Citation: Duan Shuhua, Wu Shufeng, Wang Lei, She Houde, Huang Jingwei, Wang Qizhao. Rod-Shaped Metal Organic Framework Structured PCN-222(Cu)/TiO2 Composites for Efficient Photocatalytic CO2 Reduction[J]. Acta Physico-Chimica Sinica, ;2020, 36(3): 190508. doi: 10.3866/PKU.WHXB201905086 shu

Rod-Shaped Metal Organic Framework Structured PCN-222(Cu)/TiO2 Composites for Efficient Photocatalytic CO2 Reduction

  • Corresponding author: Wang Lei, wanglei030@hotmail.com Wang Qizhao, wangqizhao@163.com
  • Received Date: 31 May 2019
    Revised Date: 24 June 2019
    Accepted Date: 24 June 2019
    Available Online: 27 March 2019

    Fund Project: the National Natural Science Foundation of China (21663027, 21808189)the National Natural Science Foundation of China 21663027the National Natural Science Foundation of China 21808189

  • The photocatalytic reduction of CO2 has attracted considerable attention owing to the dual suppression of environmental pollution and energy shortage. The technology uses solar energy to convert carbon dioxide into hydrocarbon fuel, which is of great significance for achieving the carbon cycle. The development of low-cost photocatalytic materials is critical to achieving efficient solar energy to fuels conversion. One of the most commonly employed photocatalysts is TiO2. However, it suffers from broad band gap as well as the recombination of photo-excited holes and electron. Hence, in this work, we report the photochemical reduction of CO2 using rod-like PCN-222(Cu)/TiO2 composites as photocatalyst through a simple hydrothermal method, in which TiO2 nanoparticles are anchored at the interface of the SiC rod PCN-222(Cu). Multiple characterization techniques were used to analyze the structure, morphology, and properties of the PCN-222(Cu)/TiO2 composite. A series of characterizations including X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy, photo-electrochemical, and photoluminescence (PL) confirm the successful preparation of PCN-222(Cu)/TiO2 composites. SEM reveals that the TiO2 nanoparticles are uniformly distributed on the surface of the rod-shaped PCN-222(Cu)/TiO2. XRD results show that PCN-222(Cu) and PCN-222(Cu)/TiO2 composite photocatalysts with good crystal structure were successfully synthesized. According to the DRS results, the prepared PCN-222(Cu)/TiO2 composite samples exhibit characteristic absorption peaks of metalloporphyrins in the visible region. PL spectroscopy, transient photocurrent response, and electrochemical impedance spectroscopy further confirm that the rod-like PCN-222(Cu)/TiO2 samples have high electron-hole pair separation efficiency. By controlling the mass ratio of PCN-222(Cu) and TiO2, the photocatalytic CO2 reduction performance test shows that the 10% PCN-222(Cu)/TiO2 composite achieves optimal catalytic performance, yielding 13.24 μmol·g−1·h−1 CO and 1.73 μmol·g−1·h−1 CH4, respectively. All the rod-like PCN-222(Cu)/TiO2 composites exhibit better photocatalytic CO2 activity than that of TiO2 nanoparticles or PCN-222(Cu) under the illumination of xenon lamps, which is attributed to charge transport and electron-hole separation capabilities. After three test cycles, the catalytic activity of PCN-222(Cu)/TiO2 photocatalyst was virtually unchanged. The reduction yield of the catalyst increased for 8 h under continuous illumination, indicating that PCN-222(Cu)/TiO2 composites have acceptable stability. The estimation of the band gap curve and the Mote-Schottky curve test show that the lowest unoccupied molecular orbital position of PCN-222(Cu) is more negative than the TiO2 of the conduction band; hence, a possible photocatalytic reaction mechanism of the PCN-222(Cu)/TiO2 composite is proposed. This study provides a new strategy for the integration of metal-organic frameworks and oxide semiconductors to construct efficient photocatalytic systems.
  • 加载中
    1. [1]

      Wang, C. -C.; Zhang, Y. -Q.; Li, J.; Wang, P. J. Mol. Struct. 2015, 1083, 127. doi: 10.1016/j.molstruc.2014.11.036  doi: 10.1016/j.molstruc.2014.11.036

    2. [2]

