, 8740. doi: 10.1021/ja971677y  doi: 10.1021/ja971677y

    85. [85]

      Khan, F.; Kuprov, I.; Craggs, T. D.; Hore, P. J.; Jackson, S. E. J. Am. Chem. Soc. 2006, 128, 10729. doi: 10.1021/ja060618u  doi: 10.1021/ja060618u

    86. [86]

      Herbertz, T.; Roth, H. D. J. Am. Chem. Soc. 1997, 119, 9574. doi: 10.1021/ja9706209  doi: 10.1021/ja9706209

    87. [87]

      Ananchenko, G.; Fischer, H. J. Chem. Soc. 2001, 1887. doi: 10.1039/B106723K  doi: 10.1039/B106723K

    88. [88]

      Kothe, T.; Marque, S.; Martschke, R.; Popov, M.; Fischer, H. J. Chem. Soc. 1998, 1553. doi: 10.1039/A802773K  doi: 10.1039/A802773K

    89. [89]

      Schaffner, E.; Fischer, H. J. Phys. Chem. 1996, 100, 1657. doi: 10.1021/jp951999t  doi: 10.1021/jp951999t

    90. [90]

      Schael, F.; Löhmannsröben, H. G. Chem. Phys. 1996, 206, 193. doi: 10.1016/0301-0104(96)00012-2  doi: 10.1016/0301-0104(96)00012-2

    91. [91]

      Goez, M.; Eckert, G. Helv. Chim. Acta 2006, 89, 2183. doi: 10.1002/hlca.200690205  doi: 10.1002/hlca.200690205

    92. [92]

      Zysmilich, M. G.; McDermott, A. J. Am. Chem. Soc. 1994, 116, 8362. doi: 10.1021/ja00097a052  doi: 10.1021/ja00097a052

    93. [93]

      Thamarath, S. S.; Heberle, J.; Hore, P. J.; Kottke, T.; Matysik, J. J. Am. Chem. Soc. 2010, 132, 15542. doi: 10.1021/ja1082969  doi: 10.1021/ja1082969

    94. [94]

      Thamarath, S. S.; Bode, B. E.; Prakash, S.; Sai Sankar Gupta, K. B.; Alia, A.; Jeschke, G.; Matysik, J. J. Am. Chem. Soc. 2012, 134, 5921. doi: 10.1021/ja2117377  doi: 10.1021/ja2117377

    95. [95]

      Jeschke, G. J. Am. Chem. Soc. 1998, 120, 4425. doi: 10.1021/ja973744u  doi: 10.1021/ja973744u

    96. [96]

      Jeschke, G. J. Chem. Phys. 1997, 106, 10072. doi: 10.1063/1.474063  doi: 10.1063/1.474063

    97. [97]

      Jeschke, G.; Matysik, J. Chem. Phys. 2003, 294, 239. doi: 10.1016/S0301-0104(03)00278-7  doi: 10.1016/S0301-0104(03)00278-7

    98. [98]

      McDermott, A.; Zysmilich, M. n. G.; Polenova, T. Solid State Nucl. Magn. Reson. 1998, 11, 21. doi: 10.1016/S0926-2040(97)00094-5  doi: 10.1016/S0926-2040(97)00094-5

    99. [99]

      Prakash, S.; Alia; Gast, P.; de Groot, H. J. M.; Matysik, J.; Jeschke, G. J. Am. Chem. Soc. 2006, 128, 12794. doi: 10.1021/ja0623616  doi: 10.1021/ja0623616

    100. [100]

      Schulten, E. A. M.; Matysik, J.; Alia; Kiihne, S.; Raap, J.; Lugtenburg, J.; Gast, P.; Hoff, A. J.; de Groot, H. J. M. Biochemistry 2002, 41, 8708. doi: 10.1021/bi025608u  doi: 10.1021/bi025608u

    101. [101]

      Alia; Roy, E.; Gast, P.; van Gorkom, H. J.; de Groot, H. J.; Jeschke, G.; Matysik, J. J. Am. Chem. Soc. 2004, 126, 12819. doi: 10.1021/ja048051+  doi: 10.1021/ja048051+

    102. [102]

      Sai Sankar Gupta, K. B. Rev. Environ. Sci. Biotechnol. 2009, 8, 313. doi: 10.1007/s11157-009-9186-7  doi: 10.1007/s11157-009-9186-7

    103. [103]

      Seidler, P. F.; Bryndza, H. E.; Frommer, J. E.; Stuhl, L. S.; Bergman, R. G. Organometallics 1983, 2, 1701. doi: 10.1021/om50005a045  doi: 10.1021/om50005a045

    104. [104]

      Bowers, C. R.; Weitekamp, D. P. Phys. Rev. Lett. 1986, 57, 2645. doi: 10.1103/PhysRevLett.57.2645  doi: 10.1103/PhysRevLett.57.2645

    105. [105]

      Bowers, C. R.; Weitekamp, D. P. J. Am. Chem. Soc. 1987, 109, 5541. doi: 10.1021/ja00252a049  doi: 10.1021/ja00252a049

