Citation: Zhang Ru, Yuan Linlin, Sun Kaiyue, Wang Shan, Geng Lina, Zhang Jianjun. Preparation and Partition Coefficient Determination of Nano-Resveratrol Liposomes[J]. Acta Physico-Chimica Sinica, ;2020, 36(6): 190509. doi: 10.3866/PKU.WHXB201905090 shu

Preparation and Partition Coefficient Determination of Nano-Resveratrol Liposomes

  • Corresponding author: Geng Lina, genglina0102@126.com
  • Received Date: 31 May 2019
    Revised Date: 21 June 2019
    Accepted Date: 21 June 2019
    Available Online: 27 June 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (31201305) and Natural Science Foundation of Hebei Province (B2019205054)the National Natural Science Foundation of China 31201305Natural Science Foundation of Hebei Province B2019205054

  • Resveratrol is a natural polyphenol and phytoalexin with anti-inflammatory, anti-oxidant, anti-cancer, and neuroprotective effects. However, resveratrol exhibits low solubility, light sensitivity, poor absorption by oral administration, and short cycle time, which greatly limit its applications in medicine and the food industry. To overcome these limitations, a nano-resveratrol liposome (RES-Lip) was prepared. As a drug carrier, liposomes have many advantages such as good targeting properties, low toxicity, biocompatibility, and long-term sustained release. In liposomal studies, the oil-water (n-octanol-water) partition coefficient (Po/w) is often used to predict the encapsulation and drug loading efficiencies. This method focuses on the lipophilicity of the drug, reflecting its hydrophobic action while ignoring the biological properties of the biofilm. The liposome-water partition coefficient (Plip/w) reflects the structure of the biofilms and its interaction with drugs governed by factors including hydrophobicity, electrostatic forces, and hydrogen bonding. Herein, RES-Lip was successfully prepared using a rotary-evaporated film-ultrasonication method and subsequent characterization by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The effects of the membrane to material ratio (lecithin to cholesterol mass ratio mPC : mChol = 5 : 1, 8 : 1, 10 : 1, and 12 : 1) and drug to lipid ratio (drug to lecithin mass ratio mRES : mPC = 1 : 25, 1 : 40, 1 : 50, and 1 : 60) of nano-resveratrol liposomes on the liposome-water partition coefficient (Plip/w) were determined. Changes in the oil-water partition coefficient (lgPo/w) and liposome-water partition coefficient (lgPlip/w) as a function of pH were also determined. In addition, the Gibbs free energy between the drug and phospholipid bilayer membrane in RES-Lip was calculated. The results showed that RES-Lip adopted a spherical vesicle structure with a particle size of approximately 100 nm. When the membrane to material ratio was 10 : 1 and the drug to lipid ratio was 1 : 40, lgPlip/w was maximized, indicating that the combined forces between RES and the phospholipid membrane were the highest at these ratios. The trends of lgPo/w and lgPlip/w as a function of pH were the same, indicating that the main interaction force between RES and the phospholipid membrane was the hydrophobic effect with secondary interaction forces of hydrogen bonding and electrostatic interaction. The Gibbs free energy between the RES and liposome membrane in RES-Lip was determined to be −17.07 kJ·mol−1.
  • 加载中
    1. [1]

      Arora, D.; Jaglan, S. Environ. Chem. Lett. 2018, 16 (1), 35. doi: 10.1007/s10311-017-0660-0  doi: 10.1007/s10311-017-0660-0

    2. [2]

      Yucel, C.; Karatoprak, G. S.; Aktas, Y. J. Nanosci. Nanotechnol. 2018, 18 (6), 3856. doi: 10.1166/jnn.2018.15247  doi: 10.1166/jnn.2018.15247

    3. [3]

      Elshaer, M.; Chen, Y. R.; Wang, X. J.; Tang, X. W. Life Sci. 2018, 207, 340. doi: 10.1016/j.lfs.2018.06.028  doi: 10.1016/j.lfs.2018.06.028

    4. [4]