      Ran, J.; Jaroniec, M.; Qiao, S. Z. Adv. Mater. 2018, 30, 1704649. doi: 10.1002/adma.201704649  doi: 10.1002/adma.201704649

    3. [3]

      Lingampalli, S. R.; Ayyub, M. M.; Rao, C. N. R. ACS Omega 2017, 2, 2740. doi: 10.1021/acsomega.7b00721  doi: 10.1021/acsomega.7b00721

    4. [4]

      Zhou, M.; Wang, S.; Yang, P.; Luo, Z.; Yuan, R.; Asiri, A. M.; Wakeel, M.; Wang, X. Chem. 2018, 24, 18529. doi: 10.1002/chem.201803250  doi: 10.1002/chem.201803250

    5. [5]

      Sadeghi, N.; Sharifnia, S.; Sheikh Arabi, M. J. CO2 Utilization 2016, 16, 450. doi: 10.1016/j.jcou.2016.10.006  doi: 10.1016/j.jcou.2016.10.006

    6. [6]

      Li, R.; Hu, J.; Deng, M.; Wang, H.; Wang, X.; Hu, Y.; Jiang, H. L.; Jiang, J.; Zhang, Q.; Xie, Y.; et al. Adv. Mater. 2014, 26, 4783. doi: 10.1002/adma.201400428  doi: 10.1002/adma.201400428

    7. [7]

      She, H.; Zhou, H.; Li, L.; Zhao, Z.; Jiang, M.; Huang, J.; Wang, L.; Wang, Q. ACS Sustainable Chem. Eng. 2019, 6, 650. doi: 10.1021/acssuschemeng.8b04250  doi: 10.1021/acssuschemeng.8b04250

    8. [8]

      Tian, H.; Shen, K.; Hu, X.; Qiao, L.; Zheng, W. J. Alloy. Compd. 2017, 691, 369. doi: 10.1016/j.jallcom.2016.08.261  doi: 10.1016/j.jallcom.2016.08.261

    9. [9]

      Li, X.; Xiong, J.; Huang, J.; Feng, Z.; Luo, J. J. Alloy. Compd. 2019, 774, 768. doi: 10.1016/j.jallcom.2018.10.034  doi: 10.1016/j.jallcom.2018.10.034

    10. [10]

      Kuang, P.; Su, Y.; Li, N.; Luo, N.; Xing, S.; Liu, Z. Appl. Surf. Sci. 2015, 296. doi: 10.1016/j.apsusc.2015.08.066  doi: 10.1016/j.apsusc.2015.08.066

    11. [11]

      Tian, H.; Liu, M.; Zheng, W. Appl. Catal. B: Environ. 2018, 225, 468. doi: 10.1016/j.apcatb.2017.12.019  doi: 10.1016/j.apcatb.2017.12.019

    12. [12]

      Li, X.; Xiong, J.; Xu, Y.; Feng, Z.; Huang, J. Chin. J. Catal. 2019, 40, 424. doi: 10.1016/S1872-2067(18)63183-3  doi: 10.1016/S1872-2067(18)63183-3

    13. [13]

      Ning, X.; Li, J.; Yang, B.; Zhen, W.; Li, Z.; Tian, B.; Lu, G. Appl. Catal. B: Environ. 2017, 212, 129. doi: 10.1016/j.apcatb.2017.04.074  doi: 10.1016/j.apcatb.2017.04.074

    14. [14]

      Zhu, C.; Liu, C.; Zhou, Y.; Fu, Y.; Guo, S.; Li, H.; Zhao, S.; Huang, H.; Liu, Y.; Kang, Z. Appl. Catal. B: Environ. 2017, 216, 114. doi: 10.1016/j.apcatb.2017.05.049  doi: 10.1016/j.apcatb.2017.05.049

    15. [15]

      She, H.; Li, L.; Sun, Y.; Wang, L.; Huang, J.; Zhu, G.; Wang, Q. Appl. Surf. Sci. 2018, 457, 1167. doi: 10.1016/j.apsusc.2018.07.045  doi: 10.1016/j.apsusc.2018.07.045

    16. [16]

      Wang, Q.; Niu, T.; Wang, L.; Yan, C.; Huang, J.; He, J.; She, H.; Su, B.; Bi, Y. Chem. Eng. J. 2018, 337, 506. doi: 10.1016/j.cej.2017012.126  doi: 10.1016/j.cej.2017012.126

