Citation: Xing Zhaobi, Guo Zhijun, Zhang Yuwei, Liu Junling, Wang Yujie, Bai Guangyue. Regulation of SDS on the Surface Charge Density of SB3-12 Micelles and Its Effect on Drug Dissolution[J]. Acta Physico-Chimica Sinica, ;2020, 36(6): 190600. doi: 10.3866/PKU.WHXB201906006 shu

Regulation of SDS on the Surface Charge Density of SB3-12 Micelles and Its Effect on Drug Dissolution

  • Corresponding author: Wang Yujie, yujiewang2001@163.com Bai Guangyue, baiguangyue@htu.cn
  • Received Date: 3 June 2019
    Revised Date: 19 June 2019
    Accepted Date: 19 June 2019
    Available Online: 24 June 2019

    Fund Project: the National Natural Science Foundation of China 21273061The project was supported by the National Natural Science Foundation of China (21773059, 21273061, 21327003)the National Natural Science Foundation of China 21327003the National Natural Science Foundation of China 21773059

  • The micelles of zwitterionic betaine surfactant, SB3-12, have good biocompatibility and smaller negative charge density on the surface due to the electrostatic neutralization on the polar head that consists of two opposite charges. However, the available charge density on the micellar surface is essential for its application as a drug carrier owing to either the increased binding to cells or its favorable delivery into some specific organs under physiological conditions. This also facilitates the selective solubilization of drug molecules, depending on the interaction between the surfactant headgroup and drug molecule. When an anionic sodium dodecyl sulfate (SDS) is incorporated into SB3-12 micelles, the negative charge density of the micellar surface (from the sulfonic groups) can be continuously adjusted with a negative-positive order of the zwitterionic headgroup, where the electrostatic interaction occurs with the positively charged quaternary ammonium in the inner layer of the micellar polar region. Accordingly, positive micelles with adjustable charge density could be obtained if a cationic surfactant is incorporated into the micelles of the zwitterionic surfactant with a positive-negative headgroup. Using isothermal titration calorimetry, it is determined that a strong synergistic interaction occurs between SB3-12 and SDS, followed by a significant decrease in the mixed critical micelle concentration (CMC) and micellization enthalpy, which is mainly caused by weak electrostatic interaction. The synergistic effect is similar to that in the case of oppositely charged surfactant mixtures; however, the mixtures of zwitterionic and ionic surfactants do not form catanionic precipitates even at an equimolar ratio. When rutin, a model drug, is added to the SB3-12/SDS solution mixture, both SDS and the negatively charged rutin, obtained from the dissociation of the hydrogen of 7-hydroxyl group of rutin, can together interact with SB3-12 forming mixed micelles. The dissolved rutin molecules do not change the mixed CMC and the solubility of rutin is approximately constant when the composition of the mixed surfactants is in the range of 0.5 < xSB3-12 < 1; however, these can significantly enhance the electrostatic interaction between the mixed micelle and rutin molecule as xSB3-12 decreases. This can possibly allow the controlled release of rutin. UV-visible absorption spectroscopy and 1H NMR spectroscopy reveal that in SB3-12 micelles, the A ring of rutin is located near the positively charged quaternary ammonium group of SB3-12, and the B ring is located between the oppositely charged headgroups of SB3-12. In SDS micelles, the B ring is located on the palisade layer and the A ring and disaccharide are exposed to the aqueous phase. For the mixed SB3-12/SDS micelles, as the molar fraction of SDS increases, the electrostatic attraction toward the A ring weakens. The role of ionic surfactant in adjusting the surface charge density of the zwitterionic surfactant micelles allows the fine-tuning of the physical and chemical properties of polar micellar region, thereby exhibiting the potential for selective solubilization and controlled release of drugs.
  • 加载中
    1. [1]

      Bhat, P. A.; Rather, G. M.; Dar, A. A. J. Phys. Chem. B 2009, 113, 997. doi: 10.1021/jp807229c  doi: 10.1021/jp807229c

    2. [2]

      Han, C. H.; Geng, P. P.; Guo, Y.; Chen, X. X.; Guo, X. D.; Zhang, J. H.; Liu, J.; Wei, X. L. Acta Phys. -Chim. Sin. 2016, 32, 863.  doi: 10.3866/PKU.WHXB201601051

    3. [3]

      Wang, J.; Ding, X.; Guo, X. Adv. Colloid Interface Sci. 2019, 269, 187. doi: 10.1016/j.cis.2019.04.004  doi: 10.1016/j.cis.2019.04.004

    4. [4]

      Srivastava, A.; Uchiyama, H.; Wada, Y.; Hatanaka, Y.; Shirakawa, Y.; Kadota, K.; Tozuka, Y. J. Mol. Liq. 2019, 277, 349. doi: 10.1016/j.molliq.2018.12.070  doi: 10.1016/j.molliq.2018.12.070