      Jang, M.; Cai, L.; Udeani, G. O.; Slowing, K. V.; Thomas, C. F.; Beecher, C. W.; Fong, H. H.; Farnsworth, N. R.; Kinghorn, A. D.; Mehta, R. G.; et al. Science 1997, 275 (5297), 218. doi: 10.1126/science.275.5297.218  doi: 10.1126/science.275.5297.218

    5. [5]

      Huang, X. T.; Li, X.; Xie, M. L.; Huang, Z.; Huang, Y. X.; Wu, G. X.; Peng, Z. R.; Sun, Y. N.; Ming, Q. L.; Liu, Y. X.; et al. Chem.-Biol. Interact. 2019, 306, 29. doi: 10.1016/j.cbi.2019.04.001  doi: 10.1016/j.cbi.2019.04.001

    6. [6]

      Wang, M. L.; Li, L.; Zhang, X. W.; Liu, Y. P.; Zhu, R. Y.; Liu, L. X.; Fang, Y.; Gao, Z. R.; Gao, D. W. ACS Sustain. Chem. Eng. 2018, 6 (12), 17124. doi: 10.1021/acssuschemeng.8b04507  doi: 10.1021/acssuschemeng.8b04507

    7. [7]

      Hammoud, Z.; Gharib, R.; Fourmentin, S.; Elaissari, A.; Greige-Gerges, H. Int. J. Pharm. 2019, 561, 161. doi: 10.1016/j.ijpharm.2019.02.022  doi: 10.1016/j.ijpharm.2019.02.022

    8. [8]

      Van Tran, V.; Moon, J. Y.; Lee, Y. C. J. Control. Release 2019, 300, 114. doi: 10.1016/j.jconrel.2019.03.003  doi: 10.1016/j.jconrel.2019.03.003

    9. [9]

      Wehbe, N.; Patra, D.; Abdel-Massih, R. M.; Baydoun, E. Colloid Surf. B-Biointerfaces 2019, 173, 94. doi: 10.1016/j.colsurfb.2018.09.053  doi: 10.1016/j.colsurfb.2018.09.053

    10. [10]

      Kristl, J.; Teskac, K.; Caddeo, C.; Abramovic, Z.; Sentjurc, M. Eur. J. Pharm. Biopharm. 2009, 73 (2), 253. doi: 10.1016/j.ejpb.2009.06.006  doi: 10.1016/j.ejpb.2009.06.006

    11. [11]

      Ethemoglu, M. S.; Seker, F. B.; Akkaya, H.; Kilic, E.; Aslan, I.; Erdogan, C. S.; Yilmaz, B. Neuroscience 2017, 357, 12. doi: 10.1016/j.neuroscience.2017.05.026  doi: 10.1016/j.neuroscience.2017.05.026

    12. [12]

      Wang, H. Y.; Zhang, M. J.; Yang, Q. Cereals & Oils 2018, 31 (3), 93.  doi: 10.3969/j.issn.1008-9578.2018.03.025

    13. [13]

      Wang, Y. C.; Xu, H. L.; Fu, Q.; Ma, R.; Xiang, J. Z. China J. Chin. Mater. Med. 2011, 36 (8), 1060.  doi: 10.4268/cjcmm20110826

    14. [14]

      Wei, G.; Xv, H.; Ma, Y.; Li, S. M.; Zheng, J. M. Acta Pharm. Sin. 2001, No. 9, 707.  doi: 10.3321/j.issn:0513-4870.2001.09.018

    15. [15]

      Deng, Y. J.; Shi, S. F.; Gu, X. X. Acta Pharm. Sin. 1988, No. 7, 539.

    16. [16]

      Ma, H. Q.; Mu, J.; Liu, Y.; Zhang, H.; Ding, T.; Tian, H.; Wang, C. L.; Li, Y.; Liu, F. Northwest Pharm. J. 2019, 34 (1), 84.  doi: 10.3969/j.issn.1004-2407.2019.01.021

    17. [17]

      Mohsen-Nia, M.; Ebrahimabadi, A. H.; Niknahad, B. J. Chem. Thermodyn. 2012, 54, 393. doi: 10.1016/j.jct.2012.05.021  doi: 10.1016/j.jct.2012.05.021

    18. [18]