    17. [17]

      Xu, H. Q.; Hu, J.; Wang, D.; Li, Z.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. J. Am. Chem. Soc. 2015, 137, 13440. doi: 10.1021/jacs.5b08773  doi: 10.1021/jacs.5b08773

    18. [18]

      Sanz-Perez, E. S.; Murdock, C. R.; Didas, S. A.; Jones, C. W. Chem. Rev. 2016, 116, 11840. doi: 10.1021/acs.chemrev.6b00173  doi: 10.1021/acs.chemrev.6b00173

    19. [19]

      Wang, Y.; Zhao, J.; Li, Y.; Wang, C. Appl. Catal. B: Environ. 2018, 226, 544. doi: 10.1016/j.apcatb.2018.01.005  doi: 10.1016/j.apcatb.2018.01.005

    20. [20]

      Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S. M.; Hamilton, J. W. J.; Byrne, J. A.; O'Shea, K.; et al. Appl. Catal. B: Environ. 2012, 125, 331. doi: 10.1016/j.apcatb.2012.05.036  doi: 10.1016/j.apcatb.2012.05.036

    21. [21]

      Li, N.; Liu, M.; Yang, B.; Shu, W.; Shen, Q.; Liu, M.; Zhou, J. J. Phys. Chem. C 2017, 121, 2923. doi: 10.1021/acs.jpcc.6b12683  doi: 10.1021/acs.jpcc.6b12683

    22. [22]

      Ning, X.; Li, J.; Yang, B.; Zhen, W.; Li, Z.; Tian, B.; Lu, G. Appl. Catal. B: Environ. 2017, 212, 129. doi: 10.1016/j.apcatb.2017.04.074  doi: 10.1016/j.apcatb.2017.04.074

    23. [23]

      Ong, W. -J.; Tan, L. -L.; Chai, S. -P.; Yong, S. -T.; Mohamed, A. R. Nano Res. 2014, 7, 1528. doi: 10.1007/s12274-014-0514-z  doi: 10.1007/s12274-014-0514-z

    24. [24]

      Rengifo-Herrera, J. A.; Kiwi, J.; Pulgarin, C. J. Photochem. Photobio. A 2009, 205, 109. doi: 10.1016/j.jphotochem.2009.04.015  doi: 10.1016/j.jphotochem.2009.04.015

    25. [25]

      Li, K.; Lin, L.; Peng, T.; Guo, Y.; Li, R.; Zhang, J. Chem. Commun. 2015, 51, 12443. doi: 10.1039/c5cc03812j  doi: 10.1039/c5cc03812j

    26. [26]

      Xu, F.; Zhang, J.; Zhu, B.; Yu, J.; Xu, J. Appl. Catal. B: Environ. 2018, 230, 194. doi: 10.1016/j.apcatb.2018.02.042  doi: 10.1016/j.apcatb.2018.02.042

    27. [27]

      Shen, K.; Xue, X.; Wang, X.; Hu, X.; Tian, H.; Zheng, W. RSC Adv. 2017, 7, 23319. doi:10.1039/c7ra01856h  doi: 10.1039/c7ra01856h

    28. [28]

      Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H. -C. Chem. Soc. Rev. 2017, 46, 3386. doi: 10.1039/c7cs00058h  doi: 10.1039/c7cs00058h

    29. [29]

      Feng, D.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z.; Zhou, H. C. Angew. Chem. Int. Ed. 2012, 51, 10307. doi: 10.1002/anie.201204475  doi: 10.1002/anie.201204475

    30. [30]

      Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S. H.; Jiang, H. L. Angew. Chem. Int. Ed. 2018, 57, 8525. doi: 10.1002/anie.201803262  doi: 10.1002/anie.201803262

    31. [31]

      Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Adv. Mater. 2018, 30, 1703663. doi: 10.1002/adma.201703663  doi: 10.1002/adma.201703663

    32. [32]

      Zhang, H.; Wei, J.; Dong, J.; Liu, G.; Shi, L.; An, P.; Zhao, G.; Kong, J.; Wang, X.; Meng, X.; et al. Angew. Chem. Int. Ed. 2016, 55, 14310. doi: 10.1002/anie.201608597  doi: 10.1002/anie.201608597