    5. [5]

      Drummond, C. J.; Fong, C. Curr. Opi. Colloid Interface Sci.2000, 4, 449. doi: 10.1016/S1359-0294(00)00020-0  doi: 10.1016/S1359-0294(00)00020-0

    6. [6]

      Xie, H. J.; Liu, C. C.; Sun, Q.; Gu, Q.; Lei, Q. F.; Fang, W. J. Acta Phys. -Chim. Sin. 2016, 32, 2951.  doi: 10.3866/PKU.WHXB201609231

    7. [7]

      Luo, S. Q.; Wang, M. N.; Zhao, W. W.; Wang, Y. L. Acta Phys. -Chim. Sin. 2019, 35, 766.  doi: 10.3866/PKU.WHXB201809038

    8. [8]

      Wydro, P.; Paluch, M. J. Colloid Interface Sci. 2005, 286, 387. doi: 10.1016/j.jcis.2004.12.039  doi: 10.1016/j.jcis.2004.12.039

    9. [9]

      Lee, N. M.; Lee, B. H. J. Chem. Thermodyn. 2016, 95, 15. doi: 10.1016/j.jct.2015.11.018  doi: 10.1016/j.jct.2015.11.018

    10. [10]

      Li, F.; Li, G. Z.; Chen, J. B. Colloids Surf. A: Physicochem. Eng. Aspects 1998, 145, 167. doi: 10.1016/S0927-7757(98)00543-3  doi: 10.1016/S0927-7757(98)00543-3

    11. [11]

      Muñoz, M.; Rodríguez, A.; Graciani, M. M.; Moyá, M. L. Langmuir 2004, 20, 10858. doi: 10.1021/la048247n  doi: 10.1021/la048247n

    12. [12]

      Mohamad-Aziz, S. N.; Mishra, P.; Zularisam, A. W.; Sakinah, A. M. M. J. Mol. Liq. 2019, 286, 110882. doi: 10.1016/j.molliq.2019.110882  doi: 10.1016/j.molliq.2019.110882

    13. [13]

      Li, J.; Han, Y.; Qu, G. M.; Cheng, J. C.; Xue, C. L.; Gao, X.; Sun, T.; Ding, W. Colloids Surf. A 2017, 531, 73. doi: 10.1016/j.colsurfa.2017.07.088  doi: 10.1016/j.colsurfa.2017.07.088

    14. [14]

      Lou, P. X.; Wang, Y. J.; Bai, G. Y.; Fan, C. Y.; Wang, Y. L. Acta Phys. -Chim. Sin. 2013, 29, 1401.  doi: 10.3866/PKU.WHXB201304282

    15. [15]

      Wang, Y.; Marques, E. F. J. Mol. Liq. 2008, 142, 136. doi: 10.1016/j.molliq.2008.06.001  doi: 10.1016/j.molliq.2008.06.001

    16. [16]

      Chua, L. S. J. Ethnopharmacology 2013, 150, 805. doi: 10.1016/j.jep.2013.10.036  doi: 10.1016/j.jep.2013.10.036

    17. [17]

      Gullόn, B.; Lú-Chau, T. A.; Moreira, M. T.; Lema, J. M.; Eibes, G. Trends Food Sci. Technol. 2017, 67, 220. doi: 10.1016/j.tifs.2017.07.008  doi: 10.1016/j.tifs.2017.07.008

    18. [18]

      De Oliveira, I. R. W. Z.; Fernandes, S. C.; Vieira, I. C. J. Pharm. Biomed. Anal. 2006, 41, 366. doi: 10.1016/j.jpba.2005.12.019  doi: 10.1016/j.jpba.2005.12.019

    19. [19]

      Chat, O. A.; Najar, M. H.; Dar, A. A. Colloids Surf. A: Physicochem. Eng. Aspects 2013, 436, 343. doi: 10.1016/j.colsurfa.2013.06.035  doi: 10.1016/j.colsurfa.2013.06.035

    20. [20]

      Guo, R.; Wei, P.; Liu, W. Y. J. Pharm. Biomed. Anal. 2007, 43 1580. doi: 10.1016/j.jpba.2006.11.029  doi: 10.1016/j.jpba.2006.11.029

    21. [21]

      Guo, R.; Wei, P. Microchim. Acta 2008, 161, 233. doi: 10.1007/s00604-007-0888-7  doi: 10.1007/s00604-007-0888-7

    22. [22]

      Moridani, M. Y.; Galati, G.; O'Brien, P. J. Biol. Interact. 2002, 139, 251. doi: 10.1016/S0009-2797(02)00005-4  doi: 10.1016/S0009-2797(02)00005-4

    23. [23]