      Barzanti, C.; Evans, R.; Fouquet, J.; Gouzin, L.; Howarth, N. M.; Kean, G.; Levet, E.; Wang, D.; Wayemberg, E.; Yeboah, A. A.; et al. Tetrahedron Lett. 2007, 48 (19), 3337. doi: 10.1016/j.tetlet.2007.03.085  doi: 10.1016/j.tetlet.2007.03.085

    19. [19]

      van Balen, G. P.; Martinet, C. A. M.; Caron, G.; Bouchard, G.; Reist, M.; Carrupt, P. A.; Fruttero, R.; Gasco, A.; Testa, B. Med. Res. Rev. 2004, 24 (3), 299. doi: 10.1002/med.10063  doi: 10.1002/med.10063

    20. [20]

      Endo, S.; Mewburn, B.; Escher, B. I. Chemosphere 2013, 90 (2), 505. doi: 10.1016/j.chemosphere.2012.07.069  doi: 10.1016/j.chemosphere.2012.07.069

    21. [21]

      Chavez-Capilla, T.; Maher, W.; Kelly, T.; Foster, S. J. Environ. Sci. 2016, 49, 222. doi: 10.1016/j.jes.2016.08.007  doi: 10.1016/j.jes.2016.08.007

    22. [22]

      Esteves, F.; Moutinho, C.; Matos, C. J. Liposome Res. 2013, 23 (2), 83. doi: 10.3109/08982104.2012.742539  doi: 10.3109/08982104.2012.742539

    23. [23]

      Ikonen, M.; Murtomaki, L.; Kontturi, K. J. Electroanal. Chem. 2007, 602 (2), 189. doi: 10.1016/j.jelechem.2006.12.014  doi: 10.1016/j.jelechem.2006.12.014

    24. [24]

      Lu, W. G.; Chen, T. T.; Wang, P. Q.; Li, J.; Ren, D. Q. Chin. J. Pharmaceut. 2008, No. 8, 591.  doi: 10.3969/j.issn.1001-8255.2008.08.012

    25. [25]

      Zhong, H. J.; Deng, Y. J.; Wang, L. J.; Du, S. Wang, X. M.; Chen, Y. J. Shenyang Pharm. Univ. 2005, No. 2, 110.

    26. [26]

      Li, N. N.; Geng, L. N.; Wang, L.; Yuan, L. L.; Chang, Y. Z.; Zhang, J. J. Acta Phys. -Chim. Sin. 2015, 31 (11), 2043.  doi: 10.3866/PKU.WHXB201509141

    27. [27]

      Huang, C.; Mason, J. T. Proc. Natl. Acad. Sci. U. S. A. 1978, 75 (1), 308. doi: 10.1073/pnas.75.1.308  doi: 10.1073/pnas.75.1.308

    28. [28]

      Russell, C. J.; Thorgeirsson, T. E.; Shin, Y. K. Biochemistry 1996, 35 (29), 9526. doi: 10.1021/bi960614+  doi: 10.1021/bi960614+

    29. [29]

      Li, X.; Lv, H. F.; Ying, M. F.; Zhao, Y. Z.; Xu, Y. Y.; Zhao, R. Chin. J. Mod. Appl. Pharm. 2017, 34 (1), 72.  doi: 10.13748/j.cnki.issn1007-7693.2017.01.017

    30. [30]

      Suo, X. B.; Li, M. L.; Wang, Y. Q.; Qiu, J. S. Chin. Pharm. J. 2009, 44 (23), 1796.

    31. [31]

      Wang, Z. X.; Deng, Y. J.; Zhang, X. P. Acta Pharm. Sin. 2006, 41 (4), 318.  doi: 10.3321/j.issn:0513-4870.2006.04.005

    32. [32]

      Quan, D. Q.; Ge, M.; Gao, L. J. Chin. Pharm. J. 2012, 47 (12), 1001.

  • 加载中
    1. [1]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    2. [2]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    3. [3]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    6. [6]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    7. [7]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    8. [8]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    11. [11]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    12. [12]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    13. [13]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    14. [14]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    15. [15]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    16. [16]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    17. [17]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

Metrics
  • PDF Downloads(14)
  • Abstract views(995)
  • HTML views(172)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return