    33. [33]

      Yang, Q.; Xu, Q.; Jiang, H. L. Chem. Soc. Rev. 2017, 46, 4774. doi: 10.1039/c6cs00724d  doi: 10.1039/c6cs00724d

    34. [34]

      Chen, Y. Z.; Wang, Z. U.; Wang, H.; Lu, J.; Yu, S. H.; Jiang, H. L. J. Am. Chem. Soc. 2017, 139, 2035. doi: 10.1021/jacs.6b12074  doi: 10.1021/jacs.6b12074

    35. [35]

      Liu, M.; Xue, X.; Yu, S.; Wang, X.; Hu, X.; Tian, H.; Chen, H.; Zheng, W. Sci. Rep. 2017, 7, 3637. doi: 10.1038/s41598-017-03911-6  doi: 10.1038/s41598-017-03911-6

    36. [36]

      Wang, L.; Duan, S.; Jin, P.; She, H.; Huang, J.; Lei, Z.; Zhang, T.; Wang, Q. Appl. Catal. B: Environ. 2018, 239, 599. doi: 10.1016/j.apcatb.2018.08.007  doi: 10.1016/j.apcatb.2018.08.007

    37. [37]

      Wang, L.; Jin, P.; Duan, S.; She, H.; Huang, J.; Wang, Q. Sci. Bul. 2019, doi: 10.1016/j.scib.2019.05.012  doi: 10.1016/j.scib.2019.05.012

    38. [38]

      Wang, Q.; He, J.; Wang, L.; Shi, Y.; Zhang, S.; Niu, T.; She, H.; Bi, Y. Chem. Eng. J. 2017, 326, 411. doi: 10.1016/j.cej.2017.05.171  doi: 10.1016/j.cej.2017.05.171

    39. [39]

      Xu, X.; Liu, R.; Cui, Y.; Liang, X.; Lei, C.; Meng, S.; Ma, Y.; Lei, Z.; Yang, Z. Appl. Catal. B: Environ. 2017, 210, 484. doi: 10.1016/j.apcatb.2017.04.021  doi: 10.1016/j.apcatb.2017.04.021

    40. [40]

      Safaei, E.; Mohebbi, S. J. Mater. Chem. A 2016, 4, 3933. doi: 10.1039/c5ta09357k  doi: 10.1039/c5ta09357k

    41. [41]

      Chen, D.; Wang, K.; Hong, W.; Zong, R.; Yao, W.; Zhu, Y. Appl. Catal. B: Environ. 2015, 166, 366. doi: 10.1016/j.apcatb.2014.11.050  doi: 10.1016/j.apcatb.2014.11.050

    42. [42]

      Wei, M.; Wan, J.; Hu, Z.; Peng, Z.; Wang, B.; Wang, H. Appl. Surf. Sci. 2017, 391, 267. doi: 10.1016/j.apsusc.2016.05.161  doi: 10.1016/j.apsusc.2016.05.161

    43. [43]

      Zhou, S.; Yue, P.; Huang, J.; Wang, L.; She, H.; Wang, Q. Chem. Eng. J. 2019, 371, 885. doi: 10.1016/j.cej.2019.04.124  doi: 10.1016/j.cej.2019.04.124

    44. [44]

      Li, X.; Pi, Y.; Hou, Q.; Yu, H.; Li, Z.; Li, Y.; Xiao, J. Chem. Commun. 2018, 54, 1917. doi: 10.1039/c7cc09072b  doi: 10.1039/c7cc09072b

    45. [45]

      Yan, S.; Ouyang, S.; Xu, H.; Zhao, M.; Zhang, X.; Ye, J. J. Mater. Chem. A 2016, 4, 15126. doi: 10.1039/c6ta04620g  doi: 10.1039/c6ta04620g

  • 加载中
    1. [1]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    2. [2]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    3. [3]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    4. [4]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    5. [5]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    6. [6]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    7. [7]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    8. [8]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    9. [9]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    10. [10]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    11. [11]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    12. [12]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    13. [13]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    14. [14]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    15. [15]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    16. [16]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    17. [17]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    18. [18]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    19. [19]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    20. [20]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

Metrics
  • PDF Downloads(8)
  • Abstract views(743)
  • HTML views(102)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return