    106. [106]

      Eisenschmid, T. C.; Kirss, R. U.; Deutsch, P. P.; Hommeltoft, S. I.; Eisenberg, R.; Bargon, J.; Lawler, R. G.; Balch, A. L. J. Am. Chem. Soc. 1987, 109, 8089. doi: 10.1021/ja00260a026  doi: 10.1021/ja00260a026

    107. [107]

      Pravica, M. G.; Weitekamp, D. P. Chem. Phys. Lett. 1988, 145, 255. doi: 10.1016/0009-2614(88)80002-2  doi: 10.1016/0009-2614(88)80002-2

    108. [108]

      Bowers, C. R.; Jones, D. H.; Kurur, N. D.; Labinger, J. A.; Pravica, M. G.; Weitekamp, D. P. Symmetrization Postulate and Nuclear Magnetic Resonance of Reacting Systems. In Advances in Magnetic and Optical Resonance; Warren, W. S. Ed. Academic Press: San Diego, 1990; Vol. 14, p. 269.

    109. [109]

      Jankowiak, J. T.; Schwartz, J. M.; Barrett, P. A. Adsorption 2014, 20, 173. doi: 10.1007/s10450-013-9561-0  doi: 10.1007/s10450-013-9561-0

    110. [110]

      Tom, B. A.; Bhasker, S.; Miyamoto, Y.; Momose, T.; McCall, B. J. Rev. Sci. Instrum. 2009, 80, 016108. doi: 10.1063/1.3072881  doi: 10.1063/1.3072881

    111. [111]

      Natterer, J.; Bargon, J. Prog. Nucl. Magn. Reson. Spectrosc. 1997, 31, 293. doi: 10.1016/S0079-6565(97)00007-1  doi: 10.1016/S0079-6565(97)00007-1

    112. [112]

      Song, Y.; Liu, W.; Yao, Y. Chin. J. Magn. Reson. 2015, 32, 470. doi: 10.11938/cjmr20150308  doi: 10.11938/cjmr20150308

    113. [113]

      Arzumanov, S. S.; Stepanov, A. G. J. Phys. Chem. C 2013, 117, 2888. doi: 10.1021/jp311345r  doi: 10.1021/jp311345r

    114. [114]

      Wang, W.; Hu, H.; Xu, J.; Deng, F. Chin. J. Magn. Reson. 2018, 35, 269. doi: 10.11938/cjmr20182646  doi: 10.11938/cjmr20182646

    115. [115]

      Wang, W.; Hu, H.; Xu, J.; Wang, Q.; Qi, G.; Wang, C.; Zhao, X.; Zhou, X.; Deng, F. J. Phys. Chem. C 2018, 122, 1248. doi: 10.1021/acs.jpcc.7b11801  doi: 10.1021/acs.jpcc.7b11801

    116. [116]

      Bales, L. B.; Kovtunov, K. V.; Barskiy, D. A.; Shchepin, R. V.; Coffey, A. M.; Kovtunova, L. M.; Bukhtiyarov, A. V.; Feldman, M. A.; Bukhtiyarov, V. I.; Chekmenev, E. Y.; et al. J. Phys. Chem. C 2017, 121, 15304. doi: 10.1021/acs.jpcc.7b05912  doi: 10.1021/acs.jpcc.7b05912

    117. [117]

      Shchepin, R. V.; Coffey, A. M.; Waddell, K. W.; Chekmenev, E. Y. Anal. Chem. 2014, 86, 5601. doi: 10.1021/ac500952z  doi: 10.1021/ac500952z

    118. [118]

      Duckett, S. B.; Mewis, R. E. Acc. Chem. Res. 2012, 45, 1247. doi: 10.1021/ar2003094  doi: 10.1021/ar2003094

    119. [119]

      Gong, Q.; Gordji-Nejad, A.; Blümich, B.; Appelt, S. Anal. Chem. 2010, 82, 7078. doi: 10.1021/ac101738f  doi: 10.1021/ac101738f

    120. [120]

      Butler, M. C.; Kervern, G.; Theis, T.; Ledbetter, M. P.; Ganssle, P. J.; Blanchard, J. W.; Budker, D.; Pines, A. J. Chem. Phys. 2013, 138, 234201. doi: 10.1063/1.4805062  doi: 10.1063/1.4805062

    121. [121]

      Tian, J.; Liu, W.; Song, Y.; Xuan, Y.; Li, J.; Yao, Y.; Wei, D. Chin. J. Magn. Reson. 2015, 32, 618. doi: 10.11938/cjmr20150407  doi: 10.11938/cjmr20150407

  • 加载中
    1. [1]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    2. [2]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    3. [3]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    4. [4]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    5. [5]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    6. [6]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    7. [7]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    8. [8]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    9. [9]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    10. [10]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    11. [11]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    14. [14]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    15. [15]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    16. [16]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    17. [17]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    18. [18]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    19. [19]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    20. [20]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

Metrics
  • PDF Downloads(53)
  • Abstract views(1860)
  • HTML views(669)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return