      Makris, D. P.; Rossiter, J. T. J. Agric. Food Chem. 2000, 48, 3830. doi: 10.1021/jf0001280  doi: 10.1021/jf0001280

    24. [24]

      Lukáč, M.; Prokipčák, I.; Lacko, I.; Devínsky, F. Eur. J. Pharmaceut. Sci. 2011, 44, 194. doi: 10.1016/j.ejps.2011.07.011  doi: 10.1016/j.ejps.2011.07.011

    25. [25]

      Bai, G. Y.; Nichifor, M.; Bastos, M. J. Phys. Chem. B 2010, 114, 16236. doi: 10.1021/jp1071555.  doi: 10.1021/jp1071555

    26. [26]

      Liu, W. Y.; Guo, R. J. Colloid Interface Sci. 2006, 302, 625. doi: 10.1016/j.jcis.2006.06.045  doi: 10.1016/j.jcis.2006.06.045

    27. [27]

      Liu, W. Y.; Guo, R. Colloids Surf. A: Physicochem. Eng. Aspects 2006, 274, 192. doi: 10.1016/j.colsurfa.2005.09.009  doi: 10.1016/j.colsurfa.2005.09.009

    28. [28]

      Khonkarn, R.; Mankhetkorn, S.; Hennink, W. E.; Okonogi, S. Eur. J. Pharmaceut. Biopharmaceut. 2011, 79, 268. doi: 10.1016/j.ejpb.2011.04.011  doi: 10.1016/j.ejpb.2011.04.011

    29. [29]

      Chat, O. A.; Najar, M. H.; Mir, M. A.; Rather, G. M.; Dar, A. A. J. Colloid Interface Sci. 2011, 355, 140. doi: 10.1016/j.jcis.2010.11.044  doi: 10.1016/j.jcis.2010.11.044

    30. [30]

      Zhou, H. B.; Wang, X. Y. Colloids Surf. A: Physicochem. Eng. Aspects 2015, 481, 31. doi: 10.1016/j.colsurfa.2015.04.023  doi: 10.1016/j.colsurfa.2015.04.023

    31. [31]

      Bai, G. Y.; Liu, J. L.; Wang, J. X.; Wang, Y. J.; Li, Y. N.; Zhao, Y.; Yao, M. H. Acta Phys. -Chim. Sin. 2017, 33, 976.  doi: 10.3866/PKU.WHXB201702089

    32. [32]

      Loh, W.; Brinatti, C.; Tam, K. C. Biochim. Biophys. Acta 2016, 1860, 999. doi: 10.1016/j.bbagen.2015.10.003  doi: 10.1016/j.bbagen.2015.10.003

    33. [33]

      Jovanovic, S. V.; Steeken, S.; Tosic, M.; Marjanovic, B.; Simic, M. G. J. Am. Chem. Soc. 1994, 116, 4846. doi: 0002-7863/94/1516-484  doi: 10.1021/ja00090a032

    34. [34]

      Buchweitz, M.; Kroon, P. A.; Rich, G. T.; Wilde, P. J. Food Chem. 2016, 211, 356. doi: 10.1016/j.foodchem.2016.05.034  doi: 10.1016/j.foodchem.2016.05.034

    35. [35]

      Wang, T. Z.; Mao, S. Z.; Miao, X. J.; Zhao, S.; Yu, J. Y.; Du, Y. R. J. Colloid Interface Sci. 2001, 241, 465. doi: 10.1006/jcis.2001.7744  doi: 10.1006/jcis.2001.7744

    36. [36]

      He, L.; Qin, S.; Chang, T.; Sun Y.; Gao, X. Catal. Sci. Technol. 2013, 3, 1102. doi: 10.1039/c2cy20714a  doi: 10.1039/c2cy20714a

    37. [37]

      Nguyen, T. A.; Liu, B.; Zhao, J.; Thomas, D. S.; Hook, J. M. Food Chem. 2013, 136, 186. doi: 10.1016/j.foodchem.2012.07.104  doi: 10.1016/j.foodchem.2012.07.104

    38. [38]

      Slimestad, R.; Torskangerpoll, K.; Nateland, H. S.; Johannessen, T.; Giske, N. H. J. Food Comp. Anal. 2005, 18, 61. doi: 10.1016/j.jfca.2003.12.003  doi: 10.1016/j.jfca.2003.12.003

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    3. [3]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    4. [4]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    7. [7]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    8. [8]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    9. [9]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    10. [10]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    11. [11]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    12. [12]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    13. [13]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    14. [14]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    15. [15]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    16. [16]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    17. [17]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    18. [18]

      Huan Zhang Linyu Pu Wei Wang Yatang Dai Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010

    19. [19]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    20. [20]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

Metrics
  • PDF Downloads(8)
  • Abstract views(989)
  • HTML views(